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Abstract: Air pollution is a major factor affecting human
life and living quality in arid and semiarid regions. This
study was conducted in the Al-Ahsa district in the Eastern
part of Saudi Arabia to measure carbon dioxide (CO2)
concentration over different land-use types. Initially,
the study’s land use/land cover (LULC) was classified
using the spectral characteristics of Landsat-8 data. Then,
sensors were placed in five sites of different LULC types to
detect CO2, air temperature, and relative humidity. The
Friedman test was used to compare CO2 concentration
among the five sites. Five LULC types were identified over
the study area: date palm, cropland, bare land, urban land,
and water. The results indicated that CO2 concentration
showed a maximum mean value of 577 ppm recorded
from a site dominated by urban lands. During the peak
time of human transportation, amaximumvalue of 659 ppm
was detected. The CO2 concentration mean values detected
for the other LULC types showed 535, 515, and 484 ppm for
the bare land, cropland, and date palm, respectively. This
study’s sensors and procedures helped provide information
over relatively small areas. However, modelling CO2 fluctua-
tions with time for LULC changes might improve manage-
ment and sustainability.
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1 Introduction

Air quality, air-condition, and climate are major factors
affecting human life and living quality [1]. The atmo-
spheric carbon dioxide (CO2) resulting from photosynth-
esis plays a major role in vegetation growth and is a
crucial greenhouse gas (GHG) that contributes to global
warming [2]. The carbon balance of arid regions can be
significantly affected by environmental stresses and human
activities [3,4]. The trend of the world population is to
inhabit cities by 2050 [5], which might reflect the impor-
tance of decreasing GHG emissions [6]. As a result, the
global mean concentration of CO2 rose steadily from
approximately 280 ppm to a level exceeding 400 ppm
in the present [7].

Land use/land cover (LULC) changes due to urban
expansion are considered crucial factors affecting CO2

emissions [8]. LULC change affects the climate through
changes in CO2 fluxes between the land and the atmo-
sphere [9] and accounting for approximately 10–15% of
the atmospheric increase in CO2 concentrations [10,11].
However, the LULC change can modulate the land–atmo-
sphere CO2 flux at a regional scale compared to the effects
of GHG [12]. The direct and indirect GHG emissions from
land-use activities such as livestock farming, manure
management, fertiliser use, and paddy rice contribute
around 12% of today’s total GHG emissions and about
10% rise in CO2 emissions from deforestation [13,14].
Nevertheless, terrestrial ecosystems can play an impor-
tant role in sequestering atmospheric CO2 for mitigating
the GHG effect [15,16].

The observation of the land surface temperature (LST)
in Shenyang, China, indicated that it was higher in urban
and bare lands compared to agricultural and green lands
[17]. The impact of the local climate zones (LCZ) on LST
was investigated in Shenyang city, China’s urban and
rural areas, by Zhao et al. [18]. Their findings showed
that the LST of LCZs did not follow a fixed order, as
they changed from one month to another depending on
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the land-use type in the urban and rural areas. Therefore,
monitoring CO2 concentration in urban areas is essential to
measure the CO2 emission from cities and estimate its con-
tribution to the regional carbon budget [19]. CO2 fluxes in
urban areas are affected by the vegetative cover, human
activity, and climate factors such as precipitation and tem-
perature [20,21]. However, it is crucial to separate the
influences of climatic factors for air pollution and envir-
onment management controlling over different land-
use systems [22]. In cities, the CO2 fluxes are controlled
by fuel combustion from vehicles, industries, and build-
ings rather than biological processes [23,24]. Vegetation
cover in urban areas can significantly influence the daily
and seasonal patterns of the CO2 balances [25].

Climate change and LULC change significantly affect
CO2 dynamics, and the main drivers are temperature and
precipitation [26]. For example, the regional drought due
to climate change in the lower Mississippi River Valley
affected vegetation productivity, net carbon exchange
flux, and atmospheric CO2 concentration. Thus, the pro-
ductivity in the drought area decreases by 23% [27]. The
intervention of climate change and LULC changes and
their impacts on the CO2 process were investigated at
a global scale using various climate change models;
accordingly, for further reading, interested readers are
advised to use the following cited literature [11,28–33].

