Online Appendix
Heterogeneous Agent Models in Asset Pricing: The Dynamic
Programming Approach and the Finite Difference Method

1 The Finite Difference Method

In this appendix, we provide details of the solution method.

1.1 Solution Method

We use the implicit method since it has better convergency properties than the explicit
one (e.g., Candler, 2001; Achdou et al., 2022).

1.1.1 The Implicit Method: The Definition

Under the implicit method, the discretized HJB equation for k = {1,2} with the upwind
scheme is given by:

An+1 an An+1 (An) 1-1/v)
1 ki — ki ki o Tk ki (5 Al
1— At P14 T 1— o, 77) Ak
Vi Vi Vi

B B oY;)?
b Ay) g (A)+

W(Az,i)l_l/%

1—vk

at n + 1 instead of n. The argument for not doing that is that the system would turn out
=1/

non-linear because of the following term: (AZ’? . Second, an alternative way is to

The Eq. (23) deserves two comments. First, one can think to evaluate

factorize Aj; from the first two elements of the right side of Eq. (23) and evaluate the
resulting coefficient at n and the term A ; at n + 1 as follows.

-1/
2 Ve (AZJ b 2
+ 7 +7 An,+'1 =) + 4 +7; An{rl
L= 2k -

1.1.2 The Implicit Method: The Algorithm

In this section, we explain the algorithm of the implicit method to solve the PDE of A
and S. The steps are the following;:

e Step 1. Parameters

e Step 2. Discretization

Step 3. Preliminaries for iteration of Ay

Step 4. Initial guess of A

Step 5. Iteration of Ay

5.1 Initial point of A

5.2 Finite difference

5.3 Upwind scheme

5.4 Discretization of PDE system
5.5 Update of Ag

5.6 The optimal Ag

These steps are implemented in the m-file Main_Ak.m. We explain these steps carefully
in the following paragraphs. We will start solving the HJB for agent 1: A;

Step 1. Parameters. First, we set up the value of the model’s parameters related to
preferences and financial assets.

%% STEP 1: Parameters

% A. Preferences

rho = 0.1; % impatience rate in discount factor e~ (-rho*t)
gl
g2

0.8; % gl=gammal = RRA of agent 1 (more risk averse)

0.5; % g2=gamma2 = RRA of agent 2 (less risk averse)
gk = gi; % gk=gammak

% B. Exogeneous State Variable Dynamic (Y)

mu = 0.05; %E[AY/Y]

sigma = 0.3; %Volatility term of dY/Y

% C. Weights in Utility Function of Social Planner (U)

lambda = 1/3; J weight of utility function of agent 1 (gamma_1) in U
a = (1-lambda)/lambda;

Step 2. Discretization. We next discretize the state variable Y using a structured grid.

% A. State space: structured grid

Ymax = 100;
Ymin = 1;
I = 500; % N of points in the grid: I + 1

deltaY = (Ymax-Ymin)/I; J the distance between grid points
Y = Ymin:deltaY:Ymax; Jthe vector of the state variable (grid)

Step 3. Preliminaries for iteration of V. We create a matrix called “Akmatrix” to
store the value function Ak for every iteration until it converges.

%% STEP 3: Preliminaries for iteration of Ak
% A. Storage of Ak for every iteration
Akmatrix = [];

% B. Variables from Social Planner solution:
% Consumption
c10 = 0.1; %initial point of agentl’s consumption
for i=1:I+1
c1(i) = fsolve(@(cl) c_op(cl,a,gl,g2,Y(i)),c10); %ecl
end
c2 =Y - c1; %e2

% Interest Rate (r) and Price of Risk (psi)
al = c2*gl + cl*g2; % auxi
a2 = -c1x(g272)*(1+gl) - c2*(gl~2)*(1+g2); % aux2

R
1]

rho + (muxY)*(gilxg2)./al + (((sigma*Y)."2)/2).x(glxg2*a2./al."3);
(sigmaxY)*(gl*xg2)./al;

psi

It is important to mention that the function c_op(cl,a,g1,g2,Y(i)),c10) contains the
nonlinear equation of ¢; which comes from the Social Planner solution (see Eq. ?7), and
the Matlab function “fsolve” is used to solve “c_op” and get the optimal ¢;.

