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Abstract: This study set out to determine the key meta-
bolite changes underlying the pathophysiology of severe
preeclampsia (PE) using metabolic analysis. We collected
sera from 10 patients with severe PE and from 10 healthy
pregnant women of the same trimester and analyzed
them using liquid chromatography mass spectrometry.
A total of 3,138 differential metabolites were screened,
resulting in the identification of 124 differential metabo-
lites. Kyoto encyclopedia of genes and genomes pathway
analysis revealed that they were mainly enriched in the
following metabolic pathways: central carbon metabo-
lism in cancer; protein digestion and absorption; ami-
noacyl-transfer RNA biosynthesis; mineral absorption;
alanine, aspartate, and glutamate metabolism; and pros-
tate cancer. After analysis of 124 differential metabolites, 2-
hydroxybutyric acid was found to be the most critical dif-
ferential metabolite, and its use allowed the differentiation
of women with severe PE from healthy pregnant women.
In summary, our analysis revealed that 2-hydroxybutyric
acid is a potential key metabolite for distinguishing severe
PE from healthy controls and is also a marker for the early
diagnosis of severe PE, thus allowing early intervention.
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1 Introduction

Preeclampsia (PE) is defined as a new onset of hyperten-
sion during pregnancy after the 20th week [1], and its
global prevalence is 8% [2]. Worldwide, PE and eclampsia
are major causes of maternal and infant mortality [3]. In
developing countries, it occurs at a rate of 1.8-16.7% [4]
and causes 40-60% of maternal deaths [4]. Its rates have
remained unchanged for decades, but the rates of severe
PE have increased over recent decades [5]. Eclampsia can
occur in patients with severe PE leading to symptoms of the
nervous system [6] or hemolysis, elevated liver enzymes,
low platelet count (HELLP) syndrome [7]. Depending on
the clinical characteristics of a patient, PE can be classified
as mild or severe [8]. Furthermore, it can be classified
according to its time of clinical manifestation as “early-onset
PE” (EOPE) in cases occurring before 34 weeks of pregnancy,
or as “late-onset PE” (LOPE) in cases occurring after 34
weeks of pregnancy [9]. EOPE and LOPE might be more
useful subclassifications [10]. The majority of the affected
women suffers from PE at the late preterm or term stage,
but about 12% suffers from PE that begins early (before
34 weeks of pregnancy) [11]. EOPE is the result of pla-
cental defects and deficiency of trophoblast invasion and
normal spiral artery remodeling; LOPE, however, may
result from interactions between the normal senescence
of the placenta and a maternal genetic history of cardio-
vascular disease [12,13]. Blood pressure (BP) control is
crucial during PE to prevent systemic complications [14].
Therefore, early diagnosis and early intervention in PE are
particularly important.

There are many established risk factors for PE, such
as nulliparity, advanced maternal age, overweight or
obesity, chronic hypertension, diabetes, previous PE,
family history of PE, and multiple pregnancy [15]; how-
ever, the exact causes of PE/eclampsia remain unclear
[16]. Further research is needed concerning the cellular
and molecular mechanisms of PE to improve the treat-
ment of PE patients [17].
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The study of metabonomics and metabolomics
involves the use of accurate metabonomic (and/or metabo-
lomic) analyses of metabolic changes occurring in cells,
tissues, and whole organisms [18]. It is part of the “omics
cascade” together with genomics, transcriptomics, and pro-
teomics [19] and one of the many “-omics” technologies that
are currently being developed [20]. Metabolomics, or metabo-
nomics, primarily involves the elucidation of the end products
in a specific organism or a cell [21], and it is the “ultimate”
tool in the “omics chain,” as it is the closest to the phenotype
[22]. It can be divided into two categories: untargeted and
targeted [23]. While the former also known as discovery meta-
bolomics, which is a global analysis of different metabolomics
between control and experimental groups, the latter focuses
on the analysis of specific metabolic clusters associated with
certain metabolic pathways [20].

