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Abstract: Decision theory and game theory are extended to allow for information
processing errors. This extended theory is then used to reexamine market speculation
and consensus, both when all actions (opinions) are common knowledge and when
they may not be. Five axioms of information processing are shown to be especially
important to speculation and consensus. They are called nondelusion, knowing that
you know (KTYK), nested, balanced, and positively balanced. We show that it is
necessary and sufficient that each agent’s information processing errors be (1) non-
deluded and balanced so that the agents cannot agree to disagree, (2) nondeluded and
positively balanced so that it cannot be common knowledge that they are speculating,
and (3) nondeluded and KTYK and nested so that agents cannot speculate in equilib-
rium. Each condition is strictly weaker than the next one, and the last is strictly weaker
than partition information.
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“Is there any other point to which you would wish to draw my attention?”
“To the incident of the dog in the night-time.”
“The dog did nothing in the night-time.”
“That was the curious incident,” remarked Sherlock Holmes.

Doyle (1901)
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SherlockHolmes is the perfectly rational Bayesian optimizer that economicmodels
assume all agents are like. Yet most economic actors are probably much more like
Dr. Watson, than like Sherlock Holmes. They usually take signals at face value.
They often take no notice when something doesn’t happen. They occasionally
ignore unpleasant information. They forget. And sometimes their opinions will not
budge unless confronted by proof.

The aim of this paper is to develop a coherent definition of equilibrium in
games that allows for such errors in information processing. My point of view is
that behavior may be only boundedly rational, but it need not be any the less goal
oriented and purposeful, and therefore any the less predictable.

The bulk of this paper is devoted to analyzing the phenomenon of market
speculation, and “agreements to disagree.” By now it is well known that neither
of these commonplace events can be observed in equilibrium in a model of
Bayesian rational agents. When agents are allowed tomake errors in information
processing, however, these phenomena do eventually emerge in equilibrium.
The “curious incident” is the precise stage of irrationality at which they emerge. It
is not true, for example, that an agent who always ignores unpleasant infor-
mation is necessarily a sucker for a bet. It turns out that there is a substantial
degree of information processing error (which is characterized here) that can
occur, and still agents will not speculate against each other in equilibrium. There
is a greater degree of irrationality, which can be specified exactly, that if not
exceeded will keep agents from speculating against each other when those ac-
tions are common knowledge. And finally there is a still more serious kind of
error, which again can be stated precisely, which if not exceeded will never
permit agents to agree to disagree.

1 Errors in Information Processing

There are a number of errors that are typically made by decision makers that
suggest that we go beyond the orthodox Bayesian paradigm.We list some of them:
1. Agents ignore the subtle information content of some signals, and perceive only

their face value. For example, an order to “produce 100 widgets”might convey all
kinds of information about the mood of the boss, the profitability of the widget
industry, the health of fellowworkers and so on, if the receiver of the message has
the time and capacity to think about it long enough. Another important example
involves prices. It is very easy to compute the cost of a basket of goods at the going
prices, but it takesmuch longer to deducewhat theweathermust havebeen like all
across the globe to explain those prices. In Bayesian decision making, it is
impossible to perform the first calculation without also performing the second.
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2. Agents often donot noticewhennothing happens. For example, itmight be that
there are only two states of nature: either the ozone layer is disintegrating or it is
not. One can easily imagine a scenario in which a decaying ozone layer would
emit gamma rays. Scientists, surprised by the new gamma rays would inves-
tigate their cause, and deduce that the ozone was disintegrating. If there were
no gamma rays, scientists would not notice their absence, since they might
never have thought to look for them, and so might incorrectly be in doubt as to
the condition of the ozone.

3. What one knows is partly a matter of choice. For example, some people are
notorious for ignoring unpleasant information. Often there are other psycho-
logical blocks to processing information.

4. People often forget.
5. Knowledge derived from proofs is not Bayesian. A proposition might be true or

false. If an agent finds a proof for it, he knows it is true. But if he does not find a
proof, he does not know it is false.

6. People cannot even imagine some states of the world.

We can model some aspect of all of these non-Bayesian methods of informa-
tion processing by generalizing the notion of partition from the usual Bayesian
analysis. Let Ω, a finite set, represent the set of all possible (physical) states of the
world. Let P :  Ω→ 2Ω/{ Ø } be an arbitrary “possibility correspondence,” repre-
senting the information processing capacity of an agent. For each ω ∈ Ω, P(ω) is
interpreted to mean the collection of states the agent thinks are possible when the
true state is ω. Let P̄ denote the range of P, so P̄ = {R ⊂ Ω| ∃ ω ∈ Ω,  R = P(ω)}.
Given an arbitrary eventA ⊂ Ω, we say that the agent knowsAatω ifP(ω) ⊂ A, since

for any ω′ ∈ Ω which he regards as possible at ω, ω′ ∈ A.
Consider, for example, Ω = {a,  b} as the state space. Let the possibility cor-

respondence P :  Ω→ 2Ω take P(a) = {a} and P(b) = {a,  b}. We can interpretω = a
to mean the ozone layer is disintegrating, or a horse is winning, or a proposition is
true. Similarly, we can interpret ω = b to mean the ozone is not disintegrating, or
the horse is losing, or the theorem is false.

Since P(a) = {a}, when ω = a the agent knows that his horse is winning, or that
the ozone is disintegrating, or that the theorem is true. But when ω = b the agent has
no idea whether his horse is winning or losing, or what is happening to the ozone, or
whether the theorem is true or false. The reason for the asymmetry in the agent’s
information processing could be interpreted as any one of the above categories of
errors. The agent might take notice of the gamma rays in state a, but not notice that
therewerenogamma rays in stateb. In thehorse racing interpretationof themodel, the
agentmight not be able to face the unpleasant news that his favorite horse is damaged.
Or he might not remember an event where nothing of interest happened to him.
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In Bayesian decision theory, the information possibility correspondence al-

ways defines a partition: for everyω,ω′ ∈ Ω,ω ∈ P(ω) and either P(ω) ∩ P(ω′) = Ø

or else P(ω) = P(ω′). A Bayesian decision-maker could not have the possibility
correspondence in the above example. He would reason atω = b that since he did
not receive the signal {a}, that in fact the state must be b. In Bayesian decision
theory the information at a stateω is always consistentwithwhat could be deduced
from knowing the model and the signal:

P(ω) = {ω′ ∈ Ω
⃒⃒⃒⃒
P(ω′) = P(ω)}.

For an arbitrary possibility correspondence, such as in the above example, this
need not be the case.

Observe that in the generalized possibility approach to knowledge, there need
not be any presumption that the agent understands the entire state spaceΩ. It may
well be that the sets of possibilities in P̄ are all confined to some small subset ofΩ.

In that case therewould beω ∈ Ω such thatω ∉ P(ω′), for anyω′ ∈ Ω. Suchω are not
even imaginable by the agent. Similarly if ω ∉ P(ω), then when ω actually occurs
the agent does not think of it, although he might at other times.

In the next few sections we shall describe how decision theory and game
theory can be extended to generalized partitions. Many phenomenon (such as
betting) which cannot be observed in equilibrium when every agent has partition
information will now become possible. To give content to our extension, however,
it is necessary to categorize precisely the kinds of information processing errors
which can occur, andwhich kinds of errors permit each newphenomenon. Betting,
for example, can be an equilibrium even when agents always imagine the truth,
provided theymake other errors. On the other hand betting is ruled out by a degree
of rationality that falls short of partition information.

We shall now describe three limitations on the possibility correspondence.
Later we shall introduce two more.

Definition We say that P is nondeluded if ω ∈ P(ω) for all ω ∈ Ω. Under this hy-
pothesis the agent who processes information according to P always considers the
true state as possible.

Definition (Knowing that you know (KTYK): When Knowledge is Self-Evident) If

for all ω ∈ Ω, and all ω′ ∈ P(ω), we have P(ω′) ⊆ P(ω), then we say that the agent

knowswhat he knows. If the agent knows someA atω, and can imagineω′, then he

would know A at ω′. Bacharach (1985), Shin (1987), and Samet (1987) have all
drawn attention to this property. If the agent can recognize circumstances which
confine the possible states of the world to R ∈ P̄, thenwheneverω ∈ R, so that these

circumstances do indeed obtain, the agent must realize that.
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Definition The event E ⊂ Ω is self-evident to the agent who processes information
according to P if P(ω) ⊂ E whenever ω ∈ E. A self-evident event can never occur
without the agent knowing that it has occurred.

The axiom KTYK implies that every R ∈ P̄ is self-evident to the agent.

Shin (1987) has suggested that KTYK and nondelusion are the only properties
that need hold true for an agent whose knowledge was derived by logical de-
ductions from a set of axioms.

Definition We say that P is nested if for all ω and ω′, either P(ω) ∩ P(ω′) = Ø, or

else P(ω) ⊆ P(ω′), or else P(ω′) ⊆ P(ω).
An example might make the significance of nondelusion, KTYK, and nested

clearer. Let there be just two propositions of interest in the universe, and let us
suppose thatwhether each is trueor false is regardedasgoodorbad, respectively. The
state space is thenΩ = {GG,  GB,  BG,  BB}. One type of information processor Pmight
always disregard anything that is bad, but remember anything that is good. Then
P(GG) = {GG}, P(GB) = {GG,  GB}, P(BG) = {GG,  BG}, P(BB) = Ω. (See Figure 1a)
It is clear that P satisfies nondelusion and KTYK, but does not satisfy nested. More-
over, when the reports are GB the agent chooses to remember only the first, while if
they are BG he chooses to remember only the last. Alternatively, consider an agent
with possibility correspondenceQwho can rememberGG andBB because the pattern
is simple, and can also remember when he sees GB that the first report was good
whereas with BG he remembers nothing. Then Q(GG) = {GG}, Q(GB) = {GB,  GG},
Q(BG) = Ω, Q(BB) = {BB}. (See Figure 1b) This does satisfy nested, as well as the
other two conditions. Nondelusion in these examples means that the agent never
mistakes a good report for a bad report, or vice versa. KTYK means that if an agent
recalls some collection of reports, then whenever all those reports turn out the same
way he must also recall them (and possibly some others as well). Nested means that
the reports are ordered in the agent’s memory. If he remembers some report, then he
must also remember every report that came earlier on the list.

