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Abstract: With the rapid development of information 
technology and biomedical engineering, people can 
get more and more information. At the same time, they 
begin to study how to apply the advanced technology in 
biomedical information. The main research of this paper 
is to optimize the machine learning method by particle 
swarm optimization (PSO) and apply it in the classification 
of biomedical data. In order to improve the performance 
of the classification model, we compared the different 
inertia weight strategies and mutation strategies and their 
combinations with PSO, and obtained the best inertia 
weight strategy without mutation, the best mutation 
strategy without inertia weight and the best combination 
of the two. Then, we used the three PSO algorithms to 
optimize the parameters of support vector machine in 
the classification of biomedical data. We found that the 
PSO algorithm with the combination of inertia weight and 
mutation strategy and the inertia weight strategy that we 
proposed could improve the classification accuracy. This 
study has an important reference value for the prediction 
of clinical diseases.

Keywords: Biomedical information classification; 
Support vector machine; Particle swarm optimization; 
Inertia weight strategy; Mutation strategy

1  Introduction
Bioinformatics integrates computer science technology 
and biological information technology, which reveals 
the significance of biological research and applications. 
An important part of bioinformatics is to predict 
which category it belongs by the given data. The rapid 
development of computer technology has brought much 
biological information. It is very difficult for people to 
intuitively visualize these large amounts of data. In recent 
years, many scholars have applied machine learning 
algorithms to predict diseases in the field of biomedicine 
and achieved good results. The common machine learning 
methods include support vector machine (SVM) proposed 
by Joachims [1], the decision tree proposed by Quinlan [2], 
the k nearest proposed by Fukunaga and Narendra [3], the 
Bayesian algorithm proposed by Bataineh and Al-Qudah 
[4] and the deep learning proposed by Lecun and Bengio 
[5], etc. Since SVM has a great advantage in solving small 
sample, nonlinear and high-dimensional problems, SVM 
has been widely used as a core method in biomedicine 
classification and recognition. For example, Chen and 
Huang used the EEG signal to identify epilepsy with SVM 
[6]. Soares and Paiva used SVM to diagnose breast tumor 
mass [7]. Zhou and Cui used SVM and Bayesian algorithms 
to predict protein localization [8]. Qu and Chen used SVM 
for the segmentation of a pathological picture of breast 
cancer tissue [9]. Mishra and Lakkadwala used SVM to 
predict cardiovascular disease [10]. Liu and Zhang used 
SVM to predict osteosarcoma [11]. Parikh and Shah used 
SVM to diagnose skin disease [12].

SVM is a supervised learning algorithm, and 
its basic idea is transforming the input space into a 
higher dimensional feature space through nonlinear 
transformation, and then the optimal classification 
hyperplane is calculated in this space, so as to classify 
the unknown sample. SVM is widely used in the field 
of machine learning. In order to further improve 
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the performance of SVM, many variants of support 
vector machine are proposed. For example, Fung and 
Mangasarian proposed a proximal support vector machine 
(PSVM) [13]. The advantage of PSVM relative to SVM is that 
it uses an equation set to replace the convex programming 
problem in SVM. Under the condition of maximum 
interval, the PSVM uses two parallel hyperplanes to fit 
the two types of samples. Lin and Wang proposed a fuzzy 
support vector machine (FSVM) [14]. According to the 
different contribution of input samples, FSVM gives the 
samples different membership degrees, and separated the 
noise from effective samples. Although FSVM improved 
the traditional SVM, it is difficult to determine the 
membership function in FSVM at present. Jayadeva and 
Khemchandani proposed the twin support vector machine 
(TWSVM) [15]. TWSVM transforms two generalized 
feature problems into two smaller convex programming 
problems similar to support vector machine. SVM puts 
all the samples in the constraint condition of the convex 
programming problem, while TWSVM puts the samples 
that are opposite to the target function in the constraint 
conditions, so that the training speed of TWSVM is greatly 
improved. However, TWSVM also has the characteristics 
of lack of sparsity and low generalization ability, and it 
also needs improvement.

The most important part of support vector machine 
is the kernel function and its parameter, which can affect 
the performance of the SVM directly, thus the choice of 
kernel function is a key problem in SVM. The common 
kernel functions are linear kernel function, polynomial 
kernel function and radial basis kernel function (RBF). 
The linear kernel function is mainly used in linear 
separable situations. The RBF is mainly used in linear 
inseparable situations. Relative to the linear kernel 
function, the RBF kernel function can map the feature to a 
higher dimensional space, and the linear kernel function 
can be regarded as a special case of RBF. In general, the 
RBF kernel is widely used. For example, Kuo and Ho used 
the SVM with the RBF kernel in image classification [16]. 
Prabin and Veerappan used the SVM with mixed RBF 
kernel to diagnose the MRI image of brain tumors [17]. 
Bousseta and Tayeb used SVM with RBF kernel in EEG 
data classification [18].

When using the SVM based on RBF kernel function 
to classify, we need to set the penalty factor (C) and the 
kernel parameter (g). Keerthi and Lin researched the 
penalty factor and the RBF kernel parameter in SVM [19], 
and analyzed the influence of different kernel parameters 
on the performance of the classifier. Chapelle and Vapnik 
proposed a method to adjust the kernel parameters of SVM 
automatically [20], but this method needs to compute 

the gradient of various bounds, which increases the 
complexity of the algorithm. In recent years, many swarm 
intelligent evolutionary algorithms have been proposed. 
Kennedy and Eberhart proposed the particle swarm 
optimization (PSO) algorithm [21], which simulates the 
process of bird hunting. Goldberg proposed the genetic 
algorithm (GA) based on the genetic process of nature [22]. 
Qinghong and Zhang proposed the ant colony algorithm 
according to the process of ants foraging [23]. Selima and 
Alsultan proposed the simulated annealing algorithm 
based on the process of temperature drop during solid 
annealing [24]. Eskandar and Sadollah proposed a water 
cycle algorithm (WCA) based on the process of water 
circulation in nature and the flow of rivers to the sea [25]. 
This algorithm shows good performance in solving the 
constraints problem, but the efficiency of the algorithm is 
not so high. In order to further improve the performance 
of the WCA algorithm, Pahnekolaie and Alfi proposed 
a gradient based water cycle algorithm, and applied 
the algorithm in the chaos suppression problem [26]. 
Gonçalves and Lopez proposed a search group algorithm 
(SGA) and applied it to truss structure optimization [27]. 
The SGA algorithm has a good ability of exploration 
and exploitation, but it is also sensitive to parameters. 
Seyedeh and Alireza proposed a fuzzy logic method to 
control the parameters of the SGA algorithm adaptively 
[28]. Zong and Kim proposed harmony search algorithm 
(HS) [29], which simulates musicians relying on their own 
memory to adjust the tone of each musical instrument in 
the band to achieve a wonderful state of harmony. Ameli 
and Alfi proposed a discrete harmony search algorithm 
(DHS), and applied it in the optimization of the capacitor 
position in the distribution system, and achieved a good 
result [30]. In these heuristic search algorithms, the PSO 
algorithm is relatively simple and easy to implement, and 
therefore is widely used in various optimization problems. 
For example, Zhang and Lv proposed an adaptive inertia 
weight chaotic PSO algorithm and applied it to train the 
single hidden layer neural network, and achieved a good 
classification result [31]. Wang and Phillips proposed 
the binary particle swarm optimization  with mutation 
(BPSO-M), the binary particle swarm optimization with 
time-varying learning factors (BPSO-T) and the binary 
particle swarm optimization with the combination of 
mutation and time-varying learning factors (BPSO-MT), 
and applied these three algorithms to select features [32]. 
Zhang and Wang analyzed the status of swarm intelligent 
algorithms in detail, and summarized their applications 
in various industries [33]. Fernandez and Caballero used 
genetic algorithms to optimize the parameters of SVM [34]. 
Behravan and Dehghantanha used the binary particle 
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swarm optimization (BPSO) to select features [35]. Kuang 
and Zhangused the improved chaotic PSO algorithm to 
optimize the parameters of the mixed kernel function [36]. 
Subasi thought that PSO had a significant improvement 
in SVM [37]. Ren and Hu used a grid algorithm to optimize 
kernel function parameters [38]. Zhang thought that PSO 
was more efficient in coding and optimizing than the 
genetic algorithm [39]. Therefore, it is relatively common 
to use the PSO algorithm to optimize the parameters of 
SVM. 