Step 4. Initial guess of A;. we then define the initial guess of the value function for
all the state points. This will be the initial value of Ay for the first iteration in step 5. So,
we need to define

0 _ 0 0 0
A = (Ak,].’ Ak,?’ ceey Ak,[+1)

We suppose that Aj is an increasing function in the state variable, so we use any
concave function of Y as the initial value of the value function. So, I assume that

A0 =Y,

which is implemented in Matlab as

%% STEP 4: INITIAL GUESS of Ak (for every point of the state var)
% A. Initial guess of "Ak"

% Ak = [Ak_1, Ak_2, ..., Ak_I], k={1,2}

ak0 = Y.70.5; % Value function of agent k

ak = akO; % row-vector of (I+1) columns

Step 5. Iteration of A;. The PDE of Ay is solved by iteration until A; converges. That
means that for every n (iteration), we find A}*!. For instance, given A) and for n = 0 we
find A,lﬁ, then given A,lC and for n = 1 we find A2, and so on. Therefore, in each iteration,
we find A;. The process finishes when Ay of the n + 1—th iteration is almost the same
as the n—th iteration. To implement this step, we first set up the number of iterations,
1000, and the criterion to stop the iteration and get the solution of the PDE system, Ay.

%% STEP 5: Iteration of Ak

maxit= 1000;

crit=10"(-6); Y%the criterion to stop iteration and
%get the solution of "Ak"

deltat = 1000; %time length (from Achdou et al (2022))

We then construct a loop to solve the discretized PDE system of Ay with the upwind
scheme as follows.

for n=1:maxit

Step 5.1
Step 5.2
Step 5.3
Step 5.4
Step 5.5

5.6

Step
end

Now, we provide details about this loop.

5.1 Initial point of Ag.
For the first iteration, we consider that Ay takes the initial guess of Ay defined in
step 4. we also save Ay for every iteration in the matrix “Akmatrix.”

%% STEP-5.1: Initial point of Ak
Ak = ak;
Akmatrix = [Akmatrix; Ak]; /We save the initial Ak of every iteration

5.2 Finite difference (forward/backward difference approximation,).
We then calculate the forward difference taking into account the boundaries. The
state grid has two boundary points: Y = Y;;;n and Y = Y}, In these two bound-
aries, some problems could appear when we calculate the forward, backward, and
central differences.

a. Forward Difference
— Boundary: Ymin
n+1 n+1
Ay —A

(Ak,Y)i—;l = Ay Bl , For i=1=Ymin=Y; (2)

— Computational points

ATL+1 _ An+1
+1 _ TTkitl ki .
(Ak,Y)ZF =AY For i=2,---,1 (3)

— Boundary: Ymax

n+1 n+1
A n+1 Ak,l+2 - Ak,[+1
(Aky) :

I+1,F — AY

For i=I+4+1=Ymar=Yry1 (4)

When we use the forward difference, a problem appears only in the node
Ymax, where AZj-le is not known because it is outside of the grid (i =
1,---,I+1). The point I + 2 is typically named the ghost node since it
is outside the grid but is needed to calculate difference approximations. In

this case, we assume

A = A (5)
This implies
(Aky)iiip =0 (6)
b. Backward Difference
— Boundary: Ymin
ntl _ gn+l
(Ak,Y);L’El = %, For i=1=Ymin=Y; (7)

However, this approximation cannot be calculated because Azgl is outside
of the grid, and hence it is unknown. Since we do not have a grid point at
1 = 0, this point is also a ghost node. In this case, we assume

ARt = A (®)
This implies
(Ary)i 5 =0 (9)
— Computational points
ntl _ gn+l
(A)i = L, For =2, 1 (10)

— Boundary: Ymax

An+1 . An+1

(Ak’y)?j:ll,B = %, For i=I+1=Ymax =Y (11)

Therefore, for the first derivative approximation, we have two takeaways.

