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Abstract:Orexin is a neuropeptide that is primarily synthe-
sized and secreted by the lateral hypothalamus (LH) and
includes two substances derived from the same precursor
(orexin A [OXA] and orexin B [OXB]). Studies have shown
that orexin is not only involved in the regulation of eating,
the sleep–wake cycle, and energy metabolism, but also
closely associated with various physiological functions,
such as cardiovascular control, reproduction, stress, reward,
addiction, and the modulation of pain transmission. At pre-
sent, studies that have been performed both domestically
and abroad have confirmed that orexin and its receptors
are closely associated with pain regulation. In this article,
the research progress on acute pain regulation involving
orexin is reviewed.
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1 Introduction

Orexins, which are also known as hypocretins, are named
according to their strong orexigenic effects and include
orexin A (OXA) and orexin B (OXB), both of which are
derived from the same precursor protein (pro-orexin).
Their receptors are G protein-coupled receptors and
include orexin receptor 1 (OX1R) and orexin receptor 2
(OX2R). OXA has almost the same affinity for OX1R and
OX2R, whereas OXB has a tenfold higher affinity for OX2R
than OX1R [1]. Northern blot analyses of the RNA of adult
rats have shown that in the brain, orexins and their
receptors are only expressed in the adjacent lateral and
posterior regions of the hypothalamus, which are asso-
ciated with feeding behavior and energy regulation [2].
Although the number of hypothalamic orexin neurons is
extremely limited [3], they are able to project to many
pain-related brain regions, including the thalamus,
limbic system, dorsal raphe nucleus (DR), locus coeru-
leus (LC), periaqueductal gray (PAG) matter, dorsal hip-
pocampus, reticular formation, and trigeminal caudate
nucleus [4]. Numerous studies have shown that in
various animal models of inflammatory pain induced by
formalin, capsaicin, and carrageenan and in chronic neuro-
pathic pain animal models, the injection of exogenous
orexin into the spinal cord and supraspinal sites that are
associated with the descending pain regulatory circuits can
significantly reduce nociceptive responses. In this article,
the current research status of the involvement of orexin in
pain regulation in different brain regions is reviewed, with a
goal of providing additional references to further clarify the
analgesic mechanism of orexin.

2 Spinal cord

The spinal cord is the primary center of pain modulation,
and the superficial spinal dorsal horn (DH) (laminae I
and II; lamina II is also known as the substantia gelati-
nosa) is an important site for the transmission and inte-
gration of peripheral nociceptive signals [5]. As the
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principal fibers transmitting mechanical, temperature,
and noxious chemical signals from the periphery to the
DH, Aδ and C fibers form synapses with DH neurons
(especially with spinal glial cells), and these synapses
are the key sites for modulating pain signals. Hypotha-
lamic orexin neurons send long-axis projections throughout
DH laminae I–II, and OXA content is most abundant in
these two laminae [6]. Rezaee et al. [7] have also found
that the intrathecal administration of OXA can significantly
reduce behavioral responses to thermal and mechanical
pain in rats, indicating a potential role of OXA in sensation
and pain modulation.

Furthermore, Jeon et al. [6] found that the applica-
tion of OXA can reduce the amplitude of excitatory post-
synaptic currents that are elicited by the electrical stimu-
lation of Aδ or C fibers via the significant inhibition of
OX1R-mediated excitatory synaptic transmission [6],
which has previously been demonstrated in many animal
models of neuropathic pain caused by inflammatory pain
and peripheral nerve injury. Subsequently, the same
researcher performed a study on long-term depression
(LTD) and orexin receptor-mediated DH excitatory
synaptic transmission by using the whole-cell patch-
clamp technique, and the data showed that OX1R and
OX2R antagonists were able to reduce the amplitude of
LTD whereas antagonistic effect of OX2R was more sig-
nificant [8]. This finding indicates that OXA can exert
pain modulatory effects at the spinal cord level via dif-
ferent receptors. Studies have also shown that OX2R is
densely expressed in the superficial spinal DH in rats [9].
Wang recorded changes in the amplitudes and frequen-
cies of excitatory and inhibitory postsynaptic currents via
intrathecal injections of OXB and OXA, as well as via the
use of OX1R and OX2R antagonists, in adult rats. The
results indicated that OXB can also play a role in modu-
lating pain at the spinal cord level and that the analgesic
effects of both OXB and OXA occurred via the activation
of OX2R in spinal lamina II [10].