Monitoring CO2 levels is an important research theme
in most parts of the world [34]. Therefore, a wide range of
CO2 sensors was developed using different materials for
monitoring CO2 concentration. A semiconductor sensor
was used for detecting CO2 for environmental observa-
tions [35]. Also, CO2 sensors made of solid electrolytes
[36–39], optic fibres [39], laser diodes [7], and non-dis-
persive infrared (NDIR) [40,41] detectors were utilised for
observing CO2 emissions.

The atmospheric measurement of the CO2 concentra-
tion depends widely on NDIR sensors because they are
stable and robust against interference by other air com-
ponents, including pollutants [19]. In addition, the NDIR
has excellent durability, which makes it the most popular
sensor for measuring atmospheric CO2 [41]. The cali-
brated NDIR sensors can reasonably provide accurate
air CO2 concentrations [7].

In Saudi Arabia, the increasing population within the
urban and sub-urban areas puts pressure on natural
resources and increases the hazard of CO2 emissions.
The study area’s land-use system, located in the Eastern
part of Saudi Arabia, showed a significant increase in
urban lands during the last three decades [42]. Estimating
CO2 emissions from the LULC changes is considered
uncertain due to the difficulty of assessing this flux

from measurements [43]. However, in this study, direct
measurements of CO2 were made to investigate its flux
along with the different LULC systems. Hence, the emer-
gence of different patterns of land-use systems in the
region will inevitably affect the amounts of CO2 emitted.
Also, the land-use system usually effectively represents
the spatial distribution of CO2 emissions and carbon
sinks [44]. These conditions necessitate the importance
of CO2 observation under different arid lands and zones.
Therefore, the main objective of this study was to mea-
sure CO2 concentration over different land-use types.
Also, an attempt was made to analyse the impact of
CO2 emissions on the arid ecosystem of the study area.

2 Materials and methods

2.1 Study area

The study was carried out in five sites in the Al-Ahsa
District located in the Eastern part of Saudi Arabia (Figure 1).
The area has a population of 1.1 million (https://www.stats.-
gov.sa/) and is dominated by a hot, desert climate [45]. The
seasonal average temperatures might reach 45°C in summer
and 5°C in winter. The rainfall is present only in winter, with
less than 250mm per annum [46]. The land-use system in
the study area is predominated by agricultural activities
that include date palm plantation and cropping of rice and
vegetables. The study sites have different land-use types,
areas, and elevations, although they are located in the
same climatic zone (Table 1).

2.2 LULC classification

The LULC classification of the study area was conducted
using the Landsat-8 image (path/row is 164/042) acquired
on 17 July 2014 (Figure 1) from the United States Geological
Survey (https://earthexplorer.usgs.gov/). The Landsat-8
image obtained corresponds with the CO2 and climate
data collected during the summer season of 2014. The
image characteristics are shown in Table 2.

In order to identify the LULC within the study area, a
field survey was conducted using a Global Positioning
System instrument to obtain accurate location point data
for each LULC class included in the classification process.
The total number of the reference ground control points
(GCPs) collected during the field survey was 110. The
supervised maximum likelihood classification (MLC)
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technique was applied to classify the image. MLC is valid
and widely used in remote sensing for image classifica-
tion [47–49]. For image accuracy assessment, 30% of the
collected GCPs was used to validate the classification
results. In addition, visual interpretation of the unclassi-
fied satellite image, Google Earth maps, and field obser-
vations were used to verify the LULC maps. The stratified
random sampling method was adopted during the image
classification to reduce bias [50]. The overall accuracy,
user’s and producer’s accuracy, the Kappa statistic, and
conditional Kappa were derived from the classification
error matrices [51].

2.3 CO2 and climate parameter
measurements

The commercial GE Telaire 7001 carbon dioxide sensor
measured CO2 and temperature. The GE Telaire 7001 sensor

was operating using the dual-beamNDIR technology, and it
was connected to an analogue input on a HOBO H22 data
logger. The sensor specifications are shown in Table 3, and
it has independent CO2 and temperature readings. The
sensor has been factory calibrated and should be recali-
brated once every 12 months using either a zero concentra-
tion gas or a gas with a specified concentration of CO2 [52].
The sensors were distributed along with the study sites
based on the area covered by each side. Accordingly, four
sensors were fixed at each site in Al-Oyon, Al-Wozyah,
Al-Battaliyah, andAl-Taraf, and a total number of 16 sensors
were fixed in Al-Hofuf (Figure 1). The temperature (T) and
relative humidity (RH) sensors were distributed following
the same order as the CO2 sensors. The sensors were dis-
tributed along the study site to assure data accuracy and
fairness. In addition, the average sensor data from each site
read the hourly CO2, T and RH were collected to represent
each site fairly. The wind speed data were collected during
July 2014 from a local meteorological station in the study
area.