— Use forward approximation at Ymin and use backward approximation at
Ymax.

— For computational points, every approximation should be used depending
on the rule of the upwind scheme.

c. Central Difference
— Boundary: Ymin

APEL AT gt
k.2 k1 k,0 For i=1=Ymin=Y1 (12)

(Aeyy)7) =

(AY)? ’
A ghost node appears at i = 0. Because AZ'SI is unknown, we assume the
following.
+1 _ gntl
Apo = 4Ak1 -
Then,

n+1 n+1
Ak,2 - Ak,l

INBE (13)

+1
(Aeyy)i, =
— Computational points

41 +1 +1
(Apyy)" ! = A — 2400 T AL
EYY)i = (AY)2

— Boundary: Ymax

An+1 . 2An+1 + An+1
41 kI+2 k41 kI .
(Aryy)iie = (AY)? , For i=I1+1 (15)

A ghost node also appears at I 4+ 2. In this case, we assume

ATL+1 — An+1

k42 kJI+1°
Therefore,
AL gl
(Ak,yy)?iic = kézY)Q ul , For 1=1+1 (16)

We now implement the forward, backward, and central differences with the boundary
conditions, as follows.

%% STEP-5.2: Finite Difference (Forward/Backward Diff Approx & central)
% A. Forward and Backward Difference
% forward difference (A1Y, A2Y, SY)
dAkf = [(Ak(2:end) - Ak(l:end-1))/deltaY 0];
% Boundary nodes (Ymax): dAkf(I+1,:)= 0
% it will never be used
% because at Ymax we use backward

% ghost node: (i = I+2)

% backward difference (A1Y, A2Y, SY)
dAkb = [0 (Ak(2:end) - Ak(1l:end-1))/delta¥];
% Boundary nodes (Ymin): dAkb(1,:)= 0
% it will never be used
% because at Ymin we use forward
% ghost node: (i = 0)

% Central difference (SYY)
ddAkYY = [(Ak(2) - Ak(1))/deltaY"2,...
(Ak(3:end) - 2*Ak(2:end-1) + Ak(1l:end-2))/delta¥Y"2,...
(-Ak(end) + Ak(end-1))/delta¥"2];

5.3 Upwind scheme.
Next, we need a criterion to choose between the backward and forward approxima-
tion. In this step, we implement the Eq. (??), which is given by

(AI%Y)Z‘ = (Ak,Y)i,F 1&k¢,F20 + (Akyy)@',B Larip<o (17)
The implementation of these definitions is as follows.

e The rule.
— ap; >0 — ag; = aki,F and (Ak,y)in

AZJrl _ AZJrl

g "

(A)t~ R = (A (18)
— aki <0— dki = dki,B and (Akvy)i,B

A?];L-‘rl . An+1
K

S = ()i (19)

(A]gg/)n—’—l ~ g

‘ AY
e The implementation of the rule. We implement the previous rule by the

following two functions.

{K]—F = max{K, 0} — {EL]W"F]+ = max{dki’F,O} (20)
[K]i = min{K, 0} — [aki,B]_ = min{&ki,B,O} (21)

We then consider the Upwind scheme (rule) into the PDE of A.

An+1 an An+1 (An) 1-1/g)
1 ki~ ki Dka Tk \ ki n A 4| At
1= At = Vi L=y 2y,) R

~ + n+1 ~ — n+1

+ [a}}i,ﬂ (AkY)z; + [aﬁi,B] (Aka)z‘,JEr;

(UYDQ n+1

+ ——— (Aryy), 22

20— 1) (Akyy); (22)

with the definition of ay; . and ay; (see Egs. 7?7 and ??), which are given by.