We shall prove in Section 3 that nested can be interpreted as a property
ofmemory in this way: Suppose that we think of a set S of fundamental propositions
that can be either true or false. A state ω ∈ Ω specifies which of these
propositions are true, and which are false. Suppose that knowledge at any ω
can be described by a subset S(ω) ⊆ S. The agent knows at ω whether or
not each proposition in S(ω) is true or false. In other words,

P ω( ) = ω’ ∈ Ω
⃒⃒⃒⃒
s ∈ S ω( )⇒ s is true at ω’ iff  s is true at ω[ ]}{ . Finally, let us suppose

that the propositions in S can be ordered (say chronologically) and that with
respect to this ordering S(ω) is always an initial set, for any ω. Then P is nested
(and nondeluded). Moreover, any nested and nondeluded P can be equivalently
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described this way. Nested corresponds to memory in the sense that the agent
always remembers more or less far down the list of S, perhaps depending on how
complicated the pattern of truth valuations is, but always in the same order.

Figure 1 shows that nondeluded andKTYKdo not imply nested. Conversely, let
Ω = {a,  b,  c}, and let P(a) = P(c) = {a,  b,  c}, while P(b) = {b,  c}. Then P is non-
deluded and nested, but P does not satisfy KTYK, since c ∈ P(b) but P(c) ⊆ P(b).

2 Decision Theory Without Partitions

Our purpose in this paper is to analyze decision-making and game theory in en-
vironments where information processing is subject to error. Consider the
following canonical decision problem:

Let A be a set of possible actions. Let u :  A × Ω→ R. Let π be a measure1 on Ω.
Let P :  Ω→ 2Ω be a possibility correspondence. We call a decision function
f :  Ω→ Aoptimal for the decision problem (A,  Ω,  P,  u,  π) iff
Condition (1) [P(ω) = P(ω′)]⇒ [f(ω) = f(ω′)].
Condition (2) For all ω ∈ Ω and a ∈ A,

∑
ω′∈P(ω)

u( f(ω),  ω′) π(ω′) ≥ ∑
ω′∈P(ω)

u(a,  ω′) π(ω′).
This definition applies for any possibility correspondence, whether or not it is a
partition. Notice both conditions (1) and (2) serve to limit choices to reflect the level
of information. Condition (1) requires that the agent’s action is a function of what
he perceives, and condition (2) requires that the agent optimizes, taking his in-
formation at face value.

In the above definition the agent is effectively unaware that he is erring in his
information processing. Given the information that the state of nature

ω′ ∈ R ≡ P(ω), the agent routinely uses Bayes Law to update his beliefs and to

Figure 1: Non-deluded, KTYK, and nested illustrated.

1 Typically we shall suppose that π is a probability on Ω, so ∑
ω∈Ω

π(ω) = 1, but it is convenient for

technical reasons to allow for the more general situation where π is a measure.
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optimize.2 Were he aware of his errors, he would refine the possibility corre-

spondence into a partition by letting P̂(ω) = {ω′ ∈ Ω
⃒⃒⃒⃒
P(ω′) = P(ω)}.

In the above decision framework the agent does not completely understand the
model. He also does not necessarily “know what he is doing.” If he knew his optimal
plan f :  Ω→ A, andknewat eachωwhathis choice ought to be, thenhewould further

refine his information according to the partition Qf(ω) = {ω′ ∈ Ω
⃒⃒⃒⃒
f (ω′) = f(ω)}. It

might then turn out that his optimizing behavior would no longer correspond to f.
To illustrate the definition above we shall shortly present three examples

which shall be of further use in later sections. At the same time we investigate the
precise sense in which an agent who knowsmore but is boundedly rational may be
worse off than if he knew less but was unboundedly rational.

A fundamental consequence of Bayesian decision making, and unbounded

rationality, is that knowing more can never be disadvantageous. If P : Ω→ 2Ω and

Q : Ω→ 2Ω then we say that Q is coarser than P if P(ω) ⊆ Q(ω) for all ω. If g is
optimal for (A,  Ω,  Q,  u,  π), andQ is coarser than P, and P andQ are partitions, then

Condition (3) ∑ω∈Ωu(g(ω),  ω) π(ω) ≤ ∑ω∈Ωu(f(ω),  ω) π(ω).
It turns out that this property of Bayesian decisions is at the heart of the non-

speculation literature. By allowing for less rational information processing it need
no longer be the case that more knowledge is better.

In fact, onewonders if there are any general properties at all that can be proved
outside the Bayesian framework.We shall show however that there are. Indeed the
“more is better property” applies to a more general set of information correspon-
dences than partitions.

Example 2.1 Let Ω = {a,  b,  c}, P(a) = {a,  b}, P(b) = {b}, P(c) = {b,  c}. (Note that
(Ω,  P) satisfies nondeluded and KTYK, but not nested.) Let π(a) = π(c) = 2/7 and
π(b) = 3/7. Let the action set beA = {B,  N}, corresponding to bet or not bet. Let the
payoffs from not betting be u(N ,  a) = u(N ,  b) = u(N ,  c) = 0. Let the payoffs to
betting be u(B,  a) = u(B,  c) = −1, while u(B,  b) = 1. It is easy to calculate that
f(ω) = B for all ω ∈ Ω is optimal for (A,  Ω,  P,  u,  π). Yet,

∑
ω∈Ω

u(N ,  ω) π(ω) = 0 > (−1
7
) = ∑

ω∈Ω
u(B,  ω) π(ω).

Of course g(ω) = N for all ω ∈ Ω is optimal for (A,  Ω,  Q,  u,  π)where Q(ω) = Ω for
all ω, so for this example inequality (3) fails.

2 In case π(R) = 0, the above definition allows the agent’s action to be arbitrary. A more so-
phisticated approach would define conditional probabilities on measure zero events, but we do
not consider these extensions here.
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Example 2.2 LetΩ = {a,  b,  c}, and let P(a) = P(c) = {a,  b,  c}, while P(b) = {b,  c}.
Then (Ω,  P) is nondeluded and nested, but does not satisfy KTYK. Let A = {B,  N},
let π(ω) = 1/3, for allω ∈ Ω, and let u(N ,  ω) = 0 for allω ∈ Ω, while u(B,  a) = −2,
u(B,  b) = −2, u(B,  c) = 3. Then f = (f(a),  f(b),  f(c)) = (N ,  B,  N) is optimal for
(A,  Ω,  P,  u,  π), but

∑
ω∈Ω

u(N ,  ω) π(ω) = 0 > −2
3
= ∑

ω∈Ω
u(f(ω),  ω) π(ω).

Once again let the coarse partition be Q(ω) = Ω for all ω. Then g(ω) = N for all
ω ∈ Ω is optimal for (A,  Ω,  Q,  u,  π), and again (3) is violated.

Example 2.3 Let Ω = {a,  b}, let P(a) = {a}, P(b) = {a,  b}. Then (Ω,  P) satisfies all
these properties nondeluded, nested, and KTYK. Let A = {B,  N}, let
π(a) = π(b) = 1/2. Let u(N ,  a) ≡ u(N ,  b) = 0, let u(B,  a) = 1, and u(B,  b) = −2.
Then f(a) = B, f(b) = N is optimal for (A,  Ω,  P,  u,  π), and

∑
ω∈Ω

u(N ,  ω) π(ω) = 0 <
1
2
= ∑

ω∈Ω
u(f(ω),  ω) π(ω).

In this case condition (3) holds. Observe also that if we changed the payoff at (B,  b)
to u(B,  b) = −1, then there would be a second optimal decision function

f̃(a) = B = f̃(b). In that case ∑ω∈Ωu(f̃(ω),  ω) π(ω) = 0 is worse than the payoff
arising from f, but still as good as the payoff arising from (A,  Ω,  Q,  u,  π) where
Q(ω) = Ω for all ω ∈ Ω.

InExamples 2.1 and 2.2, the agentwas (ex ante)worseoff knowingmore because
he did not process information coherently. In Example 2.3 the agent was not worse
off, although he also did not process information correctly. In general we have:

Theorem 1. Let (Ω,  P) satisfy nondeluded, nested, and KTYK. Let Q be a partition
of Ω that is a coarsening of P. Let f, g be optimal for (A,  Ω,  P,  u,  π) and
(A,  Ω,  Q,  u,  π) respectively. Then

∑
ω∈Ω

u g ω( ),  ω( ) π ω( ) ≤ ∑
ω∈Ω

u f ω( ),  ω( ) π ω( ).

Conversely, suppose that (Ω,  P) fails to satisfy one or more of the above hypoth-
eses. Then there is a partition Q of Ω that is a coarsening of P, and an A, u, π such
that f, g are optimal for (A,  Ω,  P,  u,  π), (A,  Ω,  Q,  u,  π), respectively, and yet the
above inequality is strictly reversed.

Proof The proof of the first half of the theorem proceeds by induction on the
cardinality ofΩ. Suppose #Ω = 1. ThenP(ω) = Ω = Q(ω) for allω ∈ Ω, and there is
nothing to prove. Suppose the theorem is true for #Ω ≤ k. Consider the case where
#Ω = k + 1. Let S = {ω ∈ Ω :  P(ω) = Ω}. If S = Ω, then again there is nothing to

prove. If S ≠ Ω, let Ω1 = P(ω) be any possibility set with the greatest cardinality
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less than k + 1. Then by nondelusion 0 < #Ω1 ≤ k, and #Ω\Ω1 ≤ k. From knowing

that you know, if ω ∈ Ω1, P(ω) ⊂ Ω1 so S ∩ Ω1 = Ø. Let Ω2 = Ω \ Ω1 ∪ S[ ]. From
nondeluded and nested, if ω ∈ Ω2, P(ω) ∩ Ω1 = ∅. From KTYK, nondeluded, and

the definition of S, ifω ∈ Ω2, P(ω) ∩ S = Ø. Hence, ifω ∈ Ω2, P(ω) ⊂ Ω2. Let I be the

partition of Ω formed by the disjoint sets Ω1, Ω2, and S. Consider the partition
Q∗ = Q ∨ I, defined by Q∗(ω) = Q(ω) ∩ I(ω) for all ω ∈ Ω. Let g* be optimal for

(A,  Ω,  Q∗,  u,  π). Then because Q and Q* are partitions, and Q is coarser than Q* on

Ω1 ∪ Ω2,

∑
ω∈Ω1

u g∗ ω( ),  ω( ) π ω( ) + ∑
ω∈Ω2

u g∗ ω( ),  ω( ) π ω( ) + ∑
ω∈S

u f ω( ),  ω( ) π ω( )

≥ ∑
ω∈Ω1

u g ω( ),  ω( ) π ω( ) + ∑
ω∈Ω2

u g ω( ),  ω( ) π ω( ) + ∑
ω∈S

u f ω( ),  ω( ) π ω( ).