3 PAG matter of the midbrain and
dorsal raphe nucleus

The ventrolateral periaqueductal gray (vlPAG) matter of
the midbrain is an important site for modulating pain and
mood [11] that receives projections from hypothalamic
orexin neurons. Studies have shown that after OXA binds
to OX1R in the postsynaptic membrane of the vlPAG
matter, an endocannabinoid (2-arachidonoylglycerol

[2-AG]) is produced via the phospholipase C (PLC)–diacyl-
glycerol lipase (DAGL) pathway [12]. Subsequently,
2-AG acts in a retrograde manner to activate the can-
nabinoid 1 receptor (CB1R) at the presynaptic mem-
brane, which enables the activation of the vlPAG exci-
tatory neurons that project to the rostral ventromedial
medulla (RVM) by inhibiting the abundant GABAergic
interneurons in the vlPAG matter. Additionally, the
descending pain inhibitory pathway (constituted by
the vlPAG-RVM-DH circuit) exerts analgesic effects
[13,14]. Studies have shown that injections of OX2R antago-
nists into the vlPAG matter can block the analgesic effects
produced by the injection of carbachol into the lateral
hypothalamus (LH) in the tail-flick test, indicating that
OX2R in the vlPAGmatter is also involved in themodulation
of pain and that the analgesic effect of OX2R is not depen-
dent on CB1R [15]. Experiments by Okumura [16] have
shown that both CB1R and CB2R antagonists can effectively
block the antinociceptive actions of orexin against colonic
distention, suggesting that CB2R may also mediate orexin-
induced visceral analgesia and that the site of action of
CB2R antagonists may be in the brain. However, the spe-
cific pathways in which CB2R is involved remain to be
further investigated.

The DR, as part of the vlPAG, contains an abundant
number of serotonergic neurons and is a vital part of
the endogenous pain modulation system. Moreover, we
cannot deny the fact that the orexin system is relevant in
pain perception, wakefulness, and integration, with its
activation linked to circadian periodicity [17]. Antonietta
analyzed clinical symptoms and laboratory results in
their study and concluded that sleep disorders, such as
nocturnal awakenings, insomnia, parasomnias, and food
selectivity in autism spectrum disorder (ASD) children
can be explained by increased cerebral metabolism and
the hyperfunctioning of the autonomic nervous system,
which is sustained by high OXA levels [18]. Furthermore,
numerous cross-sectional studies have demonstrated a
high degree of comorbidity between pain and sleep
impairments [19]. Serotonergic neurons, which are well-
known as being a central component in migraine
attacks, receive an excitatory input from hypotha-
lamic orexin neurons and can reciprocally inhibit
orexin neurons through the serotonin 1A receptor. In
some cases, multidirectional excitatory connections are
present among several brain nuclei (such as PAG and
DR), which results in even further complications to the
overall mechanism [20]. Researchers have hypothesized
that if this system is dysregulated or disrupted,
it may facilitate the pathophysiological mechanisms
involved in migraines; in addition, the system may
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simultaneously produce an alteration of the sleep–wake
rhythm, thus causing sleep disorders [21].