_ (oY) (Ary)ir uY; i

ki, F 27% Zﬂ 1 — Y pyk ()
~ (oY;)? (Ary); 5 ng (5
ap; g = — + +oY;—. 25

The implementation of the Upwind scheme is done in three steps: (7) coefficient ay;,
(74) indicator function, and (ii7) the first derivative that includes three cases.

%% STEP-5.3: Upwind scheme

% (A) aki: coefficient
% Agent k
akcoef_f = (((sigmaxY)."2)/(2*gk)).x(dAkf./Ak) + muxY/(1-gk) + sigmaxY.*psi/gk;
akcoef_b = (((sigmaxY)."2)/(2%gk)).*(dAkb./Ak) + mu*xY/(1l-gk) + sigmaxY.*psi/gk;

% (B) Indicator Functions
% dAkY_upwind makes a choice of forward or backward differences based on
% based on the sign of the drift (AkY):
% Agent k

Ifak = akcoef_f > O; %positive drift --> forward difference
Ibak = akcoef_b < 0; %negative drift --> backward difference:
%Ifak is a logic vector: zeros and ones:
%1 means "true"
I0ak = (1-Ifak-Ibak); %when al=0

%check: NaN or Inf at "i=1" and "i=I+1"
checkl = [akcoef_f’, akcoef_b’, Ifak’, Ibak’, IOak’];

% (C) Boundaries conditions
% To be sure that in Ymin I will use Forward
% consistent with X1=0
%$I£(1)=1; Ib(1)=0; I0(1)=0;
% To be sure that in Y(I+1) we will use Backward
% consistent with Z(I+1)=0
%If(end)=0; Ib(end)=1; I0(end)=0;
% Already taken care of automatically

% (D) The first derivative with Upwind scheme
AkY_Upwind = dAkf.*Ifak + dAkb.*Ibak + dAkf.x*IOak;
%AkKY_Upwind(I+1) = O due to dAkf(I+1)=0

5.4 Discretization of PDE system.

A. Coefficients.
In this step, we introduce the definition of forward, backward, and central
approximation into the PDE of A;. The goal is to obtain a PDE system formed
by the PDE evaluated at every grid point. Then, the PDE system would be

n+1 n+1 An =1/
n
1 A — AL n A _ Tk (’”) P2 n At
L=y At T L= 2 t) Tk
+1 +1
n [dn]+ AZ,H—I B Az,z
ki, F’ AY
+1 +1
+ [&n]f Az,z - AZ,Z'*I
ki,B AY
+1 +1 +1
(oYi)? | Apin — 245 + AL "
LT AY?)

The “variable” in this equation is the updated value function AZ'H. The other
terms are just coefficients. Furthermore, we know A} in the current iteration
n, since A} is the initial value function in the iteration “n.” After putting in
order the terms of Eq. (26), we have.

, 1-1/7
oAty At ()
I =7k At T~ L —
~n -

+ An—l—l o [aki’B} 1 (O-Yi)Q

ki1 AY 2(1 — ;) AY?
n + =1 -

Ty Ui, P WiB| 1 (oV})?

ki |TRCAY AY (1—7) AY?2
] :
+oartt L L (oY) (27)

where

2

ki = 27k

The expression of price of risk, v, and interest rate, r;, come from Eq. (77)
and (?77), respectively. The next step is to represent Eq. (27) in a simple form
as follows (Vi € [1,1 + 1]).

=1/
poaptioap, At w(ag,)
1 — . At "+ "1 _71% - 1T —% + AZJ{_IlX’“ T AZIIHM + Az,ﬁlzki’

(28)

where the coefficients are defined as

sl 1 owp
X, = |— 2
ki AY 21—y AYZ (29)
' ki AY AY (1—) AY?2
’ AY 2(1 —) AY?2 |

Jr
Since [dzi F} and [d}gi B] are known for every grid point, the coefficients Xy;,

Hy;, and Zy; are also known. The variables in the Eq. (28) are AZﬁl, AZ?,
and A" We implement these coefficients as follows.

kyi+1°

%% STEP-5.4: Discretization of PDE system (Ak)
% Implicit method
% A. Coefficients (column vectors)
alphak = (psi.~2)/(2*gk) + r;

% Agent k
Xk = - min(akcoef_b’,0)/deltaY + (1/(2*%(1-gk)))*((sigma.*Y’)."2)/delta¥"2;
Hk = alphak’ - max(akcoef_f’,0)/deltaY + min(akcoef_b’,0)/deltaY¥...