Because the original PSO algorithm easily falls into 
local optimal solutions, many scholars have improved 
the PSO algorithm. Tanweer and Auditya proposed a 
self-adjusting particle swarm algorithm [40]. Meng and 
Li adopted a cross search strategy and proposed a new 
updating formula, and horizontal crossover and vertical 
crossover operator are used [41]. Wang and Liu introduced 
a chaos search method and promoted the algorithm to jump 
out of the local optimal solution through the uncertainty 
of chaos [42]. Chen and Zhang adopted dynamic topology 
PSO algorithm in which the structure of the population 
is changed with the information of particles [43]. Liang 
and Kang proposed an adaptive mutation strategy and 
adopted a nonlinear variable inertia weight strategy [44]. 
The inertia weight of the PSO algorithm is an important 
parameter, and Shi and Eberhart introduced the inertia 
weight before the velocity term in the basic PSO algorithm 
[45]. Alireza and Modares proposed an adaptive inertia 
weight strategy. The improved PSO algorithm was applied 
to the optimization of PID parameters, and a good result 
was obtained compared with the genetic algorithm [46]. 
Eberhart and Shi proposed a random changing inertia 
weight strategy [47]. Malik and Rahman uses a sigmoid 
changing inertial weight strategy [48]. The inertia weight 
is stable at the beginning and end stages, and changes 
faster in the middle stage. Gholamian proposed a chaotic 
changing inertia weight [49]. Javad and Mousa proposed 
a nonlinear changing inertia weight [50]. Alireza and 
Fateh proposed a mutation strategy to improve the ability 
of global exploration and the speed of convergence, and 
used it to identify the hydraulic suspension system [51]. 
At present, the improvement methods of PSO algorithm 
mainly include two aspects: the inertia weight strategy and 
the mutation strategy. But most of the current strategies 
are unilateral, and there is almost no literature to compare 
the combinatorial performance of the mutation strategy 
and inertia weight strategy. In this paper, we compared the 
combinatorial performance of different inertia weights and 
mutation strategies, and got the best mutation strategy, 
the best inertia weight strategy and the best combination 
of them. Finally, we used the best mutation strategy, the 

best inertia weight strategy and the best combinations 
of PSO algorithms to optimize the parameters of SVM in 
biomedical information classification.

2  Algorithm and Model

2.1  Support Vector Machine

SVM is a machine learning method proposed in the 
1990s based on statistical learning theory [52]. It is 
based on the principle of structural risk minimization. 
The kernel function method of SVM is used to transform 
the inseparable problem in low dimensional space into 
linearly separable problem in high dimensional space.

For a given sample set of SVM (xi, yi), i=1, 2,…, n, 
yi∈{+1,-1}, where xi denotes the input data, yi denotes the 
output labels, n denotes the number of samples, and the 
hyperplane can be expressed as:

	 ( ) 0f x w x b= ⋅ + = 	 (1)
where w denotes the weight vector, and b is the 

threshold. The optimization problem of SVM is described 
as:
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where C is the penalty parameter, which is used to control 
the degree of punishment for the error sample.

The above problem can be transformed into Lagrange 
dual form, and the final decision function is:
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f (x) is the decision function. When different sample data 
is fed into the function, the decision function will predict 
the corresponding label.

2.2  Particle Swarm Optimization Algorithm

PSO is an intelligent evolutionary algorithm proposed by 
Kennedy and Eberhart based on the foraging process of 
birds [21]. In the PSO algorithm, the process of optimizing 
the problem is regarded as the process of bird feeding. 
Each particle in the PSO algorithm is abstracted as a 
solution to the optimization problem, which is described 
by two parameters: the position and the velocity of the 
particle. In each iteration, the velocity and position of the 
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particle are updated by the formulas:
1 1

2 2

( 1) ( ) [ ( ) ( )]
                [ ( ) ( )]

id id id id

d id

v t wv t c r pbest t x t
c r gbest t x t

+ = + −
+ −

         (4)

( 1) ( ) ( 1)id id idx t x t v t+ = + + 	            (5)

where, i denotes the ith particle; d denotes the dimension; 
t is the number of iterations; xid denotes the position 
of the ith particle in the d dimension, and xid is limited 
in the interval [popmin, popmax]; vid(t) denotes the 
velocity of the particle; w is the inertial weight, which 
controls the influence of contemporary velocity on the 
next generation’s; pbestid(t) denotes the individual best 
position, and gbestd(t) denotes the global best position, 
c1 and c2 are acceleration factors; r1 and r2 are the random 
numbers in interval [0, 1].

