
Online Appendix

Heterogeneous Agent Models in Asset Pricing: The Dynamic

Programming Approach and the Finite Difference Method

1 The Finite Difference Method

In this appendix, we provide details of the solution method.

1.1 Solution Method

We use the implicit method since it has better convergency properties than the explicit

one (e.g., Candler, 2001; Achdou et al., 2022).

1.1.1 The Implicit Method: The Definition

Under the implicit method, the discretized HJB equation for k = {1, 2} with the upwind

scheme is given by:
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The Eq. (23) deserves two comments. First, one can think to evaluate
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factorize Ak,i from the first two elements of the right side of Eq. (23) and evaluate the
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1.1.2 The Implicit Method: The Algorithm

In this section, we explain the algorithm of the implicit method to solve the PDE of Ak

and S. The steps are the following:

• Step 1. Parameters

• Step 2. Discretization

• Step 3. Preliminaries for iteration of Ak

• Step 4. Initial guess of Ak

• Step 5. Iteration of Ak

5.1 Initial point of Ak

5.2 Finite difference

5.3 Upwind scheme

5.4 Discretization of PDE system

5.5 Update of Ak

5.6 The optimal Ak

These steps are implemented in the m-file Main Ak.m. We explain these steps carefully

in the following paragraphs. We will start solving the HJB for agent 1: A1

Step 1. Parameters. First, we set up the value of the model’s parameters related to

preferences and financial assets.

%% STEP 1: Parameters

% A. Preferences

rho = 0.1; % impatience rate in discount factor e^(-rho*t)

g1 = 0.8; % g1=gamma1 = RRA of agent 1 (more risk averse)

g2 = 0.5; % g2=gamma2 = RRA of agent 2 (less risk averse)

gk = g1; % gk=gammak

% B. Exogeneous State Variable Dynamic (Y)

mu = 0.05; %E[dY/Y]

sigma = 0.3; %Volatility term of dY/Y

% C. Weights in Utility Function of Social Planner (U)

lambda = 1/3; % weight of utility function of agent 1 (gamma_1) in U

a = (1-lambda)/lambda;

Step 2. Discretization. We next discretize the state variable Y using a structured grid.
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% A. State space: structured grid

Ymax = 100;

Ymin = 1;

I = 500; % N of points in the grid: I + 1

deltaY = (Ymax-Ymin)/I; % the distance between grid points

Y = Ymin:deltaY:Ymax; %the vector of the state variable (grid)

Step 3. Preliminaries for iteration of V . We create a matrix called “Akmatrix” to

store the value function Ak for every iteration until it converges.

%% STEP 3: Preliminaries for iteration of Ak

% A. Storage of Ak for every iteration

Akmatrix = [];

% B. Variables from Social Planner solution:

% Consumption

c10 = 0.1; %initial point of agent1’s consumption

for i=1:I+1

c1(i) = fsolve(@(c1) c_op(c1,a,g1,g2,Y(i)),c10); %c1

end

c2 = Y - c1; %c2

% Interest Rate (r) and Price of Risk (psi)

a1 = c2*g1 + c1*g2; % aux1

a2 = -c1*(g2^2)*(1+g1) - c2*(g1^2)*(1+g2); % aux2

r = rho + (mu*Y)*(g1*g2)./a1 + (( (sigma*Y).^2 )/2).*(g1*g2*a2./a1.^3);

psi = (sigma*Y)*(g1*g2)./a1;

It is important to mention that the function c op(c1,a,g1,g2,Y(i)),c10) contains the

nonlinear equation of c1 which comes from the Social Planner solution (see Eq. ??), and

the Matlab function “fsolve” is used to solve “c op” and get the optimal c1.