- (1/(1-gk))*((sigma.*Y’)."2)/delta¥Y"2;
max (akcoef _f’,0)/deltaY + (1/(2*(1-gk)))*((sigma.*Y’)."2)/delta¥"2;

Zk

. Matriz of coefficients.
We have a system of (I 4+ 1) equations because the PDE of Ay is evaluated at
every grid point. The next step is to express this system in matrix terms.

The system of Ay. We first evaluate the Eq. (28) for agent k, each point of the

10

grid i, and a general time point, n.

ap-ay o)

G—0nt Vi = 1o PR et A e AT 2, i1
AZJQA — AT, Az? - <A212)1—1/7k

Taont PPTom = 1o A Xt R He + A 2, =2
AZJ:EI —Aps AZ’? Tk (AZ,:s) s)

(17— »yk)Ai P71 _’% - 1= + A Xis + AP Hys + A7 Zyg, i =3

n+1 n nal n 1=1/vk
Ak{i jijiH pfk_,f;i _ % <A’i1—+1’}’)k + AP X + AR Her + AR 0 2k

The last equation is evaluated in ¢ = I 4+ 1-the last point of the grid.

Boundaries. To solve the PDE of Ay, we usually need boundaries (max and
min level of Ay). We evaluate two cases: without boundaries and with them.
In both cases, since A;:gl and AZ}iQ are outside of the grid, we suppose that
their coefficients are zero. Therefore,

X = 0
Zgi+1 = 0, (33)

(a) Without boundaries. For agent k, the system of equations of AZH, after
considering the expression (32) and (33), would be

AZTI — AL AZTI Tk (Az,l)lil/% I) '
A—at TP = T AR i+ AR 2, =1
gy w(m)
(1’— %)A;f P —7'yk - 1— + A7 X2 + AZJQ Hyo + A;”g Zyo, =2
R T T) R 1 o
(17— 7k)A;f P1 —”)/k - 1— + Ay Xis + AZJg Hys + AZ;[Zi3, =3
n+l _ gn n+1 (A’{)171/w
A T = A s+ A

(b) With boundaries. Using the fact that the wealth ratio of agent k, 6, should
be between zero and one, and the expression of the consumption-wealth ratio
when the economy is only populated by one agent (k € {1,2}), we have the

11

following boundaries (see Lemma ?7).

NTY< A SN (34)
Ny < Ay <N, (35)
(36)

In general form,

7 -
N1 kSAkSNQ .

For agent k, the system of equations of AZ“, after considering the boundaries,

would be
0 = Ny =AM =1
1-1/
AL A7 At Vi (AZQ)
k,2 k,2 k,2 : 1 1 1 :

7 ’ 2 = AP X + AP Hyy + AT Z =2
(1 —) At T 1= TR T A e T Ay S
An+1 —_ An An+1 Vi (AZ3>1—1/’YI¢

k,3 k,3 k,3 , 1 n+1 n+1 :
= + AV X+ AP s+ AP 21 =3
(1 —)At - Vi L= k2 k3 k3 SRS hd Ck3
1-1/k
An+1 — An An+1 Vi (AZ I)
k,I k,1 k.1 ; .

s s s — ATL+1X ATL+1H An+1Z , — I

(1 —k)At Tz Vi L — % T A Ak A B A 2k
0 = Ny AW, i=1+1

Matriz form (without boundaries). We then write the previous system in matrix
form. For agent k, the left side of the system AZH is given by

+1 n n+1
AZil Alq Akil
AZﬁl A s AZﬁl
left side = Py, | Ak3 — P | Als +Qr | s (37)
AnJrl An An+1
kI+1d 1411 EI+1d 1411 EI+1d 1411
where,
P 1 T Q z
k= 77 A+l k= I+1
(1 —yx)At L=

where Zj41 is the identity matrix of I + 1 size.

left side = P AR — PLAY + QAT (38)

On the other hand, the right side would be as follows.