Set z=c1r1[pbestid(t)-xid(t)]+c2r2[ gbestd(t)-xid(t)]. 
Figure 1 shows the above two formulas are represented 
with vectors in two dimensions. Figure 1(a) denotes the 
velocity formula, and the velocity v(t+1) is generated by 
wv(t) and z. Figure 1(b) denotes the position formula; the 
position of the new particle x(t+1) is added by the position 
x(t) and the velocity v(t+1).

x(t)

x(t+1)
v(t+1)

wv(t)

v(t+1)

(a) (b)

z

Figure 1: Updating of a PSO algorithm with vector representation in 
two dimension. (a) velocity update schematic. (b) position update 
schematic

3  Mutation Strategy and Inertia 
Weight Strategy of PSO

3.1  Mutation Strategy of PSO

The mutation strategy of PSO is mainly to change the 
position of the particle. Figure 2 shows the effect of 
mutation strategy on PSO algorithm. The solid line denotes 
the original position and the dotted line denotes the new 
position after the mutation. Since the mutation strategy 
does not directly affect the velocity of the particle, the 
vector v(t+1) in Figure 2(a) does not change. The position 
of the particle is changed from x(t) to x(t)’ after mutation 
in Figure 2(b), and the position of the next generation 

of particle is changed from x(t+1) to x(t+1)’ by adding 
with v(t+1). If we adjust the particle’s moving distance 
reasonably, we can control particle movement in a certain 
range, which is beneficial for the particle to jump out of 
the local optimal solution.

x(t)

x(t+1)v(t+1)

wv(t)

v(t+1)

x(t)'

v(t+1)
x(t+1)'

(a) (b)

z

Figure 2: The effect of mutation strategy on the PSO algorithm. (a) 
speed update schematic; (b) position updating schematic after 
introducing the mutation strategy

Alireza proposed an adaptive mutation strategy, and the 
distance of particle moving can be automatically adjusted 
according to fitness values [53]. The calculation method of 
variation is as follows:

'
ij ij ijx x M β= + ×

                                                          (6)

max
1= tanh ( ( ))t dM pop F gbest t
α
 × ×                (7)

where xi’ is the position of the ith particle after mutation. 
βij represents a random number that obeys a Gaussian 
distribution with a mean of 0 and a standard deviation 
of 1. Parameter Mt can control the distance of mutation, 
which is calculated according to the fitness of global best 
position. popmax is the maximum value of the particles 
search space, and tanh is a monotonic increasing function. 
F(gbestd(t)) represents the best fitness of the population. 
Because the value of tanh is in the interval [0, 1], the value 
of Mt can be controlled adaptively within a certain range.

Stacey and Jancic proposed a Gaussian mutation 
algorithm (GPSO) [54]. The basic idea is changing the 
position of a particle when it is in the local optimal 
solution, and the mutation formula of particle xi is:

' (1 ( ))i ix x Gaussian σ= +                                          (8)

where xi is the position of the current particle and xi’ is the 
position after mutation. Gaussian(σ) is a random number 
that obeys a Gaussian distribution with a mean of 0 and 
a standard deviation of σ. The value of σ is 0.1 times the 
length of search space. The ability of the particle to jump 
out of the local optimal solution is increased by mutation. 
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When using Gaussian PSO, a Gaussian distribution 
operator will be added to the position of a particle. 
According to the characteristics of Gaussian distributions, 
the value of the operator is smaller in most cases, resulting 
in the particle moving in a small range. Therefore, the 
Gaussian mutation has a strong local search ability and 
poor global search ability. In addition, there are many 
variants of the Gaussian strategy, such as Zhan and Lu’s 
neighbor heuristic and Gaussian cloud learning particle 
swarm optimization algorithm [55].

Wang and Li proposed a Cauchy mutation strategy 
(CPSO) [56]. The mutation formula of the particle is:

'
min max( ) ( ) ( ) ( , )g gp i p i W i N pop pop= + ×       (9)

1

1( ) [ ][ ]
n

j
W i V j i

n =

= ∑                                                   (10)

where W is the mean vector of all particle velocities. n is the 
size of the population. N is a random number that obeys 
the Cauchy distribution. Because the probability density 
function image of a Cauchy distribution is a relatively smooth 
strip, the two ends are larger and the middle is smaller, which 
makes the position of the particles change greatly, so the 
Cauchy mutation has stronger jumping ability. In addition, 
there are many variants based on Cauchy mutation, such as 
adding a scaling factor on the Cauchy mutation to control the 
distance the particle moves [57].

Brockmann and Sokolov found the Levy flight pattern 
[58], which indicated that most of the cases are changed 
in a small range, and occasionally a small part of the 
situation would move to a distant position. Hakl and Uguz 
applied Levy mutation in particle swarm optimization 
(LFPSO) [59], and the mutation formula is:

' ( )i ix x Levyα β= + +                                               (11)
' ( ( )) ( )i ix x random size D Levy β= + +             (12)

where α denotes the step size of the particle moves, 
and Levy(β) denotes the distribution of the Levy with 
parameter β. β is a variable between [0, 2]. Due to the 
occasional long distance movement of Levy flight, the 
particle’s position may move in a wide range occasionally 
during mutation, causing the particle to jump out of the 
local optimal solution.

Wang and Wu combined the Gaussian, Cauchy and 
Levy mutation strategies by an adaptive approach [60]. 
Nishio and Kushida proposed an adaptive PSO with multi-
dimensional mutation strategy [61].

Li and Liu proposed a stochastic mutation method 
(RPSO) [62]. The particle mutated by the following 

formula:'
max min( )i ix x pop pop r= + − ⋅           (13)

where popmax and popmin denote the maximum and 
the minimum of the particle search range respectively. r is 
a random number obeying a uniform distribution in the 
interval (0, 1).

Zhang and Lu proposed a feedback mutation particle 
swarm optimization algorithm (FBPSO) [63]. The mutation 
formula is:

'
i i ix x xβ= + ⋅                                                                (14)

2~ (0, )Nβ σ                                                                  (15)
( ) 0.1fit i fitgbest

fitavg fitgbest
σ −
= +

−
                            (16)

where β obeys a Gaussian distribution with the mean 
of 0 and the standard deviation of σ. fit(i) is the fitness 
of the ith particle, and fitgbest is the global fitness, fitavg 
is the mean fitness of all the particles. Since σ changes 
according to fitness, this mutation strategy can adjust 
the distribution of mutation positions based on the 
information of the particle.

3.2  Inertia Weight Strategy of PSO

Kennedy and Eberhart introduced the inertial weight 
parameter in the original PSO algorithm, and proposed 
the particle swarm algorithm with inertial weight [21].

Figure 3 shows the effect of inertia weight in a PSO 
algorithm. In Figure 3(a), the vector changes from wv(t) 
to wv(t)’ after changing the inertia weight w, and then 
the velocity changes from v(t+1) to v(t+1)’. In Figure 3(b), 
the new position of the particle is changed from x(t+1) to 
x(t+1)’ by adding v(t+1)’ to the position x(t). Therefore, the 
inertia weight in PSO algorithm essentially changes the 
position of particles. When using a larger inertia weight, 

x(t)

x(t+1)'

v(t+1)

wv(t)

v(t+1)

wv(t)'

v(t+1)'

x(t+1)

v(t+1)'

(a) (b)

z
z

Figure 3: The effect of the inertia weight on PSO algorithm. (a) the 
speed update schematic after changing the inertia weight. (b) the 
position update schematic after changing the inertia weight
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the position of particle will also change greatly, which 
facilitates the global exploration of the algorithm in a large 
surrounding space. When the inertia weight is smaller, the 
position changes less, which facilitates the local search of 
the algorithm in the additional small space.