Step 4. Initial guess of Ak. we then define the initial guess of the value function for

all the state points. This will be the initial value of Ak for the first iteration in step 5. So,

we need to define

A0
k =

(
A0

k,1, A
0
k,2, ..., A

0
k,I+1

)
We suppose that Ak is an increasing function in the state variable, so we use any

concave function of Y as the initial value of the value function. So, I assume that

A0
k =

√
Y ,

which is implemented in Matlab as

%% STEP 4: INITIAL GUESS of Ak (for every point of the state var)

% A. Initial guess of "Ak"

% Ak = [Ak_1, Ak_2, ..., Ak_I], k={1,2}

ak0 = Y.^0.5; % Value function of agent k

ak = ak0; % row-vector of (I+1) columns
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Step 5. Iteration of Ak. The PDE of Ak is solved by iteration until Ak converges. That

means that for every n (iteration), we find An+1
k . For instance, given A0

k and for n = 0 we

find A1
k, then given A1

k and for n = 1 we find A2
k, and so on. Therefore, in each iteration,

we find Ak. The process finishes when Ak of the n + 1−th iteration is almost the same

as the n−th iteration. To implement this step, we first set up the number of iterations,

1000, and the criterion to stop the iteration and get the solution of the PDE system, Ak.

%% STEP 5: Iteration of Ak

maxit= 1000;

crit=10^(-6); %the criterion to stop iteration and

%get the solution of "Ak"

deltat = 1000; %time length (from Achdou et al (2022))

We then construct a loop to solve the discretized PDE system of Ak with the upwind

scheme as follows.

for n=1:maxit

Step 5.1

Step 5.2

Step 5.3

Step 5.4

Step 5.5

Step 5.6

end

Now, we provide details about this loop.

5.1 Initial point of Ak.

For the first iteration, we consider that Ak takes the initial guess of Ak defined in

step 4. we also save Ak for every iteration in the matrix “Akmatrix.”

%% STEP-5.1: Initial point of Ak

Ak = ak;

Akmatrix = [Akmatrix; Ak]; %We save the initial Ak of every iteration

5.2 Finite difference (forward/backward difference approximation).

We then calculate the forward difference taking into account the boundaries. The

state grid has two boundary points: Y = Ymin and Y = Ymax. In these two bound-

aries, some problems could appear when we calculate the forward, backward, and

central differences.

a. Forward Difference

– Boundary: Ymin

(Ak,Y )
n+1
1,F =

An+1
k,2 −An+1

k,1

∆Y
, For i = 1 ⇒ Y min = Y1 (2)
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– Computational points

(Ak,Y )
n+1
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k,i

∆Y
, For i = 2, · · · , I (3)

– Boundary: Ymax

(Ak,Y )
n+1
I+1,F =

An+1
k,I+2 −An+1

k,I+1

∆Y
, For i = I + 1 ⇒ Y max = YI+1 (4)

When we use the forward difference, a problem appears only in the node

Ymax, where An+1
k,I+2 is not known because it is outside of the grid (i =

1, · · · , I + 1). The point I + 2 is typically named the ghost node since it

is outside the grid but is needed to calculate difference approximations. In

this case, we assume

An+1
k,I+2 = An+1

k,I+1 (5)

This implies

(Ak,Y )
n+1
I+1,F = 0 (6)

b. Backward Difference

– Boundary: Ymin

(Ak,Y )
n+1
1,B =

An+1
k,1 −An+1

k,0

∆Y
, For i = 1 ⇒ Y min = Y1 (7)

However, this approximation cannot be calculated because An+1
k,0 is outside

of the grid, and hence it is unknown. Since we do not have a grid point at

i = 0, this point is also a ghost node. In this case, we assume

An+1
k,0 = An+1

k,1 . (8)

This implies

(Ak,Y )
n+1
1,B = 0 (9)

– Computational points

(Ak,Y )
n+1
i,B =
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k,i −An+1

k,i−1

∆Y
, For i = 2, · · · , I (10)

– Boundary: Ymax
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n+1
I+1,B =

An+1
k,I+1 −An+1

k,I

∆Y
, For i = I + 1 ⇒ Y max = YI+1 (11)

Therefore, for the first derivative approximation, we have two takeaways.
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– Use forward approximation at Ymin and use backward approximation at

Ymax.

– For computational points, every approximation should be used depending

on the rule of the upwind scheme.

c. Central Difference

– Boundary: Ymin

(Ak,Y Y )
n+1
1,c =
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k,2 − 2An+1

k,1 +An+1
k,0

(∆Y )2
, For i = 1 ⇒ Y min = Y1 (12)

A ghost node appears at i = 0. Because An+1
k,0 is unknown, we assume the

following.

