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important target for tumor therapy. Lung cancer 
patients with the EGFR mutation have high sensitivity 
to the epidermal growth factor receptor tyrosine kinase 
inhibitors gefitinib and erlotinib. Relevant research 
shows that their efficiency rates up to 70% to 80%, 
and the median survival period is 20 to 30 months [2]. 
However, resistance to the drug has been found. In 
clinical practice, the patients’ sensitivity to the EGFR-
TKI treatments is highly variable, but after about 10 
months to 14 months of progression free survival (PFS), 
they eventually develop resistance to the drug. This is a 
restriction for the clinical application of the drugs [3]. 
The drug resistance may be related to a number of signal 
transduction pathways, including drug resistance 
mutations, structural activation, downstream signaling 
pathway activation and VEGF expression changes, and 
so on. In this review, we focus on the mechanism of 
EGFR-TKI drug resistance to provide a theoretical basis 
for clinical treatment.

2  The epidermal growth factor 
receptor’s tyrosine kinase inhibitor 
and its anti-tumor effect
The epidermal growth factor receptor (EGFR) is a 
tyrosine kinase receptor on the surface of cell membrane. 
There are two signal transduction pathways: PI3k-AKT 
pathway and RAS/RAF-MEK/ERK pathway. It promotes 
tumor cell proliferation, invasion and angiogenesis. 
High expression or abnormal activity of EGFR on the cell 
membrane is an important factor during the formation 
of many human epithelial tumors, including head and 
neck squamous cell carcinoma, non-small cell lung 
cancer, colorectal cancer, breast cancer, and so on. By 
inhibiting the activity of EGFR, those tumors can be 
treated. Tyrosine kinase inhibitors (TKIs), belong to 
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Abstract: The EGFR signaling pathway plays an 
important role in the occurrence and development of 
many malignant tumors. It has become a hot spot in 
the treatment of advanced cancer. At present, the small 
molecule epidermal growth factor receptor tyrosine 
kinase inhibitor (EGFR-TKI), has been shown to advanced 
non-small-cell lung cancer (NSCLC), has a marked drug 
resistance or has developed one. The EGFR signaling 
pathway regulates a variety of cellular functions, and 
its drug resistance may be related to a number of signal 
transduction pathways, including drug resistance 
mutations, structural activation, downstream signaling 
pathway activation and VEGF expression changes, and 
so on. In this paper, we review the production mechanism 
of EGFR-TKI drug resistance.
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1  Introduction
Lung cancer is responsible for the highest mortality 
rates of any malignant tumor. Non-small cell lung 
cancer accounts for 80% - 85% of all lung cancer cases. 
Chemotherapy for patients with advanced NSCLC is 
limited with an efficiency of 35% to 20%, and a median 
survival period of 10 to 12 months [1]. Epidermal 
growth factor receptor (EGFR) tyrosine kinase is an 
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small molecule quinazoline derivatives, which compete 
with ATP-binding extracellular ligand binding sites, 
which block molecular tyrosine autophosphorylation 
and inhibiting the activation of EGFR, thereby inhibiting 
cell cycle progression, accelerating cell apoptosis, 
inhibit angiogenesis, and inhibiting tumor invasion and 
metastasis. At present, there are two kinds of EGFR-TKI 
used in clinical applications, gefitinib and erlotinib, 
which specificity combine with EGFR intracellular 
tyrosine kinase domain and inhibit its activity, thereby 
inhibiting the growth of tumor. Gefitinib is a third line 
single therapeutic drug for advanced non-small cell lung 
cancer [4]. As an invalid standard regimen treatment of 
advanced NSCLC, erlotinib has achieved good clinical 
effects [5]. The high sensitivity of gefitinib and erlotinib 
are obviously related to the mutation of EGFR, therefore 
it was called an activating mutation. Most of the sensitive 
mutations occur in the first four exons of the coding 
tyrosine kinase (18-21 exon). The deletion mutation of 
exon 19 and the point mutation of exon 21 were commonly 
included [6].

3  Drug resistance mechanisms of 
EGFR tyrosine kinase inhibitors
EGFR tyrosine kinase inhibitors regulate tumor cell 
proliferation, survival, apoptosis, metastasis, invasion, 
and tumor-induced angiogenesis through multiple 
intracellular signal transduction pathways. Therefore, in 
dependent and non-dependent EFGR signal transduction 
cancer cells, several molecular mechanisms are important 
for EGFR inhibitor resistance generation in different cells. 
These molecular mechanisms are mainly as the following:

4  Epidermal growth factor receptor 
gene mutation

4.1  Insertion mutation of EGFR exon 20

The insertion mutation of exon 20 accounts for about 4% 
of EGFR mutations, which is common in non-smoking 
women with adenocarcinoma [7]. Mutations located 
between amino acids 768~774 after the EGFR tyrosine 
kinase region C-spiral and the insertion mutation at amino 
acid 770 are the most common [8]. Insertion mutations 
between amino acids 768~774 can lead to the EGFR-TKI 
and EGFR target binding site being blocked, causing 
EGFR-TKI primary drug resistance [9].