But now we can apply the induction hypothesis to (A,  Ω1,  P,  u,  π) and

(A,  Ω2,  P,  u,  π), obtaining

∑
ω∈Ω1

u(f(ω),  ω) π(ω) ≥ ∑
ω∈Ω1

u(g∗(ω),  ω) π(ω)  and

∑
ω∈Ω2

u(f(ω),  ω) π(ω) ≥ ∑
ω∈Ω2

u(g∗(ω),  ω) π(ω).

Finally, let us observe that if S = Ø, we are finished. If there is some ω̂ ∈ S, thenQ is
the trivial partition and we can assume WLOG that g(ω) = f(ω̂) for all ω ∈ Ω, and
in particular g(ω) = f(ω) for all ω ∈ S. This concludes the proof of the first half of
Theorem 1. The converse follows from Examples 2.1 and 2.2 by taking π (ω) = 0 for
all but 3 elements of Ω.

We conclude this section by noting one important extension to decision theory

that fits naturally into our framework. Let A be a correspondence specifying for

each ω ∈ Ω the set of possible actions in some ambient space A, A :  Ω→ 2A. Then
we would regard u as a function on A × Ω, and an optimal decision plan for

(A,  A,  Ω,  P,  u,  π) would be a function f :  Ω→ A satisfying

Condition (1′) [P(ω) = P(ω′) and A(ω) = A(ω′)]⇒ [f(ω) = f(ω′)]
Condition (2′a) f(ω) ∈ A(ω) for all ω ∈ Ω and

Condition (2′b) For all ω ∈ Ω and a ∈ A(ω)
∑

ω′∈P(ω)
u(f(ω),  ω′) π(ω′) ≥ ∑

ω′∈P(ω)
u(a,  ω′) π(ω′).

This new formulation allows us to model the idea that agents take the face value of
a message, and restrict their choices accordingly, without using the subtle content
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of themessage (i. e., without using knowledge of the functionA to invert the signal
and so to deducemore about the state). We shall return to this theme in Section 10.

Corollary 1.1 Let (A,  A,  Ω,  P,  u,  π) be a decision problem with variable cons-

traints. Let (Ω,  P) satisfy nondeluded, nested, and KTYK. Let [P(ω) = P(ω′)]⇒
[A(ω) = A(ω′)]. Let Q be a partition of Ω that is a coarsening of P, and let

Â(ω) ⊂ A(ω) for all ω satisfy [Q(ω) = Q(ω′)]⇒ [Â(ω) = Â(ω′)]. If f, g are optimal

for (A,  A,  Ω,  P,  u,  π) and (Â,  A,  Ω,  Q,  u,  π), respectively, then ∑ω∈Ωu(g(ω),  ω)
π(ω) ≤ ∑ω∈Ωu(f(ω),  ω) π(ω).
Proof The proof is exactly as for Theorem 1.

3 Equivalent Decision Problems

Evidently the naming of states is somewhat arbitrary. For example, splitting a state
into two indistinguishable states, which are physically identical but eachwith half
the probability, should not change the decision problem. By formulating several
definitions of equivalent decision problems we can clarify the framework of Sec-
tion 2.

DefinitionWe say that the decision problem (A,  Ω′,  P′,  u′,  π′) is a renaming of the
decision problem (A,  Ω,  P,  u,  π) in the following senses:

Decision-theoretic, if there is a 1–1 and onto map δ :  P′ →P such that for all

R′ ∈ P′ , if R = δ(R′) then π(R) > 0 if and only if π′(R′) > 0 and if both are positive,
then for all a ∈ A,

1
π(R) ∑ω∈Ru(a,  ω) π(ω) =

1
π′(R′) ∑

ω′∈R′
u′(a,  ω′)π′(ω′);

Physical, if there is a function φ :  Ω′ → Ω that is onto and satisfies

u(a,  φ(ω′)) = u′(a,  ω′) for all ω′ ∈ Ω′  and a ∈ A

π(ω) = ∑
ω′∈φ−1(ω)

π′(ω′) for all ω ∈ Ω

P′(ω′) = φ−1(P(φ(ω′)) for all  ω′ ∈ Ω′.

We say that two decision problems are equivalent (in either of the two senses) if
they have a common renaming. An easy argument shows that these are indeed
equivalence relations, and that a physical renaming is also a decision-theoretic
renaming.
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The decision theoretic equivalence notion was formulated by Brandenburger,
Dekel, andGeanakoplos 1992. If it holds and if agents always optimize according to
(1) and (2), then behaviorally the decision problems are equivalent. The following
lemma also appears in (Brandenburger, Dekel, and Geanakoplos 1992):

Lemma 1 For any decision problem(A,  Ω,  P,  u,  π) there is a decision-theoretic

renaming (A,  Ω′,  P′,  u′,  π′) in which P′ is a partition of Ω′.

Sketch of Proof LetΩ′ = P̄ × Ω. Defineu′ :  A × Ω′ → R byu′(a,  (R,  ω)) = u(a,  ω),
P′(R,  ω) = {R} × Ω , and δ({R} × Ω) = R, and let

π′ R,  ω( ) = { 0 if  ω ∉ R
π ω( ) if  ω ∈ R

The upshot of Lemma 1 is that we can understand the information processing and
decision problem of Section 2 as if the agent is a conventional maximizer, but has
got the prior (onΩ’) wrong. The “correct”priorswould be those thatwould obtain if
the agent knew the function P, namely

π*(R,  ω) = {π(ω) if  P(ω) = R
0 otherwise

.

The lemma thus provides us with another interpretation of decision theory with
generalized partitions. If the reader wished, he could rewrite all of our results in
terms of the consequences of using the wrong priors (or in later sections, of players
using different priors). The advantage of the generalized possibility approach is
that it explains how the mistaken priors might have arisen. Theorem 1, for
example, gives conditions under which the agent does at least as well as he would
with the right priors but less information. One perhaps could reformulate the result
directly in terms of priors, but nondelusion, KTYK, and nestedmake clear just what
information processing errors are tolerable.

We illustrate Lemma 1 with the ozone example in which Ω = {a,  b},
π(a) = π(b) = 1/2, P(a) = {a}, P(b) = {a,  b}. Let γ = {a} correspond to “gamma

rays” and n = {a,  b} correspond to no gamma rays. Then Ω′ = P̄ × Ω = {γa,
 γb,  na,  nb}, P′(γa) = P′(γb) = {γa,  γb}, P′(na) = P′(nb) = {na,  nb}, and π′(γa) =
1/2, π′(γb) = 0, π′(na) = π′(nb) = 1/2. The correct priors are π*(γa) = 1/2,
π*(γb) = π*(na) = 0, andπ*(nb) = 1/2. Note that the only partitionofΩweaker than
P is the trivial partition, which under the transformation of Lemma 1 becomes the trivial

partitionQ′ ofΩ′. Theorem1canbe interpreted tomean thatanyoptimalplan f :  Ω′ → A
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with respect to the priorπ′ and the partitionP′ does at least aswell, evaluated according
to the correct priors π*, as any plan feasible (i. e., measurable) with respect to the

partition Q′.
Let us now introduce the idea of a particularly simple, concrete description

of the set of states of nature. Let us call Ω a propositional state space if Ω = 2n.
Each ω ∈ Ω can be interpreted as a truth assignment to each of n ordered
propositions, and we can represent ω as an n-tuple of binary digits: ω=
(ω(1),  …,  ω(q),  …,  ω(n)). We call A ⊂ 2n a basic propositional event if there is
some proposition q such that A corresponds to all states assigning the same truth
valuation to q. More precisely, there isω ∈ Ω such thatA = {ω ∈ Ω|ω(q) = ω(q)}. A
propositional eventA ⊂ Ω is a nonempty intersection of basic propositional events:
there exists ω ∈ Ω and 1 ≤ q1 ≤⋯ ≤ qm ≤ n such that A = {ω ∈ Ω|ω(qi) =
ω(qi),  i = 1,  …,  m}.

Notice that so far the ordering of the propositions has not played an essential
role in our definitions. We suggest that a property of memory is that the proposi-
tions (or basic propositional events) are arranged in some definite order in the
mind, perhaps from most important to least important, or reverse chronologically
from most recent to most distant, so that one remembers the outcomes in order.
Sometimes one might remember more or less (perhaps depending on the
complexity of the outcomes), but always in the same order. More precisely:

Definition Let P̄ be a collection of subsets of a propositional state space Ω = 2n.

We say that P̄ has thememory property if for any R ∈ P̄, there isω ∈ Ω and 0 ≤ k ≤ n

such that R = {ω ∈ Ω|ω(q) = ω(q),  q = 1,  …,  k}.
We now show that nested can always be interpreted in terms of memory.

Lemma 2 Let(A,  Ω,  P,  u,  π) be given and let(Ω,  P) be nondeluded and nested. Then

there exists a physical renaming(A,  Ω′,  P′,  u′,  π′)which is propositional and has the
memory property.

Proof The proof proceeds by induction on #Ω. For Ω = {ω}, let there be one

proposition n = 1 and let Ω′ = {T ,  F}, let P′(T) = P′(F) = Ω′, and let

u′(a,  T) = u′(a,  F) = u(a,  ω) for all a ∈ A. Finally, let π′(T) = π′(F) = 1
2π(ω).