An+1
k,0 = An+1

k,1 .

Then,
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n+1
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n+1
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k,i +An+1
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n+1
I+1,c =
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k,I+2 − 2An+1

k,I+1 +An+1
k,I

(∆Y )2
, For i = I + 1 (15)

A ghost node also appears at I + 2. In this case, we assume

An+1
k,I+2 = An+1

k,I+1.

Therefore,

(Ak,Y Y )
n+1
I+1,c =

−An+1
k,I+1 +An+1

k,I

(∆Y )2
, For i = I + 1 (16)

We now implement the forward, backward, and central differences with the boundary

conditions, as follows.

%% STEP-5.2: Finite Difference (Forward/Backward Diff Approx & central)

% A. Forward and Backward Difference

% forward difference (A1Y, A2Y, SY)

dAkf = [(Ak(2:end) - Ak(1:end-1))/deltaY 0];

% Boundary nodes (Ymax): dAkf(I+1,:)= 0

% it will never be used

% because at Ymax we use backward
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% ghost node: (i = I+2)

% backward difference (A1Y, A2Y, SY)

dAkb = [0 (Ak(2:end) - Ak(1:end-1))/deltaY];

% Boundary nodes (Ymin): dAkb(1,:)= 0

% it will never be used

% because at Ymin we use forward

% ghost node: (i = 0)

% Central difference (SYY)

ddAkYY = [(Ak(2) - Ak(1))/deltaY^2,...

(Ak(3:end) - 2*Ak(2:end-1) + Ak(1:end-2))/deltaY^2,...

(-Ak(end) + Ak(end-1))/deltaY^2 ];

5.3 Upwind scheme.

Next, we need a criterion to choose between the backward and forward approxima-

tion. In this step, we implement the Eq. (??), which is given by

(Ak,Y )i = (Ak,Y )i,F 1ãki,F≥0
+ (Ak,Y )i,B 1ãki,B<0

(17)

The implementation of these definitions is as follows.

• The rule.

– ãki > 0 −→ ãki = ãki,F and (Ak,Y )i,F

(Ak,Y )
n+1
i ≈
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k,i

∆Y
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– ãki < 0 −→ ãki = ãki,B and (Ak,Y )i,B

(Ak,Y )
n+1
i ≈

An+1
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k,i−1

∆Y
≡ (Ak,Y )

n+1
i,B (19)

• The implementation of the rule. We implement the previous rule by the

following two functions.

[K]+ = max{K, 0} −→ [ãki,F ]
+ = max{ãki,F , 0} (20)

[K]− = min{K, 0} −→ [ãki,B]
− = min{ãki,B, 0} (21)

We then consider the Upwind scheme (rule) into the PDE of Ak.

1

1− γk

An+1
k,i −An

k,i

∆t
+ ρ

An+1
k,i

1− γk
=

γk

(
An

k,i

)1−1/γk

1− γk
+

(
ψ2
i

2γk
+ ri

)
An+1

k,i

+
[
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with the definition of ãnki,F and ãnki,B (see Eqs. ?? and ??), which are given by.

ãnki,F =
(σYi)

2

2γk

(Ak,Y )
n
i,F

An
k,i

+
µYi

1− γk
+ σYi

ψi

γk
(24)

ãnki,B =
(σYi)

2

2γk

(Ak,Y )
n
i,B

An
k,i

+
µYi

1− γk
+ σYi

ψi

γk
. (25)

The implementation of the Upwind scheme is done in three steps: (i) coefficient ãki,

(ii) indicator function, and (iii) the first derivative that includes three cases.