Figure 1: Location of the study sites within Al-Ahsa Zone. The background of the study sites is a Landsat-8 image acquired on 17 July 2014.
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2.4 Data analysis

The Friedman test was used to compare CO2 concentra-
tion in the five sites. The Friedman test is a non-para-
metric analysis used to test the significance for more
than two groups; it tests the null hypothesis [53]. Thus,
Friedman’s test determines whether the rank totals for
each treatment differ significantly from the values expected
by chance [54]. The computational formula for the Friedman
test [54,55] is
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where K is the number of groups (treatments), n is the
number of subjects, and Rj is the sum of the ranked scores
in each treatment. Numbers 12 and 3 are constants, not
dependent on the number of subjects or experimental
conditions. The test statistic Xr

2 is distributed according
to the normal Xr

2 distribution with K–1 degrees of freedom
when the rankings are random. As n and K increase, the
approximation to the Xr

2 distribution improves.
Moreover, Kendall’s W test was used to assess the

agreement trend among the treatments. Kendall’s W is
referred to the normalization of the Friedman statistic,
and it ranges from 0 to 1. The value “1” refers to the
complete agreement between the raters, and “0” refers
to the non-complete agreement between raters [56].
Therefore, Kendall’s W can be calculated from Fried-
man’s Xr

2 as follows [57]:
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The Inverse Distance Weighted (IDW) tool of Geo-
statistical Analyst in the ArcGIS 10.2 software was used
to perform data interpolation for the recorded CO2 and
produce the spatial distribution map [58].

The Statistica [59] and Microsoft Excel 2010 [60] soft-
ware packages were used to perform the statistical ana-
lysis and produce graphs.

3 Results and discussion

3.1 LULC analysis

The study area analysis indicated that the existing LULC
classes were the date palm, cropland, bare land, urban
land, and water (Figure 2). However, within the study
sites, the urban land occupied large areas in Al-HofufTa
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compared to the other sites (Table 4). The date palm
orchards were dominant in Al-Battaliyah concerning
its relative total occupied area. Bare lands cover about
125 km2 in Al-Hofuf, 7 km2 for Al-Oyon and Al-Wozyah,
and 1.4–3 km2 in Al-Battaliyah and Al-Taraf (Table 4).
The cropland areas ranged between 1 and 2 km2 in all
study sites and extended to 12 km2 in Al-Hofuf. The
LULC map of the study area showed how the different
LULC classes were spatially distributed along with the
study sites. Thus the LULC types were considered to
affect the level of the CO2 concentration in a varying
way depending on the human activities at each site.
Al-Hofuf represents one of the two largest city centres
in the Al-Ahsa District. Therefore, urban lands extend in
Al-Hofuf, covering large areas. In Saudi Arabia, many
residents who lived in the major cities increased from
58% in 1975 to 82% in 2014 [61]. Most urban residents
migrated to the cities to seek a modern lifestyle, better

employment, and educational opportunities [62]. Also,
the built-up area increased by 28.9% during 1990–2014
in Dammam, the capital of the Eastern Region in Saudi
Arabia [48].

The overall accuracy of the classified LULC map was
90%, with a Kappa statistic of 86% (Table 4). However,
the user’s and producer’s accuracies of different LULC
classes ranged between 81 and 100%. Also, conditional
Kappa coefficients for the different LULC types are
shown in Table 5. The user’s accuracy is the probability
that a value predicted in a specific class is that class. That
means it shows the reality on the ground. In statistical
terms, the user’s accuracy measures errors of commission.
The producer’s accuracy indicates the proportion of the
reference data that are classified correctly for a given class.
It corresponds to the statistical concept of errors of omis-
sion [49]. Urban lands show low conditional Kappa, user’s
and producer’s accuracies compared to the other LULC

Table 2: Characteristics of Landsat-8 data used in this study

Sensor Bands type Wavelength (µm) Spatial resolution (m)

Operational Land Imager and Thermal Infrared Sensor Band 1, Coastal aerosol 0.43–0.45 30
Band 2, Blue 0.45–0.51 30
Band 3, Green 0.53–0.59 30
Band 4, Red 0.64–0.67 30
Band 5, Near infrared 0.85–0.88 30
Band 6, Short-wave infrared 1 1.57–1.65 30
Band 6, Short-wave infrared 2 2.11–2.29 30
Band 8, Panchromatic 0.50–0.68 15
Band 9, Cirrus 1.36–1.38 30
Band 10, Thermal infrared 1 10.60–11.19 100
Band 10, Thermal infrared 2 11.50–12.51 100