Suppose now that the lemma is true for #Ω ≤ k, and let #Ω = k + 1. Let
T0 = {ω ∈ Ω

⃒⃒⃒
ω ∈ R ∈ P only if R = Ω}. If T0 = Ω, there is nothing to prove. So

suppose #T0 ≤ k. For eachω ∈ Ω T0, let T(ω) be the set in Pwith largest cardinality
≤k containing ω. Then by nested, (T0,  {T(ω)⃒⃒⃒ω ∈ Ω \ T0}) is a non-trivial partition
of Ω. By combining sets of the form T(ω), we may suppose that the partition T
consists of two sets, each containing at most k states. For any Ti, and ω ∈ Ti, by

nondeluded, either P(ω) = Ω or P(ω) ⊂ Ti. Let Pi :  Ti → 2Ti \ { Ø } be defined by
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Pi(ω) = P(ω) ∩ Ti. Then each of the decision problems (A,  Ti,  Pi,  u,  π) satisfies
the induction hypothesis. Hence there are physical renamings A,  Ω′

i,  P
′
i,  u

′
i,  π

′
i( )

where each Ω′
i = 2ni . To every ωi ∈ Ω′

i there is an integer 0 ≤ ki(ωi) ≤ ni such that

P′
i ωi( ) = ω ∈ Ω′

i
⃒⃒⃒
ω q( ) = ωi q( ),  q = 1,  …,  ki ωi( )}{ . By adding irrelevant proposi-

tions (whose truth is never distinguished by the Pi
′) WLOG n2 = n1 and

Ω′
2 ≈ Ω′

1 = 2n1 . Let (A,  Ω′,  P̃′,  π′,  u′) be defined by Ω′ = Ω′
1 ∪ Ω′

2 = 2 × 2n1 . P̃′ is

defined by P̃′(ω′) = Pi(ω′) ifω′ ∈ Ωi
′; π′ is defined by π′(ω′) = πi(ω′) ifω′ ∈ Ω′

i; u
′ is

defined by u′(ω′) = ui(ω′) if ω′ ∈ Ωi
′. It is clear that (A,  Ω′,  P̃′,  π′,  u′) is a physical

renaming with the memory property for (A,  Ω,  P̃,  π,  u), where P̃(ω) = Pi(ω) if
ω ∈ Ti. (Each P̃′(ω′) is characterized by specifying a truth valuation to one prop-

osition distinguishing whether ω′ ∈ Ω′
1 or ω ∈ Ω2

′, to ki(ω′) of the next n1 proposi-
tions if ω′ ∈ Ω′

i). Finally, recall that P̃(ω) = Pi(ω) differs from P(ω) only if

P(ω) = Ω. Define P′ on Ω′ = Ω′
1 ∪ Ω′

2, as follows:

P′(ω′) = { Ω′ if  ω′ ∈ Ω′  and P(φi(ω′)) = Ω
P̃(ω) otherwise

.

Clearly, if P′(ω′) = Ω′, then this set can be characterized by specifying the truth

valuation of none of the 1 + n1 propositions. Hence (A,  Ω′,  P′,  u′,  π′) is a physical
renaming of (A,  Ω,  P,  u,  π) that has the memory property.

4 Game Theory with Generalized Partitions

We can extend game theory, as well as decision theory, to allow for information
processing errors. The fundamental notion in game theory is the equilibrium
concept provided by John Nash in 1951. Let G = (I,  Ai,  Ω,  Pi,  ui,  πi), i = 1,…, I, be

a collection of decision makers. Let ui have domain XI
i= 1Ai × Ω. Then we say that

the functions (f i,  i = 1,  …,  I) are a Nash equilibrium for the Game G iff
1. [Pi(ω) = Pi(ω′)]⇒ [f i(ω) = f i(ω′)], ω, ω′ ∈ Ω, i ∈ I.
2. For all ω ∈ Ω, i ∈ I, and ai ∈ Ai,

∑
ω′∈Pi(ω)

ui(ai,  f −i(ω′),  ω′)πi(ω′) ≤ ∑
ω′∈Pi(ω)

ui(f i(ω),  f −i(ω′),  ω′)πi(ω′).
We can interpret our definition of Nash equilibrium in much the same way as we
did the single agent decision-maker. The players with non-partional Pi do not
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completely understand the model, and so they are led to make information pro-
cessing blunders concerning the signals they receive.

One consequence of this point of view is that one of the rationalizations for
Nash equilibrium, that each player deduces what he should do as a matter of
logical introspection, is no longer tenable. However, many of the other in-
terpretations of equilibrium are still viable. For example, an equilibrium can still
be characterized as an agreement fromwhich no agent has an incentive to deviate.

Let us emphasize one limitation of the current model. Agents are permitted to
make errors about the significance of their signals. But these errors do not depend
on the moves of other agents, even though, for example, the news that some state
has occurredmight bemuchmore unpleasant depending onwhat the other players
plan to do in that state. If we extended our equilibrium notion to allow for corre-
lated equilibria, as in (Brandenburger, Dekel, and Geanakoplos 1992), then it
would be natural to allow the errors to depend on the moves of other agents. (e. g.,
there might be some things that you simply refuse to believe somebody else would
ever do.)

We now give three examples illustrating the definition of Nash equilibrium
with generalized partitions, which will also serve to introduce the idea of specu-
lation.

Example 4.1 Let I = {1,  2}. Let Ω = {a,  b,  c}, P1(a) = {a,  b}, P1(b) = {b}, P1(c) =
{b,  c}. Let P2(ω) = Ω for all ω ∈ Ω. Let π1 = π2 = π, with π(a) = π(c) = 2/7,
π(b) = 3/7. Let the action spaces be A1 = A2 = {B,  N}. Finally, let the payoffs in
the three states be:

B
N

B N B N B N
−1, 1 0, ϵ
ϵ,0 ϵ, ϵ[ ] 1,−1

ϵ,0
0, ϵ
ϵ, ϵ[ ] −1, 1

ϵ,0
0, ϵ
ϵ, ϵ[ ]

a b c

where ϵ > 0 is small. It is clear that there are two Nash equilibria. In the first,
f i(ω) = N, ∀ω ∈ Ω, i = 1,  2. In the second, f i(ω) = B, ∀ω ∈ Ω, i = 1,  2. We are most
interested in the possibility of the second equilibrium. Here the agents always bet
against each other, simply on account of different information. Indeed, although
agent 1 always knows strictly more than agent 2, on account of his “irrational”
(generalized partition) information processsing, on average he is losing money.

Example 4.2 Let I = {1,  2}. Let Ω = {a,  b,  c}, P1(a) = P1(c) = Ω, P1(b) = {b,  c}.
Let P2(ω) = Ω for all ω ∈ Ω. Let π1 ω( ) = π2 ω( ) = π ω( ) = 1 /

3 for all ω ∈ Ω. Let the
action spaces be A1 = A2 = {B,  N}. Finally, let the payoffs in the three states be:
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B
N

B N
−2, 2
ϵ, 0

0, ϵ
ϵ, ϵ[ ]

a

B N
−2, 2
ϵ,0

0, ϵ
ϵ, ϵ[ ]

b

B N
3,−3
ϵ,0

0, ϵ
ϵ, ϵ[ ]

c

where ϵ > 0 is small. Again there are two Nash equilibria. In the trivial one,
f i(ω) = N, ∀ω ∈ Ω, i = 1,  2. In the second, f 1 a( ) = f 1 c( ) = N, but f 1(b) = B,
f 2(ω) = B, ∀ω ∈ Ω. Again, in the interesting equilibrium a bet does take place,
though not always. Note also that agent 2 is willing to bet (always) because he
knows that the only time his bet will be taken up is in state b, where hewins. Agent
1 knows that 2 is alwayswilling to bet, but does not realize that he himself only bets
when he is sure to lose. Once again agent 1 loses out to agent 2 despite his superior
knowledge at each ω, because he is not perfectly rational.

Example 4.3 Let I = {1,  2}. Let Ω = {a,  b}, P1(a) = {a}, P1(b) = {a,  b},
P2(a) = P2(b) = Ω. Let π(ω) = πi(ω) = 1/2, i = 1,  2, ω ∈ Ω. Let the action spaces
be A1 = A2 = {B,  N}, and the payoffs in the two states be:

B
N

B N
1,−1
ϵ,0

0, ϵ
ϵ, ϵ[ ]

a

B N
−2, 2 0, ϵ
ϵ,0 ϵ, ϵ[ ]

b

where ϵ > 0 is small. Here there is a unique equilibrium, at which f i(ω) = N,
i = 1,  2, ω ∈ Ω. If f 2(ω) = B, ∀ω ∈ Ω, then agent 1 would choose f 1(a) = B,
f 1(b) = N, in which case agent 2 would no longer be willing to bet.

If we changed the payoff at (B,  B,  b) from ( −2,  2) to (u1(B,  B,  b),
 u2(B,  B,  b)) = ( −1/2,  1/2), then again there would be a unique equilibrium with
f i(ω) = N, i = 1,  2, ∀ω ∈ Ω. In this game the information processing error of
agent 1 ismore serious, since by ignoring the unpleasant information about state
b, he is led to make a wrong decision and bet all the time if he thinks agent 2 is
always betting. On the other hand, in this game agent 2 is not willing to bet if he
thinks agent 1 is always betting.

Wemight consider a third variant of the game inwhich the payoffs are as in the
second variant, but now P2(a) = {a}, P2(b) = {b}. Now if agent 1 is always betting,
agent 2 can take advantage of the situation, choosing f 2(a) = N, f 2(b) = B. But in
our definition of equilibrium, though agent 1 ignores the exogenous unpleasant
news about the state of nature, he does not misunderstand the strategy agent 2
adopts. Hence 1 would choose not to bet, and once again we have a unique
equilibrium at which f i(ω) = N, i = 1,  2, ∀ω ∈ Ω.
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Wenow show that Nash equilibriumwith generalized partitions can always be
given a Bayesian interpretation.

DefinitionWe say that the game G′ = (I,  Ai,  Ω′,  Pi
′,  ui′,  πi

′) is a decision-theoretic
renaming of the game G = (I,  Ai,  Ω,  Pi,  ui,  πi) if (i) there are I 1–1 and onto maps

δi :  P ′
i → P i; (ii) moreover, for all Ri

′ ∈ P ′
i, and fi ′ : Ω′ → Ai satisfying

fi ′ (ω̃′) = fi ′ (ω′) whenever Pi
′ (ω̃′) = Pi

′ (ω′), let Ri = δi(Ri
′), and let f i : Ω→ Ai

be defined by f i(ω) = fi ′ (ω′) for ω′with δi(Pi
′ (ω′)) = Pi(ω). Then we must have

πi
′ (Ri

′) > 0 if and only if πi(Ri) > 0, and then for all ai ∈ Ai, (iii)

[1/πi(Ri)] ∑
ω∈Ri

ui(ai,  f −i(ω),  ω)πi(ω) = [1/πi
′ (Ri

′)] ∑
ω′∈Ri

′
ui ′ (ai,  f−i ′ (ω′),  ω′)πi

′ (ω′).
The following lemma appears in (Brandenburger, Dekel, and Geanakoplos

1992).

Lemma 3 Any generalized game G = (I,  Ai,  Ω,  Pi,  ui,  πi)has a decision-theoretic

renaming G′ = (I,  Ai,  Ω′,  Pi
′,  ui′,  πi

′) in which Pi
′is a partition of Ω′, fori = 1,  …,  N.

Proof Let Ω′ = P̄1 ×⋯ × P̄I × Ω. Let Pi ′ (R1,  …,  RI ,  ω) = {Ri} × P̄−i × Ω, and let

πi
′ (R1,  …,  RI ,  ω) ={ πi(ω) if  ω ∈ Ri  and R−i = P−i(ω)

0 otherwise

for i = 1,  …,  I, Ri ∈ P̄
i
, ω ∈ Ω. Let ui

′ (a,  (R1,  …,  Rn,  ω)) = ui(a,  ω) for i = 1,  …,  I,
a ∈ XI

i= 1Ai, Ri ∈ P̄
i
, ω ∈ Ω. Finally, let δi Ri{ } × P−i × Ω) = Ri( .