PSO algorithm is nonlinear and highly complex in the 
search process. In order to improve the ability to monitor 
the population, Alireza proposed an inertia weight 
strategy with fitness feedback [53]. The formula is:

1( ) 0.5 1 tanh ( ( ))dw t F gbest t
α

  = + ×              (17)

where tanh and F(gbestd(t)) are the same as the definitions 
in formula (7), which are abbreviation for hyperbolic 
tangent and the fitness of the current best solution. In this 
strategy, the value of inertia weight is limited to the interval 
[0.5, 1]. When the fitness does not decrease, w(t) is large 
and changes slowly, which benefits to global exploration. 
When the fitness reduces, w(t) is small, which benefits to 
local exploitation.

Eberhart and Shi proposed a random inertial weight 
(RANDPSO) [47]. The inertia weight is calculated as:

( ) 0.5
2

randw t = + 			                      (18)

where rand is the random number between [0, 1]. w is a 
random number in the interval [0.5, 1]. Since the value 
of inertia weight is random, the result of the algorithm is 
contingent.

Yang and Gao proposed an exponential inertial weight 
strategy (LHNPSO) [64]. The inertial weight formula is

( ) ( )max max min
max

tw t w w w
t

α
 

= − −  
                        (19)

where wmax and wmin are the maximum and minimum 
of inertia weight respectively. α=1/π2. The inertia weight 
decreases with the number of iterations, which benefits to 
global exploration and local exploitation of the algorithm.

Nickabadi and Ebadzadeh proposed an adaptive 
inertia weight, in which the inertia weight is adjusted by 
the ratio of successful particles (AIWPSO) [65]. The inertia 
weight formula is:

( ) ( ) ( )max min minw t w w Ps t w= − +                          (20)

1

1( ) ( )
n

i
i

Ps t S t
n =

= ∑
                                                     (21)

1    ,  ( ( )) ( ( 1))
( )

0    ,  ( ( )) ( ( 1))
i i

i
i i

if fit pbest t fit pbest t
S t

if fit pbest t fit pbest t
< −

=  = −      (22)

where, n is the size of the population. fit(pbesti(t)) denotes 
individual fitness. Ps(t) is the search success rate. If the 
individual fitness of a particle is smaller than the individual 
fitness of the last generation, the particle searches 
successfully, and Si(t)=1; otherwise, the particle does not 
search successfully, Si(t)=0. The inertia weight is beneficial 
to supervise the information of particles in the population.

Chauhan and Deep used global best position and 
individual best position to adjust the inertia weight 
(DESIWPSO) [66]. The inertia weight of the ith particle is 
calculated as:

           ( )( 1) exp exp( ( ))i iw t R t+ = − −
                       (23)

               
max

max

( ) ( ) ( )i i
t tR t gbest t pbest t

t
−

= − ×               (24)

Taherkhani and Safabakhsh proposed a multi-dimensional 
changing inertia weight strategy (SAIWPSO) [67]. In 
this method, the inertia weight of the next generation is 
automatically adjusted by the position information of the 
contemporary particle. What’s more, the concept of ith 
particle searches success is introduced:

1    ,  ( (t 1)) ( (t))
( )

1 ,
i i

i

if fit x fit pbest
t

else
δ

+ <
= −

       (25)

where fit(xi(t+1)) is the fitness of the ith particle in t+1 
generation. fit(pbesti(t)) is individual fitness. If fit(xi(t+1))< 
fit(pbesti(t)), the particle searches successfully, and δi(t)=1, 
otherwise, the particle does not search successfully, δi(t)=-
1. The inertia weight formula is:

2

0 2
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0 2
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



 <




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(26)

where wij(t) is the inertia weight of the ith particle in the 
jth dimension. w0 is the initial inertia weight. σ is the 
standard deviation of all particles in the jth dimension. ε 
is a smaller positive number, ε=0.005.

All of the above inertia weight strategies do not make 
full use of the information of the particle population, and 
cannot supervise the status of the population very well. 
Therefore, we proposed a multi-information fusion inertia 
weight (MDAPSO) [68]. In order to supervise the state of 
the population, we refer to other adaptive inertia weights, 
and introduce the velocity and position of a particle in the 
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inertia weight, as shown in formulas Y and Z. In order to 
control the overall trend of inertia weight, we refer to the 
decreasing inertia weight with iterations, and introduce λ1 
and λ2, and in order to avoid the particles falling into local 
optimal solutions, we introduce a random disturbance. In 
order to increase the diversity of inertia weight, the inertia 
weight wid is changed at each iteration, each particle and 
each dimension. Finally, the formula of inertia weight is 
as follows:

( ) ( )( )( )
( ) ( )( )( )

1

2
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        (33)

In the formula, min and max are used to limit the inertia 
weight wij(t) within the interval [0.1,1]. α=0.9, β=0.55, γ=0.5. 
case1, case2 and case3 are three conditions; δi(t-1) is used 
to determine whether the particle searches successfully. 
case1 indicates that the particle has searched successfully 
for two generations, and case2 indicates that the particle 
has not searched successfully for two generations. case3 
denotes the above two cases are not satisfied.

In the proposed inertia weight formula (27), we refer 
to α, β and γ as weight coefficients and limit them in the 
interval [0, 1]. Weight coefficients denote the influence ratios 
of Y, Z and rand on the inertia weight. To obtain the weight 
coefficients more easily and quickly, we use two coefficients 
to fix one and subsequently test the other one with the step 
length of 0.1, and the principle is shown in Figure 4. The 
method fixes β and γ first. Because the range of each weight 
coefficient lies in the interval [0, 1], the midpoint of the 
interval is chosen as the fixed value. We fix β=0.5 and γ=0.5 
at first and calculate the fitness of each benchmark function 
when α is different and finally select the α value when the 
fitness of each benchmark function is minimum. In the 

same manner, we fix α and γ to obtain β and fix α and β to 
obtain γ. Figure 5(a), (b) and (c) show the effect of α on the 
benchmark functions when β and γ are fixed. The horizontal 
axis is α, which is in the interval [0,1], and the vertical axis 
is the error between the fitness and theoretical value. The 
error is small, and the performance of the algorithm is better. 
From Fig. 5(a), (b) and (c), we note that when α=0.9, the 
algorithm has a small error. From Fig. 5(d), (e) and (f), we 
find that β=0.5. From Fig. 5(g), (h) and (i), we observe γ=0.5. 
We obtain the optimal coefficient of each solution, but the 
solutions are optimal under certain conditions, and their 
combination is not necessarily the optimal solution of the 
algorithm. Therefore, we need to finely adjust α, β and γ to 
select the most appropriate solution near the three solutions. 
Eventually, we find that when α=0.9, β=0.55 and γ=0.5, the 
algorithm achieves a better result.

The pseudo code for our improved inertia weight PSO 
algorithm is shown in Algorithm 1.