Dataset attribute Attribute value

Land Cloud Cover 0.00
Scene Cloud Cover L1 0.00
Geometric RMSE Model 7.278
Geometric RMSE Model X 4.239
Geometric RMSE Model Y 5.916

Table 3: Specifications of the GE Telaire 7001 CO2 and temperature monitor

Standards CO2 channel Temperature channel

Measurement range 0–10,000 ppm display 0–50°C display
Display resolution ±1 ppm 0.1°C
Accuracy ±50 ppm or ±5% for reading up to 5,000 ppm ±1°C
Response time 60 s for 90% of step change 20–30min
Sample method Diffusion or flow through (50–100mL/min)
Power requirement 100mA peak, 20 mA average from 6 V
Operating conditions 0–50°C, 0–95% RH, non-condensing
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classes. This can be attributed to the misclassification of
some urban land into bare land and cropland. On the other
hand, bare lands and water recorded higher accuracies
because they have less mixture than the other classes.

The hourly recorded T patterns are almost similar in
all study sites showing a minimum value of 24°C and a
maximum value of 52°C (Figure 3). However, the average
T values ranged between 36 and 39°C; hence sites with

large vegetation covers showed relatively low T compared
to sites dominated by urban and bare lands. The variation
of RH along the study sites is clearly shown in Figure 4.
The minimum detected RH was 24%, while the maximum
was 82%. However, the mean values ranged between 29
and 36%. The low amount of RH can be found during the
early morning hours, while the high values occur during
the day and most of the evening. Nevertheless, the highest

Figure 2: LULC map of the study area on 02 August 2014.

Table 4: Areas of LULC for the different study sites

LULC Area (km2)

Al-Oyon Al-Wozyah Al-Battaliyah Al-Hofuf Al-Taraf

Date palm 1.0 1.4 5.4 19.0 2.0
Cropland 1.0 1.2 2.0 12.0 1.0
Urban land 4.0 0.4 0.2 36.0 2.0
Bare land 7.0 7.0 1.4 125.0 3.0
Total area (km2) 13 10 9 192 8

6  Khalid Guma Biro Turk et al.



RH value was observed in the site dominated by vegetation
cover. The average daily wind speed over the study sites
showed a minimum value of 3 km/day and a maximum
value of 15 km/day (Figure 5). The dominant wind direc-
tion was north to north-west. High wind speed resulted in
increasing T in urban lands, while the low wind speed
decreased the RH in the sites with high vegetation cover.

In urban areas, the physical environmental para-
meters, including climatic factors, influence pollutant
dispersion, which might increase heat island [63]. There-
fore, considering themeteorological conditions is important
when developing policies to control urban air quality [64].

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

T
em

p
er

at
u
re

 (
C

°)

Hours

Al-Oyon Al-Battaliyah Al-Taraf Al-wozyah Al-Hofuf

Figure 3: Hourly time series for the T levels in the different study sites during July 2014.

Table 5: Accuracy assessment of LULC classification

LULC Classification accuracy (%)

User’s Producer’s Conditional Kappa

Date palm 92 91 89
Cropland 81 83 78
Bare land 94 93 89
Urban land 79 81 76
Water 100 100 100
Overall accuracy (%) 90
Kappa statistic (%) 86
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Figure 4: Hourly time series for the RH in the different study sites during July 2014.
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3.2 CO2 concentration and levels

The spatial distribution of CO2 over the different study
sites showed high concentration levels in Al-Hofuf and
Al-Wozyah, followed by Al-Battaliyah and Al-Taraf. In
contrast, low levels were detected in Al-Oyon (Figure 6).
The CO2 maximum mean value (μ^) of 577 ppm was
observed in Al-Hofuf, while a minimum mean value of
391 ppm was detected in Al-Oyon (Figure 7). However,
the statistical analysis of the CO2 levels indicated signifi-
cant differences (P < 0.001) among the study sites based
on the Friedman test. Nevertheless, no significant differ-
ence (P < 0.001) was observed between Al-Battaliyah and

Al-Taraf (Table 6). The low value of the Ŵkendall test (0.2)
indicates that the levels of the CO2 differed across the
study sites (Figure 7). The hourly time series of the CO2

levels were consistent with the spatial distribution of
the CO2 concentration for the different sites (Figure 8).
The time series identified high values of 500–659 ppm
and low 356–450 ppm for the CO2 concentration among
the study sites. In addition, the fluctuations of CO2 con-
centration showed high levels during the peak time of
transportation at 7:00–9:00 AM, 1:00–3:00 PM, and
7:00–9:00 PM.