12

—]Jkl Zi1 0 ... 0 0 0]
Xk2 Hpz Zgo2 -+ 0 0 0
~ 0 Xps His 0 0 0
right side = Y+ .
0 0 0 - Xpr Hypr Zk1
0 0 0 - 0 Xpry1 Her T4
where
[%(AZJ)PUW |
A
,Yk(AZ’Q)lfl/’Yk
_ S
V= | (s "
1=k
(A)
L 1=k -
The matrix of coefficients is termed M}, matrix as follows.
(Hyy Zp O - 0 0 0]
X2 Hpz Zp2 -+ 0 0 0
0 Xgs Hgg -+ 0 0 0
My=| . 0 . .
0 0 0 - Xpr Hipr Zpt
0 0 0 - 0 Xgry1 Hgrea] [41041
Then,
right side = Y, + My A?+!
Therefore,

PkAZH—l — Pk Z’ =+ QkA;cH_l = ?k =+ MkA;cH_l
We then implement these matrices as follows.

% B. Matrix of coefficients: "Mk"
% Up Diagonal (Zk)
updiagMk = [0; Zk(1:end-1)];
% Central Diagonal (Hk)
centdiagMk = Hk;
% Down Diagonal (Xk)
lowdiagMk = [Xk(2:end); 0 1;
h Mk

13

- il
fikJ
n+1
jqkﬂ

n+1
quJ

n+1
f4h1+1_

(39)

(41)

(42)

I+1,1

Mk = spdiags([lowdiagMk centdiagMk updiagMk], -1:1, I+1, I+1);

% C. Vectors: Pk, Qk, Yk_tilde

Pk = 1/((1-gk)*deltat)*eye(I+1);

Qk = rho/(1-gk)*eye(I+1);

Yk_tilde = (gk/(1-gk))*Ak."~ (1 - 1/gk);

Matrixz form (with boundaries). We then write the previous system in matrix
form. For agent k, the left side of the system AZH is given by

+1 +1
AZ,ll Aj s AZ,ll
+ +
Aﬁﬁl A s AZﬁl
ke T
left side = Py, | Ak3 — P | Als +Qr | s (43)
n+1 n+1
AkJH I+1,1 AZJH I+1,1 Ak71+1 I+1,1
where,
1 ~ p =
P = = Z
k= T A Qk =y i

where i—]+1 is a square matrix of I + 1 size defined as

[0 0 0 --- 0]
o1 0 --- 0
~ oo 1 --- 0
T =
oOoo0 -~ 1 O
o 0 --- 0 0]
left side = PkAZJrl — P AL + QkAZH (44)

On the other hand, the right side would be as follows.

1 0 0 -~ 0 0 0] SR
k1
X Hip Zip -+ 0 0 0 Antl
_ 0 Xg His - 0 0 0 k.2
right side = Y+ | |)) . . . :
: : : : : : : g1
0 0 0 - Xpr Hpr Zr Ankﬁ
0 0 0o --- 0 0 —1] Ieiren kI+1d 1411

(45)

where

14

fvfﬁk
Tk (AZQ)I_I/%
1=k
Y. = :
’Wc(Aﬁ,I)lil/wk

1475
— Tk
A@

The matrix of coefficients is termed M}, matrix as follows.