Algorithm 1
Initialize values: n, D, c1, c2, tmax, popmin, pop max, vmin, 
vmax, wid
for i=1 to n
initialize xi=xi1, xi2, xi3,…, xiD, vi=vi1,vi 2,vi 3,…,vi D
end
evaluate the values fitness(xi)
pbesti=xi
set the particle with best fitness to gbest
for t=1 to tmax
for i=1 to n
	 for d=1 to D
		  vid(t+1)=widvid(t)+c1r1[pbestid(t)-
xid(t)]+c2r2[gbestd(t)-xid(t)]
	 end
	 x(t+1)= x(t)+ v(t+1)
	 evaluate the values fitness(xi)
	 if (fitness(xi)< fitness(pbesti))
		  pbesti=xi

	 end
	 if (fitness(xi)< fitness(gbest))
		  gbest=xi
	 end
end
for i=1 to n
	 for d=1 to D
		  update wid

end
end
end

The flow chart of the algorithm is shown in the figure 6.



362   M. Li, et al.

4  Comparing the Different Inertia 
Weight Strategies and Mutation 
Strategies

4.1  Benchmark Function and Parameter 
Setting

In order to test the performance of the improved 
strategies, the different inertial weight strategies 
and mutation strategies were applied to optimize the 
benchmark functions that Taherkhani and Safabakhsh [67] 

used. All the benchmark functions were optimized for the 
minimum value. Table 3 shows the formula, dimension, 
search space and global minimum value of each test 
function. f1-f8 are unimodal benchmark functions, mainly 
to test the optimizing precision f9-f15 are multimodal 

benchmark functions, and f16-f20 are rotating multimodal 
benchmark functions, mainly to test the ability of the 
algorithm jumping out of local optimal solutions. The 
parameters of the PSO algorithm have a great influence 
on the algorithm. In order to ensure the fairness of testing, 
all the other parameters of the algorithm were the same 
except the inertia weight strategy and mutation strategy 
adopted by different literatures: population size n=20, 
learning factor c1=1.49445, c2=1.49445, maximum velocity 
vmax=0.2(popmax-popmin), minimum velocity vmin=-vmax, 
dimension D and particle search range [popmin,popmax] 
are determined by the benchmark function, iteration 
number tmax=10000D, and each algorithm runs 30 times 
independently. The final result of each benchmark 
function is the mean value of 30 results. The experimental 
platform is an HPZ640 workstation with 32G memory 
and Windows7 64 bit operating system. The software 
is MATLAB R2014a and parallel computing is used. We 
provide an example for parallel computing (https://
github.com/zhangming8/APSO). In this example, it is 

β=0.55

0.5

0.5

0  , 0.1   ,…,   0.9 ,  1

0.5

0.50.5

0.5

α:

β:

γ:

0  , 0.1   ,…,   0.9 ,  1

0  , 0.1   ,…,   0.9 ,  1

α=0.9 γ=0.5

Fig. 4 Method for obtaining parameters α, β and γ in this paper

Fig. 5 Effects of different α, β and γ on benchmark functions
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the implementation of the improved PSO proposed by 
Alireza [53], so some of the parameters are the same as in 
the original paper. Table 1 and Table 2 are the summaries 
of the improvement strategies that have been discussed 
earlier.

4.2  Comparing Mutation Strategies without 
Inertial Weight

The benchmark functions were optimized by PSO with 
different mutations when the inertia weight strategies were 

not used. The result is shown in Table 4. The “BestNumber” 
of the last line in the table denotes the best number of 
optimization result of each PSO algorithm. As can be seen 
from Table 4, when the inertia weight strategy is not used, 
the maximum value of BestNumber corresponding to m4 
is 5, so the performance of mutation m4 is the best. From 
the results, the good results of m4 mainly concentrated in 
the multimodal benchmark functions. The main reason is 
that m4 introduces the Levy flight strategy, which makes 
the particle occasionally produce a larger jump range and 
promotes the algorithm to jump out of the local optimal 
solution. The performance of m6 and m3 are also not bad. 
The main reason is that m6 used an adaptive mutation 
strategy in which the mutation distance can be changed 
according to the fitness value of the population, so as 
to better monitor the information of the population and 
promote the algorithm to jump out of the local optimal 
solution. m3 used a uniformly distributed mutation 
operator, and the overall optimization performance is also 
good.

4.3  Comparing Inertial Weight Strategies 
without Mutation

In this section, the benchmark functions were optimized 
by PSO with different inertia weight when the mutation 
strategies were not used. The result is shown in Table 5. 
When the mutation strategy is not used, the maximum 
value of BestNumber corresponding to w6 is 8, so the 
performance of w6 is the best. It shows good performance 
not only in unimodal benchmark functions, but also in 
multimodal benchmark functions. The main reason is 
that w6 improves the diversity of the population, enhances 
the supervising ability of the population, and balances 
the global exploration and local exploitation ability very 
well. In addition, the performance of w5 is also not bad, 
especially in unimodal benchmark functions. The main 
reason is that w5 uses the position of the particle to adjust 
the inertia weight. Meanwhile, the inertia weight changes 
in each iteration, each particle and each dimension, which 
helps to improve the diversity of the population.

4.4  Comparing the best inertia weight 
strategy and mutation strategy

In the previous two sections, the best mutation strategy 
and the best inertia weight strategy were obtained. We also 
compared the best inertia weight and the best mutation 

Set parameters

Evaluate the fitness values

Initial pbest、gbest

Update the velocity v 

Update the position x 

Evaluate fitness value 
fit(x) for x

pbest=x

gbest=x

Update w

t<tmax

t=1

Yes

No

No

Yes

Yes

End

t=t+1

fit(x)<fit(pbest)

fit(x)<fit(gbest)

Fig 6. Flow chart of MDAPSO algorithm
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Table 1: Formulas of mutation strategies

Name Author Mutation strategies Reference

m1 Stacey et al. [54]

m2 Wang et al. [56]

m3 Li et al. [62]

m4 Brockmann et al. [59]

m5 Zhang et al. [63]

m6 Alireza et al. [53]

x'=x(1 + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜎))

x'=x+M×β
M=popmax×tanh[1

𝛼
× 𝐹(𝑔𝑏𝑒𝑠𝑡𝑑(𝑡))]

W(i)=1
𝑛
∑ V[𝑗][i]𝑛
𝑗=1

pg'(i)=pg(i)+W(i) × 𝑁(𝑝𝑜𝑝𝑚𝑖𝑛,𝑝𝑜𝑝𝑚𝑎𝑥)

x'=x+α+Levy(β)
x'=x+random(size(D))+Levy(β)

x'=x+β×x
β~𝑁(0, 𝜎2)