4.2  Second-site mutations

Second-site mutations include the T790M point mutation 
in exon 20, the L748S and D761Y point mutations in exon 
19, and the T853A point mutation in exon 21 [10]. About 
60% of the drug resistance is driven by the EGFR-T790M 
gatekeeper mutation. To counter the T790M-dependent 
resistance, the third generation covalent EGFR inhibitors 
with high potency toward T790M containing mutants and 
selectivity over WT EGFR have been developed [11].

4.3  K-RAS gene mutation

The K-RAS gene plays a key role in the signal pathway of 
EGFR through activation of Raf kinase which activates 
MAPK signal transduction to promote cell proliferation 
and differentiation. Mutation of the K-RAS GTP hydrolase 
domain codons 12 and 13 could lead to the continued 
activation of K-RAS. The NSCLC patients with the 
mutation are not sensitive to TKIs treatment [12]. K-RAS 
gene mutation in NSCLC patients with TKIs resistance has 
been clearly verified [13]. 

4.4  HER2 gene mutation

Human epidermal growth factor receptor-2 is a member 
of the epidermal growth factor receptor family. HER2 
and EGFR are highly homologous with tyrosine kinase 
activity. HER2 and EGFR can form a heterodimer to 
activate tyrosine kinase, which triggers receptor auto-
phosphorylation, and activates downstream signal 
molecules, which promote tumor cell growth, proliferation 
and differentiation. The study showed that HER2 gene 
mutations were mainly located in exon 20, mostly in the 
insertion mutation. The mutation rate was 0.5%, and the 
mutations were more common in non-smoking women, 
without adenocarcinoma [14]. Mutant HER2 has stronger 
receptor activity and signal transduction ability, which 
can reduce the effect of EGFR-TKI treatment, and lead to 
EGFR-TKI primary drug resistance [15]. 

4.5  EML4-ALK fusion gene 

Anaplastic lymphoma kinase (ALK) is a member of the 
insulin receptor tyrosine kinase superfamily, which 
leads to the activation of the tyrosine kinase domain 
and promotes the malignant transformation of cells. 
There were 3% ~ 5% EML4-ALK fusion genes in NSCLC 
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patients, which were found in young patients with K-RAS, 
EGFR, BRAF wild type and non-smoking patients with 
adenocarcinoma [16-18]. EML4-ALK positive patients 
do not benefit from the treatment of EGFR-TKIs, which 
may be another mechanism of EGFR-TKIs primary drug 
resistance.

4.6  B-Raf gene mutation

Vraf murine sarcoma viral oncogene homolog B1 (B-Raf) 
is the substrate of K-RAS in the EGFR signal pathway. 
B-Raf encodes a serine / threonine protein kinase in the 
MAPK pathway, which is involved in the regulation of 
cell growth, proliferation, and differentiation. B-Raf gene 
mutations are common in colorectal cancer, melanoma, 
thyroid cancer, liver cancer, lung cancer, pancreatic cancer 
and other malignant tumors [19-21]. The B-Raf mutation 
can lead to 10%~15% K-RAS wild-type non-small cell 
lung cancer patients developing EGFR-TKI primary drug 
resistance [22]. 

4.7  Sustained activation of EGFR 
downstream signal transduction pathways

PTEN/MMAC/TEP (PTEN) phosphatase function deletion 
and Akt pathway sustained activation also play a certain 
role in the process of EGFR inhibitors resistance. PTEN 
is a kind of tumor suppressor protein which regulates 
the PI3K/Akt signaling pathway, and the loss of PTEN 
function leads to excessive activation of the Akt pathway, 
which increases the anti-apoptotic effect of the cells. 
Ueda et.al. used three liver carcinoma cell lines (HCC3, 
CBO12C3 and AD3) and found that gefitinib inhibited Akt 
phosphorylation in the three cell lines, but in AD3 cell 
line, the inhibitory effect is lower than HCC3 and CB012C3 
cell lines; that PTEN interference RNA (siRNA, siRNA) 
transfected HCC3 cell line can reduce the sensitivity of 
gefitinib [23]. Wang et.al. reports that 40% ~ 50% of 
malignant glioma cells with PTEN deletion, mammalian 
target of rapamycin (mTOR) inhibitor rapamycin can 
increase the sensitivity of the EGFR kinase inhibitor 
[24]. The sustained activation of the PI3K/Akt pathway 
plays an important role in the development of drug 
resistance to EGFR inhibitors. Ihle et al. found that the 
PI3-K signaling pathway inhibitor PX-866 can increase 
the reactivity of NSCLC patients to EGFR inhibitors, such 
as gefitinib [25]. 