[—1 0 0O -~ 0 0 0
Xy Hiox Zpo 0 0 0
0 Xps Hpz --- 0 0 0
M= (46)
0 0 0 -+ Xpr Hir Zig
[0 0 0 - 00 1]
Then,
right side = Y + M A (47)
Therefore,
P AT P AT+ QAT = Y+ M AR (48)

We then implement these matrices as follows:

% B. Matrix of coefficients: "Mk"
% Up Diagonal (Zk)
updiagMk = [0; 0; Zk(2:end-1)];
% Central Diagonal (Hk)
centdiagMk = [-1; Hk(2:end-1); -1];
% Down Diagonal (Xk)
lowdiagMk = [Xk(2:end-1); 0; 0];
h Mk
Mk = spdiags([lowdiagMk centdiagMk updiagMk], -1:1, I+1, I+1);

% C. Vectors: Pk, Qk, Yk_tilde

Itilde = diag([0 omnes(1,I-1) 0]);

Pk = 1/((1-gk)*deltat)*Itilde;

Qk = rho/(1-gk)*Itilde;

Yk_tilde = [N1~(-gk); (gk/(1-gk))*Ak(2:I)’."(1 - 1/gk); N2~ (-gk)];

C. Solve the system of equations. For both cases: without and with boundaries.

Based on the coefficient matrix My and the value function vector AZH(I X1

we can solve the system

15

5.5

5.6

P AT P AR 4 QAT = Y, + M AT (49)

Ordering the terms such as AZH is on the left side, we have

[Pe+ Qu — Mp] Apt = Y, + PLAy,
k
—_— —— ——
=Bn =bn
BMAYTY = b, (50)

Since we know B™ and b", the variable in this system is AZH. This kind of
system can be solved efficiently in, for instance, Matlab using “sparse matrix
routines.” We implement this step as follows.

% D. Left-hand matrix: "Bn"
Bn = Pk + Qk - Mk;

% E. Right-hand matrix: "bn" (column vector)
bn = Yk_tilde + Pkx*Ak’;

% F. Solve the system of equations: finding V' n+1
Aknew = Bn\bn; % column vector

Update of the price function.
We know AZH from the previous step. So, we can now calculate the distance between

the initial price function (for this iteration, n) A} and the resulting price function,
An+1k'

Akchange = A7t — A7

In our loop, the new value of Aj, enters as an initial point in the next iteration “n+1”
is AZH. In the current iteration, n, the initial value function ak is A}, and we also
have calculated “Akchange.” Why do we need the vector Akchange? We will use it
to calculate the distance between AZ'H and A7, which is used to evaluate if we got
the value function. We implement Akchange and the new initial guess as follows.

%% STEP-5.5: Update of the value function
Akchange = Aknew - Ak’; 7 since we have "Ak", we calculate "Akchange"
ak = Aknew’; % the "new initial guess" (row vector)

The optimal price function.

To compute the distance between AZH and A}, we consider the absolute value norm
of “Akchange.” Importantly since the distance is positive, we first calculate the ab-
solute value of Akchange, and since it is a column vector, the “max(abs(Akchange))”

16

will provide the maximum value of that column (in Matlab). We then compare this
distance with the criterion to stop the iteration process defined in Step 5. If this
distance is low than the criterion, then we find the optimal value function Ap—which
is “Aknew” in the last sentence mentioned in Step 5.5.

%% STEP-5.6: The optimal value function

%We use the "Absolute-value norm"

%We can use others: e.g., Euclidean norm

dist(n) = max(abs(Akchange));

if dist(n)<crit J%crit=10"(-6)
disp(’Value Function Converged, Iteration = ’)
disp(n)
break

end

% To know in what "iteration" we are

disp(n)
end

17

References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions and Benjamin Moll
(2022), ‘Income and Wealth Distribution in Macroeconomics: A Continuous-Time Ap-
proach’, Review of Economics Studies 89(1), 45—86.

Candler, Graham V. (2001), Finite-Difference Methods for Continuous-Time Dynamic
Programming, in R.Marimon and A.Scott, eds, ‘Computational Methods for the Study
of Dynamic Economies’, Oxford University Press, pp. 172-194.

18

	The Finite Difference Method
	Solution Method
	The Implicit Method: The Definition
	The Implicit Method: The Algorithm