2-Hydroxybutyric acid is elevated in many diseases
and has some diagnostic values. In cancer, its levels have
been elevated in a mouse model of colon carcinogenesis
induced by azoxymethane/dextran sodium sulfate [24];
furthermore, nuclear lactate dehydrogenase A induces its
production from reactive oxygen species and promotes
human papilloma virus-induced cervical tumor growth [25];
moreover, patients in the initial diagnostic stage of acute
myeloid leukemia can be identified by 2-hydroxybutyric
acid [26]. In pneumonia diseases, compared to healthy con-
trols, 2-hydroxybutyric acid was found to be enriched in
COVID-19 patients and COVID-like patients and remained
at higher levels after discharge [27]; meanwhile, elevated
dehydrogenase can be an independent prognostic factor for
death in hospitalized COVID-19 patients [28]; it also has a
diagnostic value in community-acquired pneumonia [29]. 2-
Hydroxybutyric acid has been more deeply studied in dia-
betes than in any other disease, and high levels of plasma are
a good predictor of type 2 diabetes [30]. Furthermore, it can
be used in the following circumstances: as a biomarker of
insulin resistance; for disease tracking throughout the treat-
ment of insulin resistance [31]; as a predictive marker for
impaired glucose tolerance without the need for a glucose
tolerance test [32]; along with branched-chain amino acids, it
can predict worsening glycemic control in adolescents [33]; it
has high values in the sera of patients with isolated postchal-
lenge diabetes compared to normal subjects [34]; and its
levels decrease significantly after laparoscopic sleeve gas-
trectomy in morbidly obese patients [35]. It also have some
diagnostic values in other diseases: it is significantly higher
in the blood of pregnant women carrying trisomy 21 fetuses
than in healthy pregnant women [36]; urinary 2-hydroxybu-
tyric acid predicts the development of acute kidney injury
in presurgical samples [37]; and its levels are elevated in
patients with a major depressive disorder [38].
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In this study, we collected sera from 10 patients with
severe PE and 10 healthy pregnant women of the same
trimester and analyzed them using liquid chromatograph
mass spectrometry (LC-MS), with a view to identifying the
key metabolites of the former pathogenesis and providing
new indicators for early diagnosis.

2 Materials and methods

2.1 Study population

All samples were obtained from the Obstetrics Department
of Zhuzhou Central Hospital and were divided into a
normal control group (10 normotensive pregnant women)
and a severe PE group (n = 10). The basic diagnostic cri-
teria for PE are as follows: BP >140/90 mmHg, and urine
protein >0.3 mg/24 h. Severe PE is diagnosed on the basis
of the diagnostic criteria for PE with any of the following
conditions present: systolic BP >160 mmHg, or diastolic BP
>110 mmHg, or other manifestations of a multisystem dis-
order (e.g., severe proteinuria, thrombocytopenia, impaired
liver function, severe persistent right upper quadrant or
epigastric pain, renal insufficiency, pulmonary edema, or
new-onset headache).

Informed consent: Informed consent has been obtained
from all individuals included in this study.

Ethical approval: The research related to human use has
been complied with all the relevant national regulations,
institutional policies and in accordance with the tenets of
the Helsinki Declaration, and has been approved by the
Institutional Research Ethics Board of Zhuzhou Central
Hospital (reference number 20180334).

2.2 Sample processing

A peripheral blood sample (10 mL) was taken from each
participant. All samples were centrifuged at 2,000 rpm for
10 min at room temperature using a centrifuge. Afterward,
the supernatant was stored in a refrigerator at —80°C.

2.3 Spectroscopy

All samples were thawed at 4°C (insufficient samples
were reduced to an equal scale); 100 pL of each sample
was transferred into 2 mL centrifuge tubes (samples with
a sample size of <50 pL were extracted by half of the
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experimental system, but the resolution system remained
unchanged); 400 pL of methanol (-20°C) was added to each
tube and vortexed for 60 s; the mixture was centrifuged at
4°C for 10 min at 12,000 rpm, and then the supernatant was
transferred from each sample into another 2 mL centrifuge
tube. Samples were concentrated to dry in a vacuum and
subsequently dissolved with 150 pL 2-chlorobenzalanine
(4 ppm) 80% methanol solution, and the supernatant was
filtered through a 0.22 ym membrane to obtain the prepared
samples for gas chromatography mass spectrometry (GC-MS).
For quality control (QC), 20 pL subsamples were taken (QC
samples were used to monitor deviations of the analytical
results from these pool mixtures and compare them to
the errors caused by the analytical instrument itself). The
remainder of the samples were used for LC-MS detection