%% STEP-5.3: Upwind scheme

% (A) aki: coefficient

% Agent k

akcoef_f = ( ((sigma*Y).^2)/(2*gk) ).*( dAkf./Ak ) + mu*Y/(1-gk) + sigma*Y.*psi/gk;

akcoef_b = ( ((sigma*Y).^2)/(2*gk) ).*( dAkb./Ak ) + mu*Y/(1-gk) + sigma*Y.*psi/gk;

% (B) Indicator Functions

% dAkY_upwind makes a choice of forward or backward differences based on

% based on the sign of the drift (AkY):

% Agent k

Ifak = akcoef_f > 0; %positive drift --> forward difference

Ibak = akcoef_b < 0; %negative drift --> backward difference:

%Ifak is a logic vector: zeros and ones:

%1 means "true"

I0ak = (1-Ifak-Ibak); %when a1=0

%check: NaN or Inf at "i=1" and "i=I+1"

check1 = [akcoef_f’, akcoef_b’, Ifak’, Ibak’, I0ak’];

% (C) Boundaries conditions

% To be sure that in Ymin I will use Forward

% consistent with X1=0

%If(1)=1; Ib(1)=0; I0(1)=0;

% To be sure that in Y(I+1) we will use Backward

% consistent with Z(I+1)=0

%If(end)=0; Ib(end)=1; I0(end)=0;

% Already taken care of automatically

% (D) The first derivative with Upwind scheme

AkY_Upwind = dAkf.*Ifak + dAkb.*Ibak + dAkf.*I0ak;

%AkY_Upwind(I+1) = 0 due to dAkf(I+1)=0

5.4 Discretization of PDE system.

A. Coefficients.

In this step, we introduce the definition of forward, backward, and central

approximation into the PDE of Ak. The goal is to obtain a PDE system formed

by the PDE evaluated at every grid point. Then, the PDE system would be
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The “variable” in this equation is the updated value function An+1
k . The other

terms are just coefficients. Furthermore, we know An
k in the current iteration

n, since An
k is the initial value function in the iteration “n.” After putting in

order the terms of Eq. (26), we have.
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ãnki,B

]−
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where

αn
ki ≡

ψ2
i

2γk
+ ri

The expression of price of risk, ψt, and interest rate, rt, come from Eq. (??)

and (??), respectively. The next step is to represent Eq. (27) in a simple form

as follows (∀i ∈ [1, I + 1]).

1
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=
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where the coefficients are defined as

Xki =

−
[
ãnki,B

]−
∆Y

+
1

2(1− γk)

(σYi)
2

∆Y 2

 (29)

Hki =

αn
ki −

[
ãnki,F

]+
∆Y

+

[
ãnki,B

]−
∆Y

− 1

(1− γk)

(σYi)
2

∆Y 2

 (30)

Zki =


[
ãnki,F

]+
∆Y

+
1

2(1− γk)

(σYi)
2

∆Y 2

 . (31)

Since
[
ãnki,F

]+
and

[
ãnki,B

]−
are known for every grid point, the coefficients Xki,

Hki, and Zki are also known. The variables in the Eq. (28) are An+1
k,i−1, A

n+1
k,i ,

and An+1
k,i+1. We implement these coefficients as follows.

%% STEP-5.4: Discretization of PDE system (Ak)

% Implicit method

% A. Coefficients (column vectors)

alphak = (psi.^2)/(2*gk) + r;

% Agent k

Xk = - min(akcoef_b’,0)/deltaY + (1/(2*(1-gk)))*( (sigma.*Y’).^2 )/deltaY^2;

Hk = alphak’ - max(akcoef_f’,0)/deltaY + min(akcoef_b’,0)/deltaY...

- (1/(1-gk))*((sigma.*Y’).^2)/deltaY^2;

Zk = max(akcoef_f’,0)/deltaY + (1/(2*(1-gk)))*((sigma.*Y’).^2)/deltaY^2;

B. Matrix of coefficients.

We have a system of (I + 1) equations because the PDE of Ak is evaluated at

every grid point. The next step is to express this system in matrix terms.

The system of Ak. We first evaluate the Eq. (28) for agent k, each point of the
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grid i, and a general time point, n.