As an immediate corollary we have

Theorem 2 If the action spaces Ai are convex and theuiconcave in Ai (or if the action
spaces are discrete but randomization is permitted) then any generalized game has a
Nash equilibrium.

Proof There is always a decision-theoretic renaming G′ of G which is a standard
Bayesian game; hence G′ has a Nash equilibrium, which induces a Nash equilib-
rium on G.

5 Necessary and Sufficient Conditions for
Speculation in Equilibrium

Will rational, risk averse agents bet against each other? Might they speculate
against each other if it is not common knowledge howmuch each agent is betting?
Can they agree to disagree about the probability of some event? What if they have
access to different information? What if some of them make information pro-
cessing errors?
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Aumann (1976) showed that when agents have partition knowledge, it cannot
be common knowledge that they disagree. Milgrom and Stokey (1983), and less
generally Sebenius and Geanakoplos (1983), showed that when agents have
partition knowledge, it cannot be common knowledge that they will speculate or
bet against each other. Finally, a number of authors, in a long series of papers,
have shown that even without common knowledge of all the individual actions,
there can be no speculation in a rational expectations equilibrium (e. g., Kreps
1977; Tirole 1982).With partition-information all of these theorems are prettymuch
the same: they can all be instantly derived from one theorem which we shall give
below. When knowledge is described by generalized partitions, however, these
theorems are distinct; their proofs are different and so are the hypotheses needed
for each of them.

Speculation, betting, and disagreement can all be described in terms of Nash
equilibrium. Examples 4.1 and 4.2 show that speculation and betting can occur in
Nash equilibrium if the possibility correspondences Pi fail to be partitions. The
extension of game theory to generalized partitions thus permits us to model a new
phenomenon.

On the other hand, perhaps it is not surprising that agents can bet against each
other, even though they have common priors, when their rationality is bounded.
After all, one way such generalized partitions can arise is if the agents are faulty in
their processing of information. For example, they may ignore all unfavorable
information. Another way to see the same thing, as the proof of Lemma 3 makes
clear, is that a generalized equilibrium is isomorphic to a Bayesian partition
equilibrium inwhich the priorsmay be different. The agentsmay have startedwith
commonpriors, but on account of their faulty information processing, they behave
as if their priors were different. It is well-known that gambling can take place
between agents with different priors.

In this light the surprise is that any weakening of partition information still
retains enough structure to prevent speculation. Recall for instance that non-
delusion, knowing that you know, and nested are together still consistent with
throwing away unpleasant information at least once. Yet we have: all agents
nondeluded, nested, and KTYK ⇔ no equilibrium speculation. The following
theorem represents nonspeculation as strategies zi that lead to certain payoffs that
cannot be Pareto dominated. Speculation occurs when agents depart from zi.

Theorem3 Let G = (I,  Ai,  Ω,  Pi,  ui,  πi) be a generalized game. Suppose each player
i has an action zi such that for all(f 1,  …,  f I), ∑

ω∈Ω
ui(zi,  f −i(ω),  ω)πi(ω) = ui.

Furthermore, suppose that if for any(f 1,  …,  f I), ∑
ω∈Ω

ui f ω( ),  ω( )πi ω( ) ≥ ui for all i,

then f j(ω) = zj for all ω ∈ Ω, j = 1,  …,  I. Finally, let each Pi satisfy KTYK, non-

deluded and nested. Then G has a unique equilibrium, in which f i(ω) = zi for all
i = 1,  …,  I, and all ω ∈ Ω. Conversely, if any Pi fails to satisfy any of KTYK, non-
deluded, and nested, then there are Ai, ui, πi, i ∈ I, for which the theorem fails.
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Proof Let (f 1,  …,  f I) be an equilibrium. Fix f j for all j ≠ i, and look at the one-

person decision problem this induces for player i. Clearly f i must be an optimal
plan for this decision problem. But if i had the trivial partition Qi(ω) = Ω for all
ω ∈ Ω, he would be able to guarantee himself ex ante utility at least ui by always
playing gi(ω) = zi. Hence by Theorem 1,∑ω∈Ωui(f(ω),  ω)πi(ω) ≥ ui. Since this is
true for all i, by hypothesis f i(ω) = zi for each i and ω ∈ Ω.

In Example 4.1 speculation occurs because P1 does not satisfy nested. In
Example 4.2, P1 does not satisfy KTYK. In Example 4.3, there could be no specu-
lation no matter how we defined the payoffs.

The examples show that KTYK, nondeluded, and nested not only suffice to
eliminate speculation in Nash equilibrium, but are necessary as well. If an agent’s
information Pi fails to satisfy all of the above, we can find other agents with
partition information, and properly specified payoffs for all the agents at which
there will be some speculation in equilibrium.

Like Theorem 1, Theorem 3 can be extended to allow for variable action spaces.

Corollary 3.1 Consider the generalized game G = I,  Ai,  Ai,  Ω,  Pi,  ui,πi( ) with

variable action spaces. Suppose that[Pi(ω) = Pi(ω’)]⇒ [Ai(ω) = Ai(ω’)],i = 1,

 …,  I. Then if there are zi ∈ ∩ω∈ΩAi(ω),i = 1,  …,  I, such that the conditions of

Theorem 3 are satisfied, then G has a unique equilibrium f with f i(ω) = zi for
each i = 1,  …,  I,ω ∈ Ω.

Proof Follow the logic of the proof of Theorem 3, and apply Corollary 1.1 where

Âi = {zi}.
We can immediately apply the above theorem to show a generalization of the

standard no speculation theorem in rational expectations equilibrium.

We define an economy E = (I,  R+L,  Ω,  Pi,  ui,  πi,  ei) by a set of agents I, a

commodity space R+L, a set Ω of states of nature, endowments ei ∈ R+LΩ and

utilities ui : R +L ×Ω→ R for i = 1,  …,  I, and generalized partitions Pi and mea-
sures πi for each agent i = 1,  …,  I. We suppose each ui is strictly monotonic, and

strictly concave, and that [Pi(ω) = Pi(ω′)]⇒ [ei(ω) = ei(ω′)] for all i = 1,  …,  I.

Definition A rational expectations equilibrium (REE) (p,  I,  xi) for E = (I,  R+L,  Ω,
 Pi,  ui,  πi,  ei) is a function p: Ω→ RL

++ and for each i ∈ I, xi ∈ R+LΩ satisfying
i. ∑​I

i= 1xi = ∑​ei.
ii. p(ω)xi(ω) = p(ω)ei(ω), for all i = 1,  …,  I, and all ω ∈ Ω.
iii. [Pi(ω) = Pi(ω′)  and  p(ω) = p(ω′)]⇒ [xi(ω) = xi(ω′)] for i = 1,  …,  I, and

all ω, ω′ ∈ Ω.
iv. Let I(p) = {ω : p(ω) = p}. Then ∀ω ∈ Ω, and all i, if y ∈ R+L and

p(ω)y = p(ω)ei(ω), then
∑

ω′∈Pi(ω)∩I(p(ω))
ui(xi(ω),  ω′)πi(ω′) ≥ ∑

ω′∈Pi(ω)∩I(p(ω))
ui(y,  ω′)πi(ω′)
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The reference to rational in rational expectations equilibrium comes from the fact
that agents use the subtle information conveyed by prices in making their de-
cisions. That is, they not only use the prices to calculate their budgets, they also use
their knowledge of the function p to learn more about the state of nature. If we
modified (iii) and (iv) above to
iii. [Pi(ω) = Pi(ω′)]⇒ [xi(ω) = xi(ω′)] for i = 1,  …,  I.
iv. ∑ω′∈Pi(ω)ui(xi(ω),  ω′)πi(ω′) ≥ ∑ω′∈Pi(ω)ui(y,  ω′)πi(ω′) for all i = 1,  …,  I, for all

ω ∈ Ω and all y ∈ R+L with p(ω)y = p(ω)ei(ω).

Then we would have the conventional definition of competitive equilibrium
(CE). The following nonspeculation theorem holds for REE, but not for CE. [For
proofs when agents have partition information and learn from prices, see Dubey,
Geanakoplos, and Shubik 1987; Kreps 1977; Tirole 1982.] For an example with
partition information in which agents do not learn from prices, and so speculate,
see Dubey et al. (1987). We say that there are only speculative reasons to trade in E
if in the absence of asymmetric information there would be no perceived gains to
trade. This occurs when the initial endowment allocation is ex ante Pareto optimal,

that is if ∑I
i= 1yi(ω) ≤ ∑I

i= 1ei(ω) for all ω ∈ Ω, and if for each i = 1,…, I,
∑ω∈Ωui(yi(ω),  ω)πi(ω) ≥ ∑ω∈Ωui(ei(ω),  ω)πi(ω), then yi = ei for all i = 1,  …,  I.

Corollary 3.2 Let E = (I,  R+L,  Ω,  (Pi,  ui,  πi,  ei)) be an economy, and suppose
the initial endowment allocation is ex ante Pareto optimal. Let(p,  I,  x)be a
rational expectations equilibrium. Suppose that each Pi is nondeluded, nested,
and satisfies knowing that you know. Then xi = ei for all i = 1,  …,  I.

Proof The proof follows immediately from Corollary 3.1. Let

Pi
′ (ω) = Pi(ω) ∩ I(p(ω)) be the generalized partition for each agent, and let

Ai(ω) = {y⃒⃒⃒p(ω) ⋅ y = 0 and ei(ω) + y ≥ 0}. Let zi = 0 ∈ ∩ω∈ΩAi(ω).

6 Knowing Your Own Action

Consider again the single person decision problem (A,  Ω,  P,  u,  π), and suppose
that f :  Ω→ A is an optimal plan. What do we mean when we say that the agent
“knows what he is doing” at some ω ∈ Ω? Simply put, we mean that if the agent
regards ω′ as possible at ω, then he should take the same action at ω′ as at ω: if
ω′ ∈ P(ω), then f(ω′) = f(ω).