𝜎 =
𝑓𝑖𝑡 𝑖 − 𝑓𝑖𝑡𝑔𝑏𝑒𝑠𝑡
𝑓𝑖𝑡𝑎𝑣𝑔− 𝑓𝑖𝑡𝑔𝑏𝑒𝑠𝑡 + 0.1

x'=x+α+(popmax-popmin)× 𝑟

Table 2: Formulas of inertia weight strategies

Name Author Inertia weight strategies Reference

w 1 Eberhart et al. [47]

w 2 Yang et al. [64]

w 3 Nickabadi et al. [65]

w 4 Chauhan et al. [66]

w 5 Taherkhani et al. [67]

w 6 Li et al. [68]

w 7 Alireza et al. [53]w(t)=0.5 1 + 𝑡𝑎𝑛ℎ 1
𝛼

× 𝐹(𝑔𝑏𝑒𝑠𝑡𝑑(𝑡))

w(t)=wmax-(wmax-wmin)
𝑡

𝑡𝑚𝑎𝑥

α

w(t)=0.5+𝑟𝑎𝑛𝑑
2

w(t)=(wmax-wmin)Ps(t)+wmin

Ps(t)=1
𝑛
∑ 𝑆𝑖(𝑡)𝑛
𝑖=1

w(t+1)=exp(-exp(-Ri(t)))

Ri(t)= 𝑔𝑏𝑒𝑠𝑡 𝑡 − 𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) × 𝑡𝑚𝑎𝑥−𝑡
𝑡𝑚𝑎𝑥

wij(t+1)=�
min 1,𝑤𝑖𝑗 𝑡 + 1 −𝑤0 × 𝑁+ 𝜀 , 𝑖𝑓 𝛿𝑖 𝑡 > 0 𝑎𝑛𝑑 𝛿𝑖 𝑡 − 1 > 0 

max 0.1,𝑤𝑖𝑗 𝑡 −𝑤0 × 1 −𝑁 − 𝜀 , 𝑖𝑓 𝛿𝑖 𝑡 < 0 𝑎𝑛𝑑 𝛿𝑖 𝑡 − 1 < 0
𝑤𝑖𝑗 𝑡         ,𝑒𝑙𝑠𝑒

N=exp 𝑥𝑖𝑗 𝑡+1 −𝑝𝑏𝑒𝑠𝑡𝑖𝑗 𝑡 2

−2𝜎2

wij(t)=�
min 1,𝑤𝑖𝑗 𝑡 − 1 + 1−𝛼 𝑌 + 1 −𝛽 𝑍 + 𝛾 ∙ 𝑟𝑎𝑛𝑑 𝜆(𝑡− 1) ,𝑐𝑎𝑠𝑒1 

max 0.1,𝑤𝑖𝑗 𝑡 − 𝛼𝑌+ 𝛽 1− 𝑍 − 1 −𝛾 ∙ 𝑟𝑎𝑛𝑑 𝜆(𝑡 − 1) ,𝑐𝑎𝑠𝑒2
𝑤𝑖𝑗 𝑡 − 1         , 𝑐𝑎𝑠𝑒3
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Table 3: The information of the benchmark functions

Function Formula D Search space f (x )min

Sphere 30 [-100,100]D 0

Rotated hyper
ellipsoid

30 [-100,100]D 0

Step 30 [-100,100]D 0

Rosenbrock 30 [-5,10]D 0

Beale 2 [-4.5,4.5]D 0

Rastrigin 30 [-5.12,5.12]D 0

Noncontinuois
Rastrigin 30 [-5.12,5.12]D 0

Ackley 30 [-32,32]D 0

Griewank 30 [-600,600]D 0

Levy 30 [-10,10]D 0

Shubert 2 [-10,10]D 0

Rotated Schwefel 30 [-500,500]D 0

Rotated Rastrigin 30 [-5.12,5.12]D 0

Rotated
Noncontinuous

Rastrigin
30 [-5.12,5.12]D 0

Rotated Ackley 30 [-32,32]D 0

Rotated
Griewank

30 [-600,600]D 0

Bukin N.6 2 0

Schwefel 30 0[-500,500]D

Branin 2 0

McCormick 2 0
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Table 4: The result of benchmark function (Mean) of PSO mutation strategies without inertia weight (w=1)

m1 m2 m3 m4 m5 m6

f1 3.14E+02 8.20E-03 5.43E-04 1.43E-02 1.87E+02 5.50E-03
f2 4.82E-03 1.19E-01 7.59E-02 1.64E-01 2.31E-02 6.35E-04
f3 3.25E+02 5.56E-03 5.47E+01 1.74E-02 1.60E-03 6.83E-03
f4 1.59E-05 1.45E-05 1.87E-06 1.42E-05 1.56E-05 9.18E-05
f5 1.52E-04 1.01E-03 5.45E-04 8.55E-03 1.21E-04 8.51E-05
f6 8.45E-06 9.26E-06 8.21E-04 9.19E-06 8.30E-05 4.57E-02
f7 3.45E-06 5.10E-03 8.06E-06 3.69E-05 5.54E-06 2.81E-02
f8 2.58E-02 2.33E-02 1.96E-02 3.85E-03 2.29E-02 4.26E-01
f9 6.12E+01 2.30E+02 6.92E+00 2.33E+02 5.93E+00 1.46E-01
f10 1.61E+01 1.75E-03 2.08E+01 1.89E-05 9.21E+00 8.72E-05
f11 1.13E+01 2.15E-03 1.65E+01 3.25E-05 2.89E+00 9.42E-04
f12 1.11E+00 6.72E-04 1.32E+00 4.06E-03 1.02E-02 9.82E-03
f13 3.56E+00 6.53E-03 4.90E+00 6.73E-02 1.44E+00 6.91E-02
f14 5.90E-01 1.42E-05 1.51E+00 2.04E-06 7.12E-01 1.50E-05
f15 6.73E-03 7.91E-03 5.98E-03 7.13E-03 4.98E-03 9.42E-02
f16 7.00E+02 6.73E+01 5.07E+00 6.83E+01 6.19E+02 4.10E+02
f17 1.71E+01 2.47E-03 2.09E+01 1.13E-04 1.80E+01 3.68E-03
f18 1.61E+01 2.65E-02 5.16E-03 4.23E-02 1.36E+01 9.91E+02
f19 1.08E+00 4.72E-03 1.32E-03 2.41E-03 1.02E+00 1.25E-03
f20 3.62E+00 7.84E-03 5.03E+00 6.46E-02 1.69E-03 3.57E-03
BestNumber 2 2 4 5 3 4 