2.4 Chromatography and mass
spectrometry conditions

Chromatographic separation was performed with an
ACQUITY UPLC® HSS T3 (150 mm x 2.1mm, 1.8 um,
Waters) column maintained at 40°C. The temperature
of the autosampler was 8°C. Gradient elution of analytes
was carried out with 0.1% formic acid in water and 0.1%
formic acid in acetonitrile or 5 mM ammonium formate
in water and acetonitrile at a flow rate of 0.25 mL/min.
Injection of 2pL of each sample was performed after
equilibration. An increasing linear gradient of solvent B
(v/v) was used as follows: 0-1min, 2% B/D; 1-9 min,
2-50% B/D; 9-12 min, 50-98% B/D; 12-13.5 min, 98% B/D;
13.5-14 min, 98-2% B/D; 14-20 min, 2% D-positive model
(14-17 min, 2% B-negative model).

The electrospray ionization multistage mass spectro-
metry experiments were used with a spray voltage of 3.5
and -2.5kV in positive and negative modes, respectively.
Sheath gas and auxiliary gas were set at 30 and 10 arbi-
trary units, respectively, while the capillary temperature
was 325°C. The Orbitrap analyzer scanned over a mass
range of m/z 81-1,000 for a full scan at a mass resolution
of 70,000. Data-dependent acquisition MS/MS experi-
ments were performed with a higher energy collisional
dissociation scan. The normalized collision energy was
30 eV. Dynamic exclusion was implemented to remove
some unnecessary information in MS/MS spectra.

2.5 Multivariate statistical analysis

The data were analyzed using SIMCA-P (v13.0) [35] soft-
ware and the R language ropls [39] package. The main

Metabolomic analysis-identified 2-hydroxybutyric acid =——

Table 1: Severe PE clinical features

Echocard-

Neonatal

Time to terminate Neonatal

and peritoneal effusion pregnancy

Ultrasound of pleural

Albumin

24 h urine

Gestational Systolic Edema

weeks

NO Age

weight (g) iography

Apgar Scores

pressure protein (g/L)

(years)

(mmHg)

Normal
Normal
Normal

1,600

1,270

8-10
9-10
9-10

34 weeks
30+ 6

Normal

22.6g/L
Normal

Normal 11.120

116-151

33+3

25

Normal

0.603

(+)
(+)

109-161

29 +5

32

2,160 and

35+1

Normal

25.2¢g/L

0.378

100-139

31+5

31

3*

2,420 (twins)

Normal
Normal

Leave hospital

Leave hospital

Leave hospital

Normal

Normal
Leave

Normal 1.229

Normal

120-160
150-175

32+3

29
33

Leave hospital

Leave hospital

Normal Leave hospital

Leave

31+2

hospital
24 g/L

hospital
5.292
6.134

Normal
<5mL
Normal
1,720 and 1,790 Normal

1,250
(twins)

1,050

7-10

32+6
29 +2

Normal

Normal

107-166
130-170

122-161
110-147

32+6
29

45

Normal

Normal
27.2g/L
25.1g/L

Normal

31

1,640

9-10
8-10

33+2

Pleural effusion
Pleural effusion

(++++) 4.772

(++)

32+6

24
34

33+3

0.454

33+3

Normal

26.5g/L Pleural effusion 34+ 6 8-10 1,920 and

1.742

118-175 (+++)

34 +3

34

10

1,890 (twins)

Note: NO 7, The patient requested induction of labor, rivanol amniotic injection at 29 + 2 weeks, neonatal death. No 3 had a diastolic BP of 110 mmHg. *Had a diastolic BP of 110 mmHg.
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Table 2: Multivariate data analysis result

PE vs Normal Pre R2X (cum) R2Y (cum) Q2 (cum)
PCA 4 0.511

PLS-DA 3 0.432 0.998 0.962
OPLS-DA 1+41+0 0.356 0.973 0.895

methods of analysis included principal component ana-
lysis (PCA), partial least squares-discriminant analysis
(PLS-DA), and orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) [40].