An+1
k,1 −An

k,1

(1− γk)∆t
+ ρ

An+1
k,1

1− γk
=

γk

(
An

k,1

)1−1/γk

1− γk
+An+1

k,0 Xk1 +An+1
k,1 Hk1 +An+1

k,2 Zk1, i = 1

An+1
k,2 −An

k,2

(1− γk)∆t
+ ρ

An+1
k,2

1− γk
=

γk

(
An

k,2

)1−1/γk

1− γk
+An+1

k,1 Xk2 +An+1
k,2 Hk2 +An+1

k,3 Zk2, i = 2

An+1
k,3 −An

k,3

(1− γk)∆t
+ ρ

An+1
k,3

1− γk
=

γk

(
An

k,3

)1−1/γk

1− γk
+An+1

k,2 Xk3 +An+1
k,3 Hk3 +An+1

k,4 Zk3, i = 3

... =
...

An+1
k,I+1 −An

k,I+1

(1− γk)∆t
+ ρ

An+1
k,I+1

1− γk
=

γk

(
An

k,I+1

)1−1/γk

1− γk
+An+1

k,I XkI+1 +An+1
k,I+1HkI+1 +An+1

k,I+2ZkI+1

The last equation is evaluated in i = I + 1–the last point of the grid.

Boundaries. To solve the PDE of Ak, we usually need boundaries (max and

min level of Ak). We evaluate two cases: without boundaries and with them.

In both cases, since An+1
k,0 and An+1

k,I+2 are outside of the grid, we suppose that

their coefficients are zero. Therefore,

Xk1 = 0 (32)

ZkI+1 = 0, (33)

(a) Without boundaries. For agent k, the system of equations of An+1
k , after

considering the expression (32) and (33), would be

An+1
k,1 −An

k,1

(1− γk)∆t
+ ρ

An+1
k,1

1− γk
=

γk

(
An

k,1

)1−1/γk

1− γk
+An+1

k,1 Hk1 +An+1
k,2 Zk1, i = 1

An+1
k,2 −An

k,2

(1− γk)∆t
+ ρ

An+1
k,2

1− γk
=

γk

(
An

k,2

)1−1/γk

1− γk
+An+1

k,1 Xk2 +An+1
k,2 Hk2 +An+1

k,3 Zk2, i = 2

An+1
k,3 −An

k,3

(1− γk)∆t
+ ρ

An+1
k,3

1− γk
=

γk

(
An

k,3

)1−1/γk

1− γk
+An+1

k,2 Xk3 +An+1
k,3 Hk3 +An+1

k,4 Zk3, i = 3

... =
...

An+1
k,I+1 −An

k,I+1

(1− γk)∆t
+ ρ

An+1
k,I+1

1− γk
=

γk

(
An

k,I+1

)1−1/γk

1− γk
+An+1

k,I XkI+1 +An+1
k,I+1HkI+1

(b) With boundaries. Using the fact that the wealth ratio of agent k, θk, should

be between zero and one, and the expression of the consumption-wealth ratio

when the economy is only populated by one agent (k ∈ {1, 2}), we have the
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following boundaries (see Lemma ??).

N−γ1
1 ≤ A1 ≤ N−γ1

2 (34)

N−γ2
1 ≤ A2 ≤ N−γ2

2 (35)

(36)

In general form,

N−γk
1 ≤ Ak ≤ N−γk

2

For agent k, the system of equations of An+1
k , after considering the boundaries,

would be

0 = N−γk
1 −An+1

k,1 , i = 1

An+1
k,2 −An

k,2

(1− γk)∆t
+ ρ

An+1
k,2

1− γk
=

γk

(
An

k,2

)1−1/γk

1− γk
+An+1

k,1 Xk2 +An+1
k,2 Hk2 +An+1

k,3 Zk2, i = 2

An+1
k,3 −An

k,3

(1− γk)∆t
+ ρ

An+1
k,3

1− γk
=

γk

(
An

k,3

)1−1/γk

1− γk
+An+1

k,2 Xk3 +An+1
k,3 Hk3 +An+1

k,4 Zk3, i = 3

... =
...

An+1
k,I −An

k,I

(1− γk)∆t
+ ρ

An+1
k,I

1− γk
=

γk

(
An

k,I

)1−1/γk

1− γk
+An+1

k,I XkI +An+1
k,I HkI +An+1

k,I ZkI , i = I

0 = N−γk
2 −An+1

k,I+1, i = I + 1

Matrix form (without boundaries). We then write the previous system in matrix

form. For agent k, the left side of the system An+1
k is given by

left side = Pk


An+1

k,1

An+1
k,2

An+1
k,3
...