The high concentration levels of the CO2 in Al-Hofuf
can be attributed to large urban land domination com-
pared to the other sites (Figure 2). The fuel combustion
from the cars in Al-Hofuf and the absence of public trans-
port make the situation worse due to the increasing
number of private vehicles. In the urban cities of Saudi
Arabia, about 92% of the populations depend on private
transportation. However, only 32% of these cities are
accessible and linked to public transport systems [65].
Also, the energy use in Al-Hofuf is high compared to

the suburban areas of the Al-Ahsa district due to the
increase in the human population. Therefore, urban areas
act as the primary source of CO2 to the ambient air [66].
However, the ambient CO2 levels could affect the air
quality by involving isoprene emission in the vegetated
areas [67,68]. Bare lands were the dominant land-use
system in Al-Hofuf; therefore, during the summertime in
July, this condition might increase the rate of CO2 emis-
sions due to the high-temperature degrees. Similar condi-
tions of the vast bare lands can be observed in Al-Wozyah,
which also showed high CO2 concentrations. Unlike
Al-Hofuf, the Al-Oyon site covered large areas of urban
and bare lands, but the concentration of CO2 in it was
low. This is due to the less transportation movement in
Al-Oyon, as it is considered a suburban area. Also, palm
orchards and farms located in the southeast of Al-Oyon
may contribute to reducing CO2 emissions. Urbanisation
in arid and semiarid regions can significantly impact CO2

concentrations and emissions estimated for different LULC
types [69,70]. The relatively low CO2 concentration in
Al-Battaliyah and Al-Taraf might be due to the extensive
vegetation covers extended in these sites. Urban vegetation
can play a vital role in exchanging CO2 concentrations in
cities due to plant photosynthesis [40]. Also, urban vegetation
is a beneficial planning strategy to control the heat island and
improve the energy efficiency of buildings in urban cities
[71].

The spatial distribution of CO2 concentration in the
study sites shows that its levels vary according to the
areas occupied by the different LULC types (Figure 9).
In Al-Oyon, the low values of CO2 concentration ranging
from 377 to 382 ppm occurred in cropland and date palm
land-use systems, while the high 386–392 ppm was asso-
ciated with the bare and urban lands (Figure 9a). Most of
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the area in Al-Wozyah is covered by bare lands, which
shows CO2 levels of 559–561 ppm compared to 570 ppm
detected over the small area occupied by the urban land
(Figure 9b). The high CO2 levels resulting from the bare
and urban lands in Al-Wozyah have affected the amount
of CO2 concentration that appeared over the date palm
and cropland areas showing CO2 levels around 546 ppm.
In Al-Battaliyah, the date palm was the dominant LULC
system showing CO2 concentration levels of 446–452 ppm,
followed by the cropland with 440–446 ppm, bare land
with 453–458 ppm, andfinally urban landwith458–464ppm
(Figure 9c). The domination of bare lands in Al-Hofuf
resulted in CO2 levels of 560–576 ppm, while the vast areas

occupied by the urban lands raised the CO2 levels to
580–594 ppm (Figure 9d). The CO2 concentration levels in
Al-Taraf ranged from 441 to 445 ppm for the date palm
and cropland systems, while it ranged between 447 and
449 ppm for the bare land and almost around 450 ppm for
the urban land (Figure 9e).

The CO2 concentration mean values detected for the
different LULC types in the study area showed it was 560,
535, 515, and 484 ppm for the urban land, bare land, crop-
land, and date palm, respectively. Thus, the increasing
and decreasing of the CO2 levels across the different LULC
types over the study sites (Figure 10) are mainly attrib-
uted to the movement of active winds during the summer,

Figure 6: The spatial distribution of CO2 levels over the study sites.
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where its speed ranged between 5 and 8 km/h in the
north and north-west direction of the study area [72].
Moreover, the urban atmospheric CO2 concentrations var-
iation is expected in the Middle East region. For instance,
in the Gaza City of Palestine, this variation ranged between
300 and 900 ppm showing higher levels during working
days than at the weekend [73]. Therefore, vegetated areas
can act as mitigation measure that reduce CO2 emissions
and lower the air temperature depending on the wind speed

and direction from one site to another. Nevertheless, Pataki
et al. [74] have indicated the limited role of urban trees in
reducing GHG emissions and pollution over vast areas and
environmental conditions. However, urban trees are more
useful for climate and pollution adaptation approaches
than emission reduction. This is because of the limitation
in spaces that constrain tree canopies compared to the
amount of emissions.