Unsupervised analysis (e.g., PCA) does not ignore
within-group errors, eliminates random errors that are
not relevant to the purpose of the study, focuses too
much on details, and neglects the overall picture and
patterns, and is ultimately detrimental to the detection
of between-group differences and differential compounds.
In such cases, it is necessary to use prior knowledge of the
sample to further focus the data analysis on the aspect
being studied, using a supervised analysis such as PLS-DA.
OPLS-DA, another commonly used method in metabolomics
data analysis, is an extension of PLS-DA. Compared to the
PLS-DA, this method can effectively reduce the complexity
of the model and enhance the explanatory power of the
model without reducing the predictive power, thus maxi-
mizing the differences between groups.

3 Analysis and identification of
metabolites

3.1 Differential metabolite screening

Metabolites are screened to identify differential metabo-
lites (biomarkers); the relevant conditions are as follows:
p-value <0.05 + VIP (variable importance for the projec-
tion) >1.
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3.2 Identification of metabolites

Metabolite identification was first confirmed on the basis
of precise molecular weights (molecular weight error <30 ppm),
followed by confirmation of annotation against the Metlin
(http://metlin.scripps.edu) and MoNA (https://mona.fiehnlab.
ucdavis.edu//) databases based on MS/MS fragmentation pat-
terns to identify the final metabolites.

3.3 Network analysis

Metscape [41], a Cytoscape plug-in (v.3.9.0) [42], was
used for the metabolic network analysis and data
visualization.

3.4 Kyoto encyclopedia of genes and
genomes (KEGG) analysis

MetPA is part of metaboanalyst (www.metaboanalyst.ca)
and is based on the KEGG metabolic pathway. The MetPA
database identifies possible bioturbated metabolic path-
ways through metabolic pathway enrichment and topology
analysis, and thus analyzes the metabolic pathways of meta-
bolites. The MetPA database allows the analysis of metabolic
pathways associated with two sets of differential metabolites,
using a hypergeometric test as the data analysis algorithm,
and relative-betweeness centrality for pathway topology.

4 Results

4.1 Subject characteristics

Ten healthy pregnant women of the same trimester and
10 pregnant women with severe PE were included in this
study. There were no significant differences between
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Figure 1: (a) PCA, (b) PLS-DA, and (c) OPLS-DA of the severe EOPE and normal groups.
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the two groups when subject characteristics such as age
(31.6 + 5.77) or week of gestation (32.1 + 1.72W) were
taken into account. However, there were significant dif-
ferences in BP, gestational week at termination, neonatal
Apgar score, and neonatal weight. Table 1 shows the
clinical features of the 10 severe PE cases.
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4.2 Multivariate analysis

In this study, serum samples from the 10 healthy preg-
nant women and 10 severe PE patients were analyzed
with a metabolomics approach, using GC-MS followed
by the multivariate data analysis by PCA, PLS-DA, and
OPLS-DA (Table 2). Initial unsupervised PCA (Figure 1a)
and supervised PCA (Figure 1b and c) showed a clear
separation of metabolites between the normal and severe
EOPE groups.

234,5-tetrahydrodipicolinate

4.3 ldentified metabolites

Al § HENNNNNEEEE EE

In the GC-MS analysis, 3138 differential metabolites were
screened and 124 metabolites (Figure 2) were eventually
identified. Of the 124 identified differential metabolites,
45 downregulated products and 79 upregulated products
were included. The classification of the identified differ-
ential metabolites are summarized in Figure 3; these were
mainly located on metabolism of amino acids, carbohy-
drates, cofactors and vitamins, lipids, nucleotides, and
peptides.