An+1
k,I+1


I+1,1

− Pk


An

k,1

An
k,2

An
k,3
...

An
k,I+1


I+1,1

+Qk


An+1

k,1

An+1
k,2

An+1
k,3
...

An+1
k,I+1


I+1,1

(37)

where,

Pk =
1

(1− γk)∆t
II+1 Qk =

ρ

1− γk
II+1

where II+1 is the identity matrix of I + 1 size.

left side = PkA
n+1
k − PkA

n
k +QkA

n+1
k (38)

On the other hand, the right side would be as follows.
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right side = Ỹk+



Hk1 Zk1 0 · · · 0 0 0

Xk2 Hk2 Zk2 · · · 0 0 0

0 Xk3 Hk3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · XkI HkI ZkI

0 0 0 · · · 0 XkI+1 HkI+1


I+1,I+1


An+1

k,1

An+1
k,2
...

An+1
k,I

An+1
k,I+1


I+1,1

,

(39)

where

Ỹk =



γk(An
k,1)

1−1/γk

1−γk
γk(An

k,2)
1−1/γk

1−γk
γk(An

k,3)
1−1/γk

1−γk
...

γk(An
k,I+1)

1−1/γk

1−γk


The matrix of coefficients is termed Mk matrix as follows.

Mk =



Hk1 Zk1 0 · · · 0 0 0

Xk2 Hk2 Zk2 · · · 0 0 0

0 Xk3 Hk3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · XkI HkI ZkI

0 0 0 · · · 0 XkI+1 HkI+1


I+1,I+1

(40)

Then,

right side = Ỹk +MkA
n+1
k (41)

Therefore,

PkA
n+1
k − PkA

n
k +QkA

n+1
k = Ỹk +MkA

n+1
k (42)

We then implement these matrices as follows.

% B. Matrix of coefficients: "Mk"

% Up Diagonal (Zk)

updiagMk = [ 0; Zk(1:end-1)];

% Central Diagonal (Hk)

centdiagMk = Hk;

% Down Diagonal (Xk)

lowdiagMk = [ Xk(2:end); 0 ];

% Mk
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Mk = spdiags([lowdiagMk centdiagMk updiagMk], -1:1, I+1, I+1);

% C. Vectors: Pk, Qk, Yk_tilde

Pk = 1/((1-gk)*deltat)*eye(I+1);

Qk = rho/(1-gk)*eye(I+1);

Yk_tilde = (gk/(1-gk))*Ak.^(1 - 1/gk);

Matrix form (with boundaries). We then write the previous system in matrix

form. For agent k, the left side of the system An+1
k is given by

left side = Pk


An+1

k,1

An+1
k,2

An+1
k,3
...

An+1
k,I+1


I+1,1

− Pk


An

k,1

An
k,2

An
k,3
...

An
k,I+1


I+1,1

+Qk


An+1

k,1

An+1
k,2

An+1
k,3
...

An+1
k,I+1


I+1,1

(43)

where,

Pk =
1

(1− γk)∆t
ĨI+1 Qk =

ρ

1− γk
ĨI+1

where ĨI+1 is a square matrix of I + 1 size defined as

Ĩ =



0 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 · · · 1 0

0 0 · · · 0 0


left side = PkA

n+1
k − PkA

n
k +QkA

n+1
k (44)

On the other hand, the right side would be as follows.

right side = Ỹk+



−1 0 0 · · · 0 0 0

Xk2 Hk2 Zk2 · · · 0 0 0

0 Xk3 Hk3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · XkI HkI ZkI

0 0 0 · · · 0 0 −1


I+1,I+1


An+1

k,1

An+1
k,2
...

An+1
k,I

An+1
k,I+1


I+1,1

,

(45)

where
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Ỹk =



N−γk
1

γk(An
k,2)

1−1/γk

1−γk
...