Recall that in decision theory, the agent beginswith a prior π onΩ, then refines
his information to P(ω). If P describes a partition, then the agent behaves as if he
has sifted through every possible source of information. On the other hand, if P is a
generalized partition, then the agentmight forget or ignore information atωwhich

should have caused him to exclude the possibility of ω′. This is consistent with
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knowing what he is doing provided that at ω′ he would take the same action.
Suppose that Watson does not notice whether the dogs did anything in the night
time, and chooses some action. If the dogs had barked, Watson would have
noticed; he has erred by not deducing from the absence of sound that in fact the
dogs did not bark in the night time. Nevertheless we could say that Watson knew
what he was doing if the information he would receive from hearing the dogs bark
would not change his mind about his best decision.

The agent always knows what he is doing under the action plan f if the
action he is supposed to take is always self-evident to him. We shall describe the
circumstances in which an agent who “always knows what he is doing” may
appear to be perfectly rational even when he is making information processing
errors.

Definition An agent who processes information according to (Ω,  P) knows what
he is doing at some ω ∈ Ω using the action plan f :  Ω→ A if P(ω) ⊂ Qf(ω) =
{ω′ ∈ Ω

⃒⃒⃒⃒
f (ω) = f(ω′)}.

We shall now show that if an agent always knowswhat he is doing (i. e., knows
for all ω ∈ Ω), then better information will make him better off under quite general
circumstances. To this end we introduce our fourth and fifth properties of infor-
mation processing:

Definition The information processor (Ω,  P) is positively balanced with respect to
some set E ⊂ Ω iff there exists a function λ :  P̄ → R+, such that (letting χA be the

characteristic function of any set A ⊂ Ω)

∑
C∈P

λ C( )χC ω( ) = χE ω( ) for all ω ∈ Ω.

If the same holds true for some λ unrestricted in sign, λ : P → R, then we say that
(Ω,P) is balanced with respect to E. (More generally, for any collection of events,

X ⊂ 2Ω, and E ∈ 2Ω, we say that X is (positively) balanced with respect to E if there is
λ :  X → (R+)R such that ∑C∈Xλ(C)χC = χE.

Balancedness gives a condition under which one can say that every element
ω ∈ E is equally scrutinized by the information correspondence P. Every element
C ∈ P̄ has an intensity λ(C), and the sum of the intensities with which eachω ∈ E is

considered possible by P is the same, namely 1. Balancedness is a generalization of
partition. If E can be written as a disjoint union of elements of P, then (Ω,  P) is
trivially balanced with respect to E.3

3 Balancedness is similar to a concept (with the same name) that played an important role in the
development of the theory of the core in cooperative game theory.
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There is a special class of events for which being balanced is especially
important. Recall:

Definition An event E ∈ Ω is self-evident to the processor (Ω,  P) if P(ω) ⊂ E for all
ω ∈ E. The notion of self-evident has been used in Shin (1987), Samet (1987), Brown
and Geanakoplos (1988), Geanakoplos (1988), andMonderer and Samet (1988). An
event is self-evident if it can never occur without the agent knowing that it has
occurred.

Definition (Ω,  P) is balanced (positively balanced) if it is balanced (positively
balanced) with respect to every self-evident set.

If (Ω,  P) is a partition, then the self-evident sets are (disjoint) unions of ele-
ments of P̄ . Hence (Ω,  P) is trivially positively balanced. Note that in Example

2.1(Ω,  P) is balanced with λ(P(a)) = 1 = λ(P(c)), and λ(P(b)) = −1 but not
positively balanced. In Examples 2.2 and 2.3 (Ω,  P) is positively balanced since for
both of them Ω ∈ P.

We now use the notion of self-evident events to characterize the relationship
between positively balanced and balanced and nondeluded, KTYK, and nested.
Positively balanced is a weakening of nested, and balanced is a further weakening
that is also a weakening of KTYK.

Lemma 4 If(Ω,  P) is nondeluded and nested, then(Ω,  P) is positively balanced.
Proof Let E be self-evident to(Ω,  P). For eachω ∈ E, let E ω( ) = ∪{ω’∈E|ω∈P ω’( )}P ω’( ).
By nondeludedω ∈ E(ω), and by nested E(ω) is a partition of E, and each E ω( ) ∈ P.
Lemma 5 Let(Ω,  P) satisfy nondelusion and knowing that you know. Then(Ω,  P) is
balanced.

Proof The proof proceeds by induction. If #Ω = 1, there is nothing to show. Sup-
pose the truth of the Lemma for #Ω ≤ k. Now let #Ω = k + 1. Find an element R ∈ P
which minimizes #R. From nondeluded, knowing that you know, and the mini-

mality of #R, we deduce that P(ω) = R for all ω ∈ R. Moreover, if P(ω′) ∩ R ≠ Ø,

then P(ω′) ⊃ R, for otherwise if ω″ ∈ P(ω′) ∩ R, then by KTYK, #P(ω″) < #R. Let
Ω′ = Ω \ R, and let P′ :  Ω′ → 2Ω

′
be defined by P′(ω) = P(ω) \ R. Then (Ω′,  P′)

satisfies KTYK and nondelusion. By the induction hypothesis, Ω′,P′( ) is balanced.
Now, let E be self-evident to (Ω,  P). Then E′ = E \ R is self-evident to (Ω′,  P′). Take
the balancing weights for P′ and E′, and use them on the corresponding sets in P

and choose the correct weight for R (See Figure 2).
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In later sections we show that if each agent is nondeluded, then

all agents balanced⇔they cannot agree to disagree
all agents positively balanced⇔no common knowledge speculation

As a prelude to demonstrating these two equivalences, in our next theoremwe
show that Theorem 1 can be proved under much weaker hypotheses if we suppose
that the agent knows what he is doing. (Needless to say, if an agent is not
unboundedly rational, we might not expect him always to knowwhat he is doing.)

Theorem 4 Let (Ω,  P) be nondeluded and positively balanced. Let f :  Ω→ A be
optimal for the decision problem (A,  Ω,  P,  u,  π). Suppose that the information
processor (Ω,  P) always knows what he is doing under the action plan f. If Q is a
partition of Ω that is a coarsening of P, and if g is optimal for (A,  Ω,  Q,  u,  π), then

∑
ω∈Ω

u(g(ω),  ω) π(ω) ≤ ∑
ω∈Ω

u(f(ω),  ω) π(ω).

If Q(ω) ⊂ Qf(ω) for all ω ∈ Ω, then the above inequality is actually an
equality. Conversely, if (Ω,  P) fails to be either nondeluded or positively balanced,
then there exist decision problems and partitions Q for which the above inequality
is strictly reversed.

Proof Since Q ∨ Qf defined by (Q ∨ Qf )(ω) = Q(ω) ∩ Qf(ω) ⊂ Qf(ω) is a partition
which refines Q, and since more information is always better for partitions, it
suffices, for proving the inequality, to show that equality holds above whenever
Q(ω) ⊂ Qf(ω) for all ω ∈ Ω.

Figure 2: The logical connections between balanced, positively balanced, nested, KTYK, and
partition information, assuming nondeluded.
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Let E ∈ Q. Since Q is a partition of Ω, Q(ω) = E for all ω ∈ E, and since Q is a
coarsening of P, it follows that E is self-evident to (Ω,  P). Write

∑
C∈P

¯

λ(C)χC = χE ,  where λ ≥ 0.

By nondelusion, if ω ∉ E, then ω ∈ P(ω) and so λ(P(ω)) = 0. Since E ⊂ Qf(ω) for
any ω ∈ E, it follows that f(ω) = a for all ω ∈ E, for some a ∈ A. To conclude the
proof of the first half of the theorem, it suffices to show that for all b ∈ A,

∑
ω∈E

u(f(ω),  ω) π(ω) = ∑
ω∈E

u(a,  ω) π(ω) ≥ ∑
ω∈E

u(b,  ω) π(ω).

But for any C ∈ P̄ with λ(C) > 0, ∑
ω∈C

u a,  ω( ) π ω( ) ≥ ∑
ω∈C

u b,  ω( ) π ω( ), hence

∑C∈P
¯

∑ω∈Ωλ(C)χC(ω)u(a,  ω) π(ω) ≥ ∑C∈P
¯

∑ω∈Ωλ(C)χC(ω)u(b,  ω) π(ω) hence

∑
ω∈Ω

χE(ω)u(a,  ω) π(ω) ≥ ∑
ω∈Ω

χE(ω)u(b,  ω) π(ω).

To argue in the other direction, note that there are trivial counterexamples if (Ω,  P)
does not satisfy nondeluded. If it does, then suppose that for all decision problems

(A,  Ω,  P,  û,  π̂) and for all E ⊂ Ω where E is self-evident to (Ω,  P), ∑
ω∈C

û a,  ω( )π̂ ω( )[
= ∑

ω∈Ω
χC ω( )û a,  ω( )π̂ ω( ) ≥ ∑

ω∈Ω
χC ω( )û b,  ω( )π̂ ω( ) for all C ∈ P,  C ⊂ E] implies

[ ∑
ω∈Ω

χE(ω)û(a,  ω)π̂(ω) ≥ ∑
ω∈Ω

χE(ω)û(b,  ω)π̂(ω)]. Since the û(a,  ω), û(b,  ω), π̂(ω)
are arbitrary, we can apply Farkas’ Lemmawhich asserts that there are λ(C) ≥ 0 for
C ⊂ E such that ∑

C∈P,C⊂E

λ C( )χC = χE.

The idea behind the proof of Theorem 4 is quite different from that used in the
proof of Theorem 1. The following definitions are clarifying.

Definition A function δ :  2Ω → A is said to satisfy the sure-thing principle if
whenever E, F are disjoint and δ(E) = δ(F), then letting B = E ∪ F, δ(B) = δ(E).
We say that δ satisfies the generalized sure-thing principle if whenever δ(E) = d for

all E ∈ X ⊂ 2Ω, and X is positively balanced with respect to some B ∈ 2Ω/{ Ø }, then
δ(B) = d.
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Behavior which is optimal in the sense we have described, where information
processing errors are represented by possibility correspondences or generalized
partitions, always satisfies the generalized sure-thing principle.

Theorem 4 has one particularly important consequence. Suppose an agent
who is nondeluded and positively balanced optimally chooses some action plan f
under which he knows what he is doing. If the agent were to forget everything he
knew except what was necessary to implement the decision plan, then he would
still choose the same plan. To put the matter still differently, the optimal behavior
of an agent who is nondeluded and positively balanced and always knowswhat he
is doing cannot be distinguished from the behavior of an unboundedly rational
(partition information processing agent).

7 Common Knowledge of Events vs. Common
Knowledge of Actions

Aumann (1976) introduced the idea of common knowledge of events and actions.
We investigate what conclusions we can draw (about speculation and consensus)
when we add the additional hypothesis that actions are common knowledge.
Again we find a nonspeculation theorem, but under weaker conditions than
Theorem 4, and with a different proof. We also derive a consensus theorem under
still weaker hypotheses, with yet another kind of proof.