4 Hippocampus

The hippocampus is not solely a site for regulating emo-
tions, controlling learning and memory, and partici-
pating in stress responses; recent studies have shown
that the hippocampus is also involved in the regulation
of nociception [22]. Partial hippocampal resection has
been used for the treatment of chronic pain. Orexinergic
fibers project from the LH to the dorsal Cornu Ammonis 1
(CA1) area of the hippocampus, and orexin receptors are
distributed in different brain regions associated with
memory, including the hippocampus. The injections of
OX1R antagonists into the CA1 region of the hippocampus
can inhibit the analgesic effect of the LH in a formalin
inflammatory pain model in a dose-dependent manner,
indicating the existence of a neural pathway from the LH
to the CA1 region that modulates pain [23]. Kooshki
injected OXA or OX1R antagonists into the CA1 region
and observed that the pain responses in capsaicin-treated
rats were significantly reduced; furthermore, learning
and memory losses were also reduced in these rats [24].
The orexin system is involved in the stress response
mediated via the hypothalamic–pituitary axis (HPA).
Results from Bahramzadeh et al. [25] revealed that the
application of OX1R and OX2R antagonists in the hippo-
campus can prevent anxiety, immobility, and escape
behavior caused by acute stress in rats in the elevated
plus maze and in open field tests, indicating that OX1R
antagonists can improve the adaptation of rats to stress.
However, the specific mechanism of this effect is not yet
clear.

5 Rostral ventromedial medulla

The RVM is an important aspect of the descending pain
inhibitory system. In the formalin test, microinjections
of OXA into the RVM can reduce the pain response, espe-
cially in the second phase of formalin-induced inflamma-
tory pain. Furthermore, this analgesic effect can be
blocked by a selective OX1R antagonist, indicating that
the analgesic effect of OXA is at least partially achieved
through OX1R in the RVM [26]. Some researchers have
suggested that the first phase of the formalin test is due
to the toxic and destructive effects of formalin on the

tissues surrounding the injection site and due to the repe-
titive stimulation of C-fiber nociceptors. In addition, the
second phase is due to the central sensitization of the
spinal cord caused by the inflammatory response to
tissue injury via the release of inflammatory factors and
the long-term response of DH neurons to repeated C-fiber
inputs [27]. Interestingly, Haghparast observed that the
effects of both OX1R and OX2R antagonists were more
prominent during the first phase of LH-induced antino-
ciception that occurred during formalin-induced orofa-
cial pain. Therefore, it is speculated that two different
nerves are responsible for pain transduction in facial
and limb areas [28]. Apart from the descending pain inhi-
bition pathway constituted by the vlPAG-RVM-DH circuit,
the question of whether RVM plays a role in other path-
ways remains to be extensively studied.

6 Locus coeruleus

The LC is an aggregated cluster of noradrenergic neurons
in the brainstem, and orexinergic neurons send extensive
projections to the LC region; additionally, OX1R is highly
expressed in LC neurons. In a formalin experiment,
investigators found that microinjections of OXA into the
LC can play a role in analgesia, whereas pretreatment
with a CB1R antagonist inhibited this effect, thus leading
to hyperalgesia [29]. Endorphins are morphine-like trans-
mitters in the central nervous system, and OX1R antago-
nists in the LC can effectively block the analgesic effects
of microinjected endorphins, thus suggesting that the
analgesic effects of endorphins in the LC may be
mediated by the orexinergic system [30]. Experiments
using brain sections of rats with desensitized μ-opioid
receptors (MORs) (caused by endorphin exposure) revealed
that OXA increased the maximum extent and rate of MOR
desensitization and that pretreatment with a protein
kinase C inhibitor can significantly inhibit the effect of
OXA on the degree of desensitization. However, it had no
significant effect on the rate of desensitization, which led
to the speculation that OXA affects these two processes
via two cellular mechanisms (PKC-dependent and PKC-
independent mechanisms) [31]. Abdollahi injected mor-
phine into the LC of rats and used OX1R antagonists to
prolong the duration of morphine tolerance in these rats
[32]. This led to the speculation, that OXA accelerates the
development of morphine tolerance [32]. Based on the
previously described studies, it can be speculated that
the increased orexin neuronal activity plays an important
role in the development of drug-related adverse effects,
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such as resistance and dependence, during long-term expo-
sure to opioids. Moreover, we cannot neglect to mention
that strong excitatory inputs from the lateral paragiganto-
cellularis (LPGi) nuclei have been shown to affect LC neu-
ronal responsiveness during the occurrence of opiate
dependence and tolerance [33].