4.8  Insulin like growth factor 1 receptor

Insulin-like growth factor 1 receptor (IGF-1R) is expressed 
widely in tumor cells. IGF-1R plays a key role in 
differentiation, apoptosis and metastasis of cancer cells 
[26]. There was a significant correlation between IGF-1R 
and EGFR inhibitor AG1478 resistance in tumor cells. 
Through the analysis of EGFR protein expression levels, 
two primary glioblastomas multiform glioblastoma cell 
lines are distinct in their sensitivity to AG1478. It was 
also found that IGF-1R upregulation caused sustained 
activation of the PI3K-Akt signal and ribosomal protein S6 
kinase [27]. In addition, insulin-like growth factor binding 
protein (IGF-BP) further aggravated gefitinib secondary 
resistance [28]. Morgillo et al. found that the inhibition of 
activation of the EGFR downstream pathway mediated by 
IGF-1R, and can prevent or delay the NSCLC patients from 
developing gefitinib resistance [29]. 

5  Other possible mechanisms of 
drug resistance

5.1  The high expression of HGF (hepatocyte 
growth factor)

Hepatocyte growth factor (HGF) is a ligand of MET(met 
proto-oncogene). HGF is able to activate downstream 
signal of MET, MAPK-ERK1/2 and PI3K-Akt pathways. A 
previous study showed that HGF can induce acquired 
resistance to EGFR-TKI [30].  Yano et.al. found that over-
expression of HGF and resistance to the primary drug 
EGFR-TKI is closely related. HGF expression rate was 29% 
in 44 cases of EGFR-TKI NCSLC patients showing primary 
drug resistance. The increased expression of HGF through 
the “bypass pathway”, does not rely on EGFR, but rather 
than direct activation of the EGFR signaling pathway to 
reduce the sensitivity of tumor cells to EGFR-TKI [31]. 

5.2  Laminin-5 overexpression

Laminin(LN) contains one heavy chain-α and two light 
chains-β, γ. It belongs to the  glycoprotein family, and is an 
important component of basement membrane. Laminin-5 
(LN-5) is a member of laminin family and is composed of 
α3 and β3, γ2 polypeptide chains with two disulfide bonds 
with the “Y” type glycoprotein. LN-5 plays an important 
role in the adhesion and migration of growth of tumor 
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cells, as well as the differentiation of these cells [32]. Katoh 
et.al. found that LN-5 and EGFR have a common signal 
pathway. PI3K-AKT and Ras-MAPK are their downstream 
signal. Increased expression of LN-5 can directly activate 
the EGFR signal molecule. Inhibitory effects of EGFR-TKI 
are reduced and induce drug resistance [33]. 

5.3  MET (met proto-oncogene) amplification

The human c-MET gene is located on the seventh 
chromosome. Its encoded product is hepatocyte growth 
factor (HGF) receptor tyrosine kinase. The MET gene 
amplificies, the mutations and overexpression in many 
kinds of tumors. MET combined with HGF can activate 
receptor tyrosine kinase and, promote cell proliferation 
and differentiation, inducing epithelial cell migration 
and induced angiogenesis. 20% NSCLC patients have TKIs 
resistance which is relate to c-MET gene amplification and 
its occurrence does not correlate with T790M mutations 
[34,35].

6  Conclusion
With the development of gene detection technology, 
the study of lung cancer has developed deep into the 
molecular level, providing new ideas and methods for 
the individual treatment of lung cancer. At present, 
EGFR targeted treatment has become a major trend in the 
treatment of lung cancer, but the resistance mechanism 
of EGFR-TKIs is still unclear, which has limited its use 
in clinical treatments. The effect of EGFR-TKI can be 
improved using a combination of VEGF inhibitors, 
IGF-1R inhibitors, and other signal pathways inhibitors. 
The signal transduction of tumor cells is staggered, and 
a single target drug cannot block all the transduction 
signals of tumor cells. Therefore, it is a new research 
trend to develop multi-target therapeutic drugs [36]. 
Combining other treatments with an antiangiogenic agent 
may prevent the development of an acquired resistance to 
EGFR-TKI, and may prolong the duration of the response. 
Although the mechanism responsible for the additional 
effect of EGFR-TKI and antiangiogenic agents have 
not been fully clarified, a recent in vivo study showed 
that using erlotinib in conjunction with bevacizumab 
enhanced antitumor activity in T790M mutation-positive 
or MET-amplified tumors as long as their growth remained 
significantly suppressed by erlotinib [37]. So far, no single 
theory can explain the mechanism of EGFR-TKI resistance 
system. The resistance mechanism of EGFR-TKI and how 

to overcome resistance is still a topic in the field of cancer 
research.
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