γk(An
k,I)

1−1/γk

1−γk

N−γk
2


The matrix of coefficients is termed Mk matrix as follows.

Mk =



−1 0 0 · · · 0 0 0

Xk2 Hk2 Zk2 · · · 0 0 0

0 Xk3 Hk3 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · XkI HkI ZkI

0 0 0 · · · 0 0 −1


I+1,I+1

(46)

Then,

right side = Ỹk +MkA
n+1
k (47)

Therefore,

PkA
n+1
k − PkA

n
k +QkA

n+1
k = Ỹk +MkA

n+1
k (48)

We then implement these matrices as follows:

% B. Matrix of coefficients: "Mk"

% Up Diagonal (Zk)

updiagMk = [ 0; 0; Zk(2:end-1)];

% Central Diagonal (Hk)

centdiagMk = [ -1; Hk(2:end-1); -1];

% Down Diagonal (Xk)

lowdiagMk = [ Xk(2:end-1); 0; 0];

% Mk

Mk = spdiags([lowdiagMk centdiagMk updiagMk], -1:1, I+1, I+1);

% C. Vectors: Pk, Qk, Yk_tilde

Itilde = diag([0 ones(1,I-1) 0]);

Pk = 1/((1-gk)*deltat)*Itilde;

Qk = rho/(1-gk)*Itilde;

Yk_tilde = [N1^(-gk); (gk/(1-gk))*Ak(2:I)’.^(1 - 1/gk); N2^(-gk)];

C. Solve the system of equations. For both cases: without and with boundaries.

Based on the coefficient matrix Mk and the value function vector An+1
k (I+1)×1

,

we can solve the system
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PkA
n+1
k − PkA

n
k +QkA

n+1
k = Ỹk +MkA

n+1
k (49)

Ordering the terms such as An+1
k is on the left side, we have

[Pk +Qk −Mk]︸ ︷︷ ︸
=Bn

An+1
k = Ỹk + PkA

n
k︸ ︷︷ ︸

=bn

BnAn+1
k = bn, (50)

Since we know Bn and bn, the variable in this system is An+1
k . This kind of

system can be solved efficiently in, for instance, Matlab using “sparse matrix

routines.” We implement this step as follows.

% D. Left-hand matrix: "Bn"

Bn = Pk + Qk - Mk;

% E. Right-hand matrix: "bn" (column vector)

bn = Yk_tilde + Pk*Ak’;

% F. Solve the system of equations: finding V^n+1

Aknew = Bn\bn; % column vector

5.5 Update of the price function.

We know An+1
k from the previous step. So, we can now calculate the distance between

the initial price function (for this iteration, n) An
k and the resulting price function,

An+1k .

Akchange = An+1
k −An

k

In our loop, the new value of Ak enters as an initial point in the next iteration “n+1”

is An+1
k . In the current iteration, n, the initial value function ak is An

k , and we also

have calculated “Akchange.” Why do we need the vector Akchange? We will use it

to calculate the distance between An+1
k and An

k , which is used to evaluate if we got

the value function. We implement Akchange and the new initial guess as follows.

%% STEP-5.5: Update of the value function

Akchange = Aknew - Ak’; % since we have "Ak", we calculate "Akchange"

ak = Aknew’; % the "new initial guess" (row vector)

5.6 The optimal price function.

To compute the distance between An+1
k and An

k , we consider the absolute value norm

of “Akchange.” Importantly since the distance is positive, we first calculate the ab-

solute value of Akchange, and since it is a column vector, the “max(abs(Akchange))”
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will provide the maximum value of that column (in Matlab). We then compare this

distance with the criterion to stop the iteration process defined in Step 5. If this

distance is low than the criterion, then we find the optimal value function Ak–which

is “Aknew” in the last sentence mentioned in Step 5.5.

%% STEP-5.6: The optimal value function

%We use the "Absolute-value norm"

%We can use others: e.g., Euclidean norm

dist(n) = max(abs(Akchange));

if dist(n)<crit %crit=10^(-6)

disp(’Value Function Converged, Iteration = ’)

disp(n)

break

end

% To know in what "iteration" we are

disp(n)

end
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