We can already get some idea of the importance of the hypothesis that actions
are common knowledge from Example 4.2. The agents do bet in equilibrium, but at
the moment each commits himself to the bet he does not know whether it will be
accepted or not. The bet is not common knowledge. We now formalize this idea.

The possibility correspondence Pi gives rise to a knowledge operator Ki by
Ki(A) = {ω : Pi(ω) ⊂ A}. Ki satisfies the following three properties:
1. KiΩ = Ω;
2. A ⊂ B⇒ KiA ⊂ KiB;
3. KiA ∩ KiB = Ki(A ∩ B).

If Pi is nondeluded, then
4. KiA ⊂ A for all A.

Definition (Lewis (1969), Aumann (1976)) We say that an event A is “common
knowledge at ω” if for any n, and any sequence of players i1,  …,  in,
ω ∈ Ki1,  …,  KinA.

We can give an equivalent definition of common knowledge based on our
familiar notion of self-evident event.
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Definition Let agents’ knowledge be represented by (Ω,  Pi), i = 1,  …,  I. An event
E ⊂ Ω is self-evident to i if [ω ∈ E]⇒ [Pi(ω) ⊂ E]. LetE i be the collection of all self-

evident events to i. We call E = ∩I
i= 1E i the collection of public events.

The following proposition is taken from Brown and Geanakoplos (1988), or
Monderer and Samet (1988), extending Shin (1987), who extended Aumann (1976).
The reader interested in a further discussion of common knowledge is referred to
any of these works.

Proposition Let the knowledge of agents i = 1,  …,  I be represented by (Ω,  Pi),
where each Pi is nondeluded. Then an event A is common knowledge at ω if and
only if there is a public event E ∈ E with ω ∈ E ⊂ A.

Not only events, but also actions can be common knowledge.

Definition Let f : Ω→ A be a function from Ω to some set A. Given information
processors (Ω,  Pi), i = 1,…, I, we say that f is common knowledge at someω ∈ Ω iff

the event Qf ω( ) = ω′
⃒⃒⃒⃒
f ω′( ) = f ω( ){ } is common knowledge at ω.

Observe that if f is the action plan of some player i, then one consequence of f
being common knowledge at ω is that i himself knows what he is doing at ω.
ReplacingΩ by the smallest public eventΩ′ containingω, we see that in fact we can
more strongly assert that if f is commonknowledge atω, then i always (inΩ′) knows
what he is doing.

There would seem to be a wide gulf between the hypothesis that agents know
the same things (about all events) and the hypothesis that agents know the same
things aboutwhat they are each planning to do. Indeed it is commonly held thatwe
observe agents interacting (i. e., taking actions) in various ways on account of the
fact that they have asymmetric information. The following theorem, however,
describes the power of assuming actions are common knowledge. It generalizes a
theorem (Geanakoplos, 1987), proved for Nash equilibria, following an idea in
Cave (1983). It shows that if in Nash equilibrium the actions are common knowl-
edge at ω, then the information might as well be the same as well. Hence once
actions are presumed to be common knowledge, asymmetric information provides
no explanation whatsoever of behavior.

Theorem 5 Let G = (I,  Ai,  Ω,  Pi,  ui,  πi) have an equilibrium (f 1,  …,  f I). Let Pi

be nondeluded and positively balanced, for i = 1,  …,  I. Suppose that it is
common knowledge at some ω what moves the players are making. Then we can

replace each Pi with P̃i, creating a new generalized game G, having the same

equilibrium (f 1,  …,  f I), and moreover we can choose P̃i(ω) to be independent of i.
Proof From the proposition we know that there is a public event E such that

f i(ω′) = f i(ω) for all ω′ ∈ E, and all i = 1,  …,  I. Let P̃i(ω′) = E for all ω′ ∈ E, but
otherwise leave Pi unchanged. Let Zi = f i(ω). Since Zi is optimal given the infor-

mation in any Pi(ω′), for anyω′ ∈ E, by Theorem 4 agent iwould choose Zi atω if he
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were only informed of P̃i(ω). Since forω′ ∉ E, P̃i(ω′) = Pi(ω), we see that changing
the information structure of the game does not affect the equilibrium moves.

The hypotheses in Theorem 5 are not only sufficient for Theorem 5, but
necessary as well. If some agent’s information processing (Ω,  Pi) was not non-
deluded or positively balanced, then we could find payoffs, and another player
with partition information, such that in the resulting equilibrium actions were
common knowledge but the asymmetry of information could not be dispensed
with. The same remark applies to Corollaries 5.1 and 5.2. They give a necessary and
sufficient condition for nonspeculation in equilibrium under common knowledge
of actions, which is substantially weaker than the necessary and sufficient con-
dition for nonspeculation in equilibrium.

8 Necessary and Sufficient Conditions for
Common Knowledge Speculation

Corollary 5.1 Consider the speculative situation of Theorem 3. Drop the assumption
that agents knowwhat they know and are nested. Suppose only that Pi is nondeluded
and positively balanced, for each i = 1,  …,  I. But suppose also that at someω ∈ Ω, it
is common knowledge at ω what moves all the players are making. Then at an
equilibrium(f 1,  …,  f I), f i(ω) = zi for each i = 1,  …,  I.

Proof From the common knowledge hypothesis, for each i, there is a Bi ∈ Ai such

that each player is choosing f i(ω′) = Bi for all ω′ ∈ E, where E is a public event. It
follows from Theorem 4 that

∑
ω′∈E

ui(Bi,  f −i(ω′),  ω′)πi(ω′) ≥ ∑
ω′∈E

ui(zi,  f −i(ω′),  ω′)πi(ω′).
From this it follows that the ex ante payoffs to each player from the moves

gi(ω′) = { zi if ω′ ∉ E
Bi if ω′ ∈ E

would be at least ui. Since by hypothesis that can be achieved only if each player
chooses zi regardless of ω′ we have Bi = zi for each i = 1,  …,  I.

Corollary 5.2 Let E = I, ℝ+L ,  Ω, Pi,  ui,  πi,  ei( )( ) be an economy (not necessarily
with strictly convex preferences), and let (p,  I,  x) be a rational expectations
equilibrium. Suppose that each Pi is nondeluded, and positively balanced. If at
some ω, for all i, xi − ei is common knowledge, then there is a public event F such

that the equilibrium would remain the same if we set Pi(ω′) = F for all i = 1,  …,  I,
and all ω′ ∈ F. Furthermore, if in addition the endowments were a Pareto optimal
allocation, and no other allocation gave all agents precisely the same utility (as in
Corollary 3.1), then we could conclude that xi(ω) = ei(ω), for all i = 1,  …,  I.
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9 Necessary and Sufficient Conditions to
Agree to Disagree

A game of particular interest is the opinion game G*. Let Ω be a finite set of real
numbers. LetAi be the set of reals for each i = 1,  …,  I. Let πi(ω) = π(ω) > 0 for all i
and ω. Finally, let ui((q1,  …,  qN),  ω) = −(qi − ω)2. Let Pi be the possibility cor-

respondence. In this game G*, each player optimizes by giving his conditional
expectation of the random variable ω, based on his information Pi(ω).
Theorem 6 Suppose that in the generalized opinion game G*, (f 1,  …,  f I) is
an equilibrium. Suppose that it is common knowledge what the moves of the
players are at ω. Finally, suppose that each Pi is nondeluded and balanced. Then
all the players are taking the same action atω. Conversely, if Pi is not balanced for
some i, then there exists a probability π and renumbering of ω ∈ Ω, and partitions

for j ≠ i, such that the players can “agree to disagree” in the equilibrium of G*.

Proof From nondelusion and balancedness, for any public event E we can write
χE = ∑

C∈Pi

C⊂E

λi C( )χC. From the common knowledge hypothesis, we may choose E so

that for all C ∈ P̄
i
, C ⊂ E, [1/π(C)]∑ω∈Cωπ(ω) = ki. Hence for all such C,

∑ω∈Cωπ(ω) = ∑ω∈Ckiπ(ω). Hence
∑
C∈Pi
C⊂E

λi(C) ∑
ω∈Ω

χC(ω)ωπ(ω) = ∑
C∈Pi
C⊂E

λi(C) ∑
ω∈Ω

χC(ω)kiπ(ω).

Using nondelusion and balancedness,

∑
ω∈Ω

χE(ω)ωπ(ω) = ∑
ω∈Ω

χE(ω)kiπ(ω)

or

∑
ω∈E

ωπ(ω) = ki ∑
ω∈E

π(ω),  so ki is the same for all i.

The converse follows from Farkas’ Lemma as in the proof of Theorem 4, except
since all the inequalities are equalities here, the λi(C) can have either sign.

Aumann (1976) gave the first famous version of this theorem, for partitions.
(Geanakoplos and Polemarchakis 1982) gave a dynamic version of the same theorem.
Samet (1987) showed that as long as each Pi satisfies nondeluded and knowing what
youknow, then if theagents’opinions are commonknowledge, theymustbe the same.
By following the logic of Theorem 5,we could have shown that agreementmust hold if
the Pi are nondeluded and positively balanced, a condition independent of KTYK. For
if the opinions are commonknowledge, thenbyTheorem5 they couldhavebeen given
with identical information across agents. But in that case they are surely the same.
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Theorem 6 employs a hypothesis that is weaker than nested and weaker than KTYK,
andyieldsanecessaryandsufficient condition forneveragreeing todisagree.Note that
the proof of Theorem 6 differs from that of Theorem 4 and Theorem 5.

McKelvey and Page (1986) proved the remarkable theorem that if the average (or
sum) of different agents’opinions is commonknowledge and if each agent beganwith
the same prior, all the opinions must be the same. For another proof see (Branden-
burger et al. 1990).Herewe extend this result to possibility correspondences satisfying
onlynondeluded, nested, andknowing that youknow. Theproof canalsobe regarded
as an alternative derivation of McKelvey-Page’s average opinion theorem.4

Theorem 7 Suppose that in the generalized opinion game G*, (f 1,  …,  f I) is an

equilibrium. Suppose that the sum∑I
i= 1f i of the opinions is common knowledge at

ω. Then f 1(ω) = ⋯ = f I(ω).
Proof Since ∑I

i= 1f i(ω) is common knowledge at ω, there exists E ∈ E satisfying

ω ∈ E, and ∑I
i= 1f i(ω) = k for all ω ∈ E. Let x = 1/[ π E( )] ∑

ω∈E
ωπ ω( ). Then we must

have that ∑
ω∈E

ω − x( ) ∑I
i= 1

f i ω( ) π ω( ) = 0. To prove the theorem it suffices to

show that ∑
ω∈Ω

(ω − x)f i(ω) π(ω) > 0 unless f i is a constant on all of E, for each

i = 1,  …,  I.
Observe that from Theorem 1 and the fact that E ∈ E i,

−∑
ω∈E

(ω − f i(ω))2π(ω) ≥ −∑
ω∈E

(ω − x)2π(ω).