Agriculture and land-use change contribute to about
21% of the global GHG emission. Therefore, to achieve
low CO2 levels, several measures can be applied. These
include re-prioritising land-use systems in urban and
rural areas, controlled irrigation, crop diversification,
and cover crops [75]. However, land use draws attention
to be used as a policy tool for carbon reduction and low-
carbon planning [76]. This is because it has changed the
Earth’s carbon cycle by influencing the natural carbon
sources and sinks like cropland, grassland, and for-
ests [77,78].

Vegetation has crucial environmental functions in
urban areas since it removes pollutants [79]. Also, vege-
tation cover helps in reducing energy consumption in
urban areas and hence improves their climate [80]. There-
fore, appearing vegetation cover in the urban environment
is essential for heat islandmitigation in cities [81]. However,
CO2 was the major driving factor for vegetation cover
changes [82]. Moreover, the study area faces a lack of
precipitation, which might be one of the main causes of
CO2 concentration increase [83]. The relationship between

Figure 7: Comparison of the CO2 level mean values in the different study sites.

Table 6: Pairwise comparison of CO2 levels between the different
study sites

Friedman coefficient (X2) = 2,732

Degree of freedom (df) = 4

Probability (P) < 0.001

Sites pair Statistic P

Al-Oyon–Al-Battaliyah 90.14* <0.001
Al-Oyon–Al-Taraf 83.22* <0.001
Al-Oyon–Al-Wozyah 174.73* <0.001
Al-Oyon–Al-Hofuf 229.36* <0.001
Al-Battaliyah–Al-Taraf 6.91ns <0.001
Al-Battaliyah–Al-Wozyah 84.60* <0.001
Al-Battaliyah–Al-Hofuf 139.23* <0.001
Al-Taraf–Al-Wozyah 91.51* <0.001
Al-Taraf–Al-Hofuf 146.14* <0.001
Al-Wozyah–Al-Hofuf 54.63* <0.001

* = Significant; ns = not significant.
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Figure 8: Hourly time series for the CO2 concentration in the different study sites.
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urban form and CO2 emissions indicated that less complex
cities have lower CO2 emissions, but dense cities have
greater per capita CO2 emissions [84]. Also, socioeconomic
factors of industrial structure, population density, and eco-
nomic development level were themain drivers of CO2 emis-
sions in urban form areas [85].

4 Conclusions

The world faces a continuous increase in atmospheric
CO2 concentrations due to climate change and the con-
sequences of land-use change. Therefore, continuous
monitoring of CO2 concentrations in the air at regional
and local scales will help drive global efforts to reduce
CO2 emissions. In addition, site monitoring of CO2 will
provide the local policymakers with the needed informa-
tion to formulate policies and strategies that cut down the
levels of CO2 in the atmosphere.

In this study, the CO2 concentrations in the air were
monitored for 1 month during the summertime in July.
The tested sites covered different LULC types of urban
and suburban areas. The hourly recorded data of the CO2

showed significant variations between the study sites.
For example, a maximum mean value of 577 ppm was

detected in a site dominated by urban lands. However,
the hourly recorded CO2 concentrations showed a max-
imum value of 659 ppm during the peak time of human
transportation and movement. Nevertheless, the patterns
of the CO2 levels showed significant variations across the
different LULC types over the study sites.

The sensors and methodology used in this study pro-
vided valuable information about the CO2 concentrations
and levels over a specific site. However, there is a real
challenge in designing a sensor network capable of con-
tinuously detecting CO2 in large open space areas over a
long time. In addition, modelling CO2 variation over time
due to the LULC changes might help predict the best
practices for land-use management that can reduce the
CO2 levels in the atmosphere. Therefore, adequate man-
agement of agricultural lands and reducing CO2 emis-
sions and pollution from crop and animal production
will help preserve and enhance the air quality for most
LULC types dominated in the study area.
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