Table 5: The result of benchmark functions (Mean) of PSO inertia weight strategies without mutation

w1 w2 w3 w4 w5 w6 w7

f1 6.71E-98 8.86E+00 3.45E-18 1.11E+01 1.87E-122 5.59E-161 6.55E-05
f2 2.80E-100 1.78E+02 3.38E-49 2.07E+02 2.60E-128 6.04E-164 5.18E-05

f3 4.43E-30 6.30E+00 3.98E-06 1.08E+01 4.91E-29 1.65E-32 2.09E-04

f4 2.13E-05 2.13E-05 2.13E-05 2.13E-05 2.13E-06 2.13E-05 1.83E-06

f5 2.25E+00 4.23E+01 1.87E+00 1.93E+01 1.87E+00 1.27E+00 1.99E-05

f6 1.05E-02 7.72E-06 7.72E-06 7.72E-06 7.72E-06 1.05E-02 4.57E-02
f7 2.55E-03 5.09E-03 1.78E-02 1.02E-02 5.09E-03 5.09E-03 2.54E-02

f8 2.04E-03 2.80E-03 2.48E-03 1.66E-03 1.44E-03 2.80E-03 4.26E-01

f9 4.40E+02 5.80E+02 5.81E+02 4.96E+02 5.80E+02 4.03E+02 1.31E-01

f10 6.05E-06 7.19E-06 6.61E+00 6.61E+00 6.85E+00 5.67E-07 9.20E-06

f11 3.98E+00 5.30E+00 4.29E+00 5.82E+00 7.61E-03 1.25E-04 3.31E-04

f12 1.60E-01 5.64E-01 6.31E-01 5.21E-01 6.28E-01 2.07E-02 7.74E-04

f13 2.96E-03 2.83E-01 2.03E-02 6.06E-01 1.45E-02 7.40E-04 1.36E-03

f14 7.17E-01 7.83E-01 1.30E+00 2.17E-01 1.27E+00 8.13E-01 9.76E-05

f15 8.85E-07 8.85E-07 8.85E-07 8.85E-07 8.85E-07 8.79E-07 6.70E-02

f16 6.03E+02 5.89E+02 6.66E+02 6.94E+02 6.16E+02 5.92E+02 5.19E+03

f17 7.03E-02 7.35E-05 7.76E-04 7.96E-01 7.74E-05 6.95E-05 9.44E-05

f18 5.11E+00 7.19E+00 7.59E+00 7.08E+00 4.70E+00 4.85E+00 1.04E+02

f19 3.06E-01 6.25E-03 6.38E-01 6.24E-04 6.13E-01 1.78E-03 8.69E-04

f20 1.87E-03 1.93E-01 1.26E-02 5.50E-01 1.92E-05 1.70E-03 3.27E-05

BestNumber 2 2 2 3 6 8 4 
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transverse axis denotes the different inertia weight 
strategies and the longitudinal axis is the BestNumber. 
Each figure denotes 7 combinations. By comparing the 42 
combinations, the maximum value of BestNumber is 6, 
which corresponded to the best combination of w3+m5 in 
Figure 8(e). Although inertia weight w6 is the best without 
mutation strategy and mutation m4 is the best without 
inertia weight strategy, the combination of them (w6+m4) is 
not the best. The main reason is that the mutation strategy 
directly changes the position of the particle, whereas the 

strategy together, and the results are shown in Table 6. It 
can be seen from Table 6 that the overall performance of 
inertia weight and mutation strategy are similar. As for 
the single peak functions f1, f2, f3, the inertia weight w6 
obtained higher precision than the mutation m4, so a good 
inertia weight strategy has great influence on the precision 
of the PSO algorithm for the single peak function. For 
the multimodal functions, the mutation strategy shows 
better results, so the mutation improves the ability of the 
algorithm to jump out of the local optimal solution.

4.5  Comparing the Combinations of Inertia 
Weight Strategies and Mutation Strategies

In the PSO algorithm, the combined inertia weight and 
mutation strategy can further improve the performance 
of the algorithm. Figure 7 is the PSO algorithm updating 
process with the combination of inertia weight and 
mutation strategy. Figure 7(a) denotes velocity updating, 
and Figure 7(b) denotes position updating. In Figure 7(a) 
the vector changes from wv(t) to wv(t)’ after changing 
the inertia weight w, and then the velocity changes from 
v(t+1) to v(t+1)’. In Figure 7(b), the position of the particle 
changes from x(t) to x(t)’ after mutation, therefore, the 
new position of the particle is changed from x(t+1) to 
x(t+1)’ by adding v(t+1)’ to the position x(t)’. The position 
of the particle is changed by the combination of inertia 
weight and mutation operations.

In order to compare the combinatorial performance 
of inertia weight and mutation strategies, benchmark 
functions were used to optimize the combinations from w1 
to w7 and m1 to m6. The parameters used were the same as 
in Section 4.1. In order to clearly reflect the performance of 
each combination, the “BestNumber” of each combination 
relative to other combinations was calculated. Figure 
8 shows the BestNumber when all the inertia weight 
strategies and mutation strategies were combined. The 

x(t)

x(t+1)'
v(t+1)

wv(t)

v(t+1)

wv(t)'

v(t+1)'

x(t+1)
v(t+1)'

(a) (b)

z
z

x(t)'

Fig.7 Updating principle of PSO when inertia weight and mutation are used. (a) velocity updates, (b) position updates

Table 6: Results of the best inertia weight and mutation strategy
　 m4 w6

f1 1.43E-02 5.59E-161

f2 1.64E-01 6.04E-164

f3 1.74E-02 1.65E-32

f4 1.42E-05 2.13E-05

f5 8.55E-03 1.27E+00

f6 9.19E-06 1.05E-02

f7 3.69E-05 5.09E-03

f8 3.85E-03 2.80E-03

f9 2.33E+02 4.03E+02

f10 1.89E-05 5.67E-07

f11 3.25E-05 1.25E-04

f12 4.06E-03 2.07E-02

f13 6.73E-02 7.40E-04

f14 2.04E-06 8.13E-01

f15 7.13E-03 8.79E-07

f16 6.83E+01 5.92E+02

f17 1.13E-04 6.95E-05

f18 4.23E-02 4.85E+00

f19 2.41E-03 1.78E-03

f20 6.46E-02 1.70E-03

BestNumber 10 10 
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interfere with each other and affect the result of the PSO 
algorithm. The reason for this phenomenon can also be 
obtained from Figure 7.

inertia weight strategy changes the position indirectly 
by changing the velocity of particle. The essence of both 
strategies is to change the position of particle. Therefore, 
using different inertia weight and mutation strategies will 
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Figure 8: The BestNumber when all the inertia weight strategies and mutation strategies are combined
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when using inertia weight strategy. The combination 
of w3 and m5 is the best when using the combination 
of inertia weight strategy and mutation strategy. This 
paper compared the three PSO algorithms based on 
mutation strategy m4, inertia weight strategy w6, and the 
combination of w3 and m5 to optimize penalty factors 
(C) and RBF kernel parameters (g) in SVM. The other 
parameters of PSO were set as follows: the population size 
was 20; the acceleration factors c1 and c2 were 1.49445; the 
maximum number of iteration was 1000; the minimum 
value of the penalty factor C and the kernel parameter 
g was 0.01, and the maximum value was 100; random 
initialization was performed before the algorithm ran. 
The maximum velocity of the particle was 0.2 times the 
range of search space, and the minimum velocity was 
the opposite of the maximum velocity. We used LIBSVM 
tool proposed by Chang and Lin during the test[71]. 10-fold 
cross validation was used during the test and repeated 5 
times. The test results were averaged. Figure 9 shows the 
classification accuracy curves of the three PSO algorithms 
during iteration. Table 8 shows the final accuracies of all 
the datasets.