7 Ventral tegmental area (VTA) and
nucleus accumbens (NAC)

The VTA comprises a group of neurons in the midbrain or
near the midline and is the root of the dopaminergic cell
bodies. Orexin can directly stimulate dopaminergic and
nondopaminergic neurons via postsynaptic effects. The
NAC is a collection of neurons that form the main part
of the ventral striatum. Experimenters injected OX1R and
OX2R antagonists into the VTA or NAC and found that
they could inhibit the analgesic effects of carbachol
injected into the LH. Therefore, they speculated that the
pathway from the LH to the VTA and NAC plays an impor-
tant role in pain modulation [34,35]. The study by
Azhdari-Zarmehri found that the activation of orexin
receptors in the VTA could increase dopamine release
via neurons projecting to the NAC [36]. The findings of

Okumura et al. indicated that levodopa induces an anti-
nociceptive action against colonic distention by acti-
vating D2 dopamine receptors and the orexinergic system
in the rat brain [37]. In addition, the results of another
study indicated that D1 receptors in the NAC can also
mediate the analgesic effect of OXA in the VTA (to some
extent) and were involved in the regulation of acute noci-
ceptive responses in rats [38].

8 Conclusion and future directions

Our work attempts to distinguish various brain structures
to understand the multifaceted contribution of orexin
neurons in endogenous pain regulation (Table 1). Taken
together, the evidence indicates that orexin neurons are
involved in the regulation of nociception via widespread
projections to different parts of the central nervous
system. At present, the research of the analgesic effects
of orexins is mainly focused on animal experiments, and
supporting evidence from clinical trials is mostly related
to the treatment of migraines or cluster headaches, with
these studies being rare. Studies have suggested that the
analgesic effect of OXA is more certain, whereas OXB has
a weaker modulatory effect on pain, and the effects of

Figure 1: Efferent projections of orexin/hypocretin neurons, the distribution of orexin receptors, and the associated behavioral functions in
postsynaptic target regions. Orexin neurons project widely throughout the brain onto target regions which include the spinal dorsal horn
(DH), ventrolateral periaqueductal gray (vlPAG), dorsal raphe (DR), hippocampus, rostral ventromedial medulla (RVM), locus coeruleus (LC),
ventral tegmental area (VTA), nucleus accumbens (NAC), the laterodorsal tegmental nucleus and the pedunculopontine tegmental nucleus
(LDT/PPT), tuberomammillary nucleus (TMN), hypothalamic paraventricular nucleus (PVN), paraventricular nucleus of the thalamus (PVT),
bed nucleus of the stria terminalis (BNST), amygdala, and the medial prefrontal cortex (mPFC). Each of these target regions is involved in the
regulation of diverse behavioral and physiological functions.
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OX1R and OX2R vary greatly in different models. At pre-
sent, analgesic drugs mainly include opioids and non-
steroidal anti-inflammatory drugs (NSAIDs), with opioids
having side effects that include immunosuppression, con-
stipation, nausea, vomiting, and might result in develop-
ment of addiction caused by long-term use. Although
specific cyclooxygenase inhibitors are continuously
introduced, NSAIDs present both a slow onset of action
and limited analgesic effects and result in adverse reac-
tions in the gastrointestinal tract and in the cardio-
vascular and nervous systems. To date, orexin prepara-
tions have been used in the clinical treatment of sleep
disorders, and the in-depth study of the analgesic
mechanism of orexin provides a direction for the devel-
opment of new pain medications. Notably, orexin pep-
tides have been extensively shown to be involved in
the regulation of various physiological functions not
limited to pain modulation (Figure 1). Therefore, future
researchers who are interested in the design of novel
drugs that target the orexin system should focus on
how these drugs act on specific parts of the brain and
on the specific cytoarchitecture and distinct neurochem-
ical characteristics of these drugs, in order for these
drugs to reduce adverse reactions.
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