4.4 Network analysis

By building an association-based network, we found that
2-hydroxybutyric acid was important within this meta-
bolic network (Figure 4). Furthermore, the results of the
differential metabolite analysis showed that 2-hydroxy-
butyric acid differed significantly between preeclamptic
and normal pregnant women (VIP = 1.670, p-value <0.05,
false discovery rate (FDR) = 0.006, log FC = 1.016). Mean-
while, the results of analysis of variance for L-threonine
and 5,6-dihydro-5-fluorouracil were VIP = 1.695, p-value
<0.05, FDR = 0.022, logFC = 1.036; and VIP = 1.654,
p-value <0.05, FDR = 0.006, log FC = 1.020, respectively.
In the ROC plot (Figure 5), there was an area under the Figure 2: Heatmap with all the significant metabolites.
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Figure 3: Classification of identified differential metabolites. The differential metabolites located on metabolism of amino acids, carbohy-
drates, cofactors and vitamins, lipids, nucleotides, and peptides.
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Figure 6: KEGG pathway analysis of identified differential metabolites.
Significantly enriched pathways include central carbon metabolism in
cancer (37 differential metabolites); protein digestion and absorption
(47 differential metabolites); aminoacyl-tRNA biosynthesis (52 differential
metabolites); mineral absorption (29 differential metabolites); alanine,
aspartate, and glutamate metabolism (28 differential metabolites); pros-
tate cancer (11 differential metabolites) (FDR <0.05). The size of the circle
represents the number of differential metabolites that are enriched in this
pathway. —log(p): Negative values for the natural logarithm of the p-
value. Impact: Metabolic pathway impact values.

curve (AUC) of 0.99, indicating a high level of accuracy
(high accuracy = AUC >0.9).

4.5 KEGG analysis

The final results of the differential metabolite KEGG pathway
enrichment analysis are shown in Figure 6. Significantly
enriched pathways included central carbon metabolism in
cancer, protein digestion and absorption, aminoacyl-transfer
RNA (tRNA) biosynthesis, mineral absorption, alanine, aspartate
and glutamate metabolism, and prostate cancer (FDR <0.05).

5 Discussion

In this study, we analyzed the metabolites in the sera of
10 severe PE cases and 10 healthy pregnant women.
A total of 3,138 differential metabolites were screened,
resulting in the identification of 124 differential metabo-
lites. After analysis of 124 differential metabolites, 2-hydro-
xybutyric acid was found to be the more critical differential
metabolite; its presence clearly distinguished between
severe PE and healthy pregnant women. The analysis of
the KEGG pathway revealed that the metabolites were
mainly enriched in the following metabolic pathways:
central carbon metabolism in cancer; protein digestion
and absorption; aminoacyl-tRNA biosynthesis; mineral
absorption; alanine, aspartate, and glutamate metabo-
lism; prostate cancer.

2-Hydroxybutyric acid is predominantly produced
during the metabolism of r-threonine or the synthesis of
glutathione and may be elevated by oxidative stress or the
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detoxification of exogenous substances in the liver [43].
It has been previously demonstrated that 2-hydroxybutyric
acid, as a component of a metabolite-only model, can pre-
dict the EOPE [44]. Our study also found that this meta-
bolite played an important role in severe PE; however, we
used a different approach.

Two of the KEGG enrichment analyses differential
metabolites that we studied were associated with cancer.
The other four KEGG pathways were all found to be asso-
ciated with severe PE. The differential mRNAs between
the preeclamptic and normal groups were also found to
be enriched in the protein digestion and absorption path-
ways [45]. Thus, previous studies have found that r-argi-
nine supplementation can be used to treat individuals
with PE [46]. Harville et al. demonstrated that ami-
noacyl-tRNA biosynthesis is associated with hypertensive
disorders of pregnancy [47]. Furthermore, the relation-
ship between minerals and PE has been relatively well
studied. Serum selenium levels have been shown to be
associated with PE in several studies [48-51]; however,
amniotic fluid selenium status has been shown to be
uncorrelated with PE or preterm delivery [52,53]. On the
other hand, Enebe et al. found that low levels of antiox-
idant trace elements, for example, selenium, copper, and
magnesium, can promote the incidence of PE [54], and
other studies have found that mineral and vitamin sup-
plementation can reduce the incidence [55,56]. These
findings illustrate the impact of mineral absorption path-
ways on PE. To our knowledge, there is no literature
addressing the relationship between the alanine, aspar-
tate, and glutamate metabolism pathway and PE. How-
ever, a proportion of patients with PE do have abnormal
liver function.

In summary, our analysis revealed that 2-hydroxybu-
tyric acid might be a key metabolite for distinguishing
severe PE from normal controls and is potentially a
marker for the early diagnosis of severe PE, thus pro-
viding a basis for early detection and intervention.
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