From Figure 9, the accuracy of using w6 on Parkinsons 
and Lung-A datasets was the highest, the accuracy of using 
combination w3+m5 on other datasets was the highest, and 
the classification accuracy of using m4 was the lowest. 
During the iterations, the combination w3+m5 improved 
rapidly in the early stage on Breast Cancer and Diabetes 
datasets, and converged to the highest classification 
accuracy eventually. For the Liver-disorders dataset, the 
accuracy of w3+m5 and w6 were almost the same at the 
beginning, but w3+m5 converged to the highest accuracy 
finally. For the Parkinsons dataset, the final accuracies of 
m4 and w6 were the same, and both of them were higher 
than w3+m5. For the Lung-A dataset, all the algorithms 
converged to a stable value quickly, and the accuracy of w6 
was obviously higher than m4 and w3+m5. For the Statlog 
(heart) dataset, w3+m5 not only converged faster but also 
converged to a higher accuracy than m4 and w6. In general, 
both the combination w3+m5 and the inertial weight w6 
that we proposed were the best, which means that a good 
algorithm does not show the best results when solving 
all problems, and this phenomenon also conformed to 
the “no free lunch” theorem proposed by Wolpert and 
Macready [72]. Therefore, in the actual classification, we 
can use the combination w3+m5 first. If the improvement is 
not obvious, we can use w6 and choose a better algorithm. 
If the two strategies have the same effect, we can use the 
strategy that is easier to implement.

5  The Optimization in the Classifi-
cation of Biomedical Datasets

5.1  Dataset and Test Process

In this section, different classification models were 
evaluated by the datasets in the UCI machine learning 
library proposed by Bache and Lichman [69]. Informed 
consent: Informed consent has been obtained from all 
individuals included in this study. The datasets used 
in this study included Breast Cancer, Diabetes, Liver-
disorders, Parkinsons, Statlog (heart), and Lung-A (lung 
cancer) [70], and the specific information of each dataset 
is given in Table 7. 

Table 7: The datasets used in this paper
dataset number features classes

Breast Cancer 683 9 2

Diabetes 768 8 2

liver-disorders 341 6 2

Parkinsons 195 22 2

Lung-A 197 1000 4

Statlog (heart) 270 11 2

In the test process, SVM based on RBF kernel function was 
used to classify the above datasets. Meanwhile, the PSO 
algorithm was used to optimize the penalty factor (C) and 
kernel parameter (g) in SVM, and the process was as follows:
Step 1: �Initialize the particle swarm, set the population 

size and the number of iterations, and initialize the 
position and velocity of particles randomly;

Step 2: �Train the SVM model, and calculate the 
classification accuracy based on current C and g;

Step 3: Calculate the inertia weight;
Step 4: Update the velocity and position;
Step 5: �Update the individual best position pbest and 

global best position gbest; 
Step 6: Modify the particle position by mutation;
Step 7: �Judge the stop condition and return to Step2 if it is 

not satisfied, otherwise continue;
Step 8: End.

5.2  Results

From Section 4 and Section 5, it is known that m4 is the 
best when using mutation strategy, and w6 is the best 
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Table 8: The average classification accuracies of all the datasets (Mean ± standard deviation)

Breast Cancer Diabetes Liver-disorders Parkinsons Lung-A Statlog (heart)

m4 98.03±0.08 80.32±0.32 79.48±1.10 98.26±1.07 82.51±5.89 85.93±2.14
w6 98.12±0.07 80.58±0.28 80.35±0.55 98.26±1.07 96.43±0.81 87.11±0.84

w3+m5 98.18±0.13 80.81±0.38 80.70±0.86 97.95±1.35 85.51±2.50 87.41±0.79
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Figure 9: The accuracy curves of the three PSO algorithm during iteration on different datasets
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regions as mass and non-mass based on digital mammograms 
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a support vector machine and Bayesian algorithms in 
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Pattern Analysis & Machine Intelligence, 2007;29(5):905-10.

[16]	 Kuo BC, Ho HH, Li CH, Hung CC, Taur JS, et al. A Kernel-Based 
Feature Selection Method for SVM With RBF Kernel for 
Hyperspectral Image Classification. IEEE Journal of Selected 
Topics in Applied Earth Observations & Remote Sensing, 
2013;7(1):317-326.

[17]	 Prabin A, Veerappan J. Modified Micro Structure Descriptors 
and Hybrid-RBF Kernel SVM Based Diagnosis of Brain Tumor in 
MRI Images. Journal of Medical Imaging & Health Informatics, 
2015;5(6):1194-1200.

[18]	 Bousseta R, Tayeb S, Ouakouak IE, Gharbi M, Regragui F. EEG 
efficient classification of imagined hand movement using RBF 
kernel SVM. International Conference on Intelligent Systems: 
Theories and Applications. IEEE, 2016:1-6.

[19]	 Keerthi S, Lin C. Asymptotic behaviors of support vector 
machines with gaussian kernel. Neural Computation, 
2003;15(7):1667.

[20]	 Chapelle O, Vapnik V, Bousquet O, Mukerjee S. Choosing 
Multiple Parameters for Support Vector Machines. Machine 
Learning, 2002;46(1-3):131-159.

[21]	 Kennedy J, Eberhart R. Particle swarm optimization. IEEE 
International Conference on Neural Networks, 1995. 
Proceedings. IEEE, 2002(4):1942-1948.

[22]	 Goldberg DE, Goldberg DM, Goldberg DE, Goldberg D, Goldberg 
ED. Genetic algorithm is search optimization and machine 
learning. 1989,3(7):2104–2116.

[23]	 Qinghong WU, Zhang JH, Xin He XU. An ant colony algorithm 
with mutation features. Journal of Computer Research & 
Development, 1999,10:014.
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6  Conclusion
This paper compared different inertia weight strategies, 
mutation strategies and their combinations by optimizing 
the benchmark function. From the results, we obtained 
the best mutation strategy without inertia weight, the best 
inertia weight strategy without mutation, and the best 
combination of them. At the same time, we found that 
the effect was not the best when using the best inertial 
weight and the best mutation strategy simultaneously. 
The main reason was that the inertia weight and the 
mutation could interfere with each other. Finally, we used 
PSO based on different inertia weight and mutation to 
optimize the penalty factors and kernel parameter of SVM. 
The classification results showed that the combination 
of inertia weight and mutation strategy (w3+m5) and 
the inertia weight (w6) that we proposed had their own 
advantages on the datasets; both of them could improve 
the accuracy of biomedical information classification.
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