Multiplying out terms and noting that 2∑
ω∈E

ωxπ(ω) = 2∑
ω∈E

x2π(ω) yields

2∑
ω∈E

ωf i(ω) π(ω) ≥ ∑
ω∈E

(x2 + f 2i (ω)) π(ω).
Subtracting 2x ∑

ω∈E
f i ω( ) π ω( ) from both sides yields

2∑
ω∈E

ω − x( )f i ω( ) π ω( ) ≥ ∑
ω∈E

x2 + f 2i ω( )( ) π ω( ) − 2x ∑
ω∈E

f i ω( ) π ω( )

=∑
ω∈E

(x − f i(ω))2π(ω) > 0
unless f i(ω) = x for all ω ∈ E.

4 McKelvey and Page (1986) extends for the case of partitions to situations in which only the
average of monotonic transformations is common knowledge. This will hold under the hypothesis
that each (Ω,  Pi) is nondeluded and balanced, provided that agents also always know their own
opinions.
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10 Generalized Games in Extensive Form

Let us now apply our theory to games in extensive form. In this theory players act
over time, and in particular the same player may move many times. The incon-
sistency that occurswhen information is not given by partitions and total recall can
now reveal itself in time inconsistency of behavior.

Consider a tree, consisting of a finite set of nodes ω ∈ Ω with a partial order. A
tree has a first element, called the root; maximal or terminal nodes are associated
with payoffs for each of the I players. To every nodewe associate either “nature” or
one player “who has the move.” Let #ω be the number of immediate successor
nodes ofω, and let player i be on themove atω. Then the convex feasible move set

for i at ω is Ai(ω) ⊂ S#ω−1, where S#ω−1 is the simplex of dimension #ω − 1. (Note:
implicitly we have numbered the immediate successor nodes 1,…, #ω.) For con-
veniencewe setAj(ω) equal to a single point if j ≠ i is not on themove atω. If nature
is on the move at ω, then there is also given an element in S#ω−1, which for
simplicity we take as objectively given.

To every nodeωwe associate a possibility set Pi(ω) for each player i, in such a

way that ifω ′ ∈Pi(ω), then Ai(ω) ⊂ S#ω′−1. Furthermore, ifω′ ∈ Pi(ω), thenω′ is not
comparable with ω in the tree ordering (that is, it is on a different branch of the
tree). We shall maintain ω ∈ Pi(ω), although this is not actually necessary. Note
that these assumptions do not imply perfect recall. This completes our description
of a generalized game G in extensive form.

A strategy for a player i is an association with each ω ∈ Ω of an element

f i(ω) ∈ Ai(ω) in such a way that if (Pi(ω),  Ai(ω)) = (Pi(ω′),  Ai(ω′)), then

f i(ω) = f i(ω′). Given strategies for each of the players, one can calculate
“correctly” the expected payoffs to each player, and then define Nash equilibrium,
or perfect Nash equilibrium, as in conventional game theory. We shall describe a
different, generalized notion of equilibrium.

Given the strategies (f 1,  …,  f N) = f of the N players, we can always calculate
the probability πi(ω,  f ) = π(ω,  f ) that the node ω will be reached. Note that it is
possible that π(ω,  f ) = 0, and also in general ∑ω∈Ωπ(ω,  f ) > 1. Note however that
π(ω,  f ) depends only on f i(ω′) for ω′ that precede ω. In particular, if ω′ ∈ Pi(ω),
then π(ω,  f ) does not depend on f i(ω′).

To each ω ∈ Ω and i = 1,  …,  I let us also associate the payoff ui(ai,  a−i,  ω,  f ),
which is the conditional payoff to player i given that ω has been reached, calcu-
lated using the strategies in f, except that f j(ω) is replaced by aj, for j = 1,  …,  N.
This is calculated in the conventional manner, and is obviously well-defined. Note
that if i is on the move at ω and j ≠ i then aj does not affect uk(a,  ω,  f ) for any
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k = 1,  …,  N. Note furthermore that ui(ai,  a−i,  ω,  f ), is continuous in (ai,  a−i,  f ),
and concave, in fact linear, in ai.

We define an equilibrium, for the generalized game G as a tuple of strategies
(f 1,  …,  f N) satisfying:

f i(ω) ∈ ArgMax
ai∈Ai(ω)

∑
ω′∈Pi(ω)

ui(ai,  f −i(ω′),ω′,  f )πi(ω′,  f ).

Theorem 8 Every generalized game in extensive form has an equilibrium.
Here is not the place to go into details, but one can also define various re-

finements of equilibrium for generalized games. A perfect equilibrium for a
generalized game in extensive form can be defined analogously to a perfect
equilibrium for a conventional game in extensive form, since in the latter case one
must appeal also to the agent normal form.

One could givemany examples of generalized games in extensive form, but let
us concentrate on the story of Odysseus and the Sirens, and the problem of time
consistency.

Recall that one day Odysseus was told by Circe that his boat would be
sailing near the island home of the famous Sirens, whose beautiful singing lured
many sailors to crash against the terrible rocks that studded the shore. Anticipating
that once they heard the music, he and his men would not be able to resist the
seductive temptation to sail nearer to the shore to better hear the songs, he ordered
hismen to sail clear of the shore, andhe putwax in their ears tomake sure that they
could hear neither the Sirens nor himself. He also had himself tied to the mast, so
that he could hear the Sirens but could do nothing to change the course of the boat.
When the boat finally came within earshot of the Sirens, Odysseus struggled
violently to free himself from his bonds and to exhort his men toward shore.
Fortunately for him, both the wax and the bonds held firm, and his boat sailed
safely past.

Odysseus’ decision problem is one of the best known in history, precisely because
Odysseus is so famous for his cunning, which indeed this story seems to confirm, and
yet his behavior before and after hearing the Sirens is apparently inconsistent.
A celebrated explanation, given by (Strotz, 1955), suggests that Odysseus was a man
who greatly discounted the future, but did not discount the distant future muchmore
than the near future. According to this theory, when Odysseus first realized where he
was, he weighed the near future of sailing near shore to better hear the sirens against
the distant future of crashing on the rocks, anddecided to avoid the bargain. Butwhen
the near future became the present, so that the trade-off was between hearing better
now and crashing later, he wanted the bargain.

Although this impatience explanation is quite striking, it is not clear that it is
faithful to the story, nor that it is themost interesting explanation. In the first place,
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one of the salient characteristics of Odysseus’personality is that, unlikemost of the
other Greeks, he was always planning for the future. These plans and preparations
often involved initial sacrifices for future rewards. (Meticulously arranging thewax
for his men is a perfect example.) It does not seem credible that wily Odysseus
would trade his life for a song just because the song came first. (Indeed if anything
he was willing to give up his life to the Trojan expedition in order to be part of the
immortal song of the poet, because that song is last, and everlasting.) There is a
further technical problem with Strotz’s explanation, namely that it suggests
discontinuous preferences. Until the moment Odysseus hears the song, he keeps
his wits and tries to avoid the rocks. It is only at the instant that he hears the music
that he forgets himself. This behavioral change cannot be accounted for by
continuous time preferences, that ignore the information content of the song.

The theory of extensive form games proposed here is designed to model
behavior that is purposeful and cunning, but based on information processing that
is not perfect. My interpretation is that when Odysseus hears the Sirens and
“forgets himself,” he literally forgets what he knew before, namely that the Sirens
are dangerous. His behavior after he hears the Sirens is not less purposeful or less
skillful than before. The difference is that it is constrained and it is based on
different information. Typically such a beautiful song deserves a better hearing,
and having forgotten the warning of Circe, Odysseus struggles to land his boat
closer to shore. The subtlest part of this information explanation of Odysseus, and
one that requires all of the apparatus of themodel, is that Odysseus recognizes full
well that he is ensnared in the ropes and cannot get the attention of hismen. But he
never asks himself how he got in that situation. If he did hemight have inferred his
predicament. Thus the information explanation, which I believe expresses the
paradox of the inconsistent but cunning planner in a way which impatience
cannot, rests on the two ideas which are the basis of our extension of game theory.
Knowledge is not necessarily describable by partitions, and even the most clever
men do not necessarily make inferences from the constraints they face.

The Odysseus game can be formally modeled in our framework, as the
following diagrammakes clear. Nature moves first and chooses to blow Odysseus’
boat near the island of the Sirens, or near some other harmless island (on which
there is also singing, but perhaps less good). Odysseus then has the choice of
binding himself and putting wax in the ears of his men, or else leaving them all
free. Finally he hears the music, and must decide whether to give the order to stay
clear of the shore, or to move toward the shore. Note that if he has put wax in his
mens’ ears, then he is constrained not to give the order to head closer to shore,
although the payoff if he were able is still defined.

The novelty about this game is the information Odysseus has. Odysseus hears
verywell the advice of Circe, and so knowswhether the boat will be sailing past the
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island of the Sirens or a harmless island. If he hears songs from the harmless
island, he remembers well whether he put wax in the ears of his men. A best
strategy from that point is to sail close to shore. But if Odysseus is near the Sirens’
island, and hears their singing, then he forgets completely Circe’s advice. More-
over, although he recognizes whether he is bound or not, he does not infer any-
thing from this. See Figure 3.

There is a unique equilibrium to this generalized game in extensive form.
Odysseus applies the wax if Circe advises him that he will pass the Sirens, and
otherwise, he does not. After hearing either song, he always tries to head for shore,
butwhenhe is constrained fromgiving such an order he does the only thing he can,
and permits the boat to stay clear. The reason this last move of Odysseus is optimal
is because Odysseus computes that 99.9% of the time he is called upon to make a
decision about whether to better hear a beautiful song, it is worth doing. Knowing

Figure 3: The generalized partition that makes Odysseus an optimizer with standard
discounting.
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that he will decide this way later, Odysseus earlier on has no choice but to put the
wax in his mens’ ears and tie himself to the mast, even though he would be much
better off sailing clear of the island unfettered.

The time inconsistency of Odysseus’ behavior is mirrored in a host of similar
examples usually having to dowith temptation. Typically the optimal response to a
pleasant sensation is to increase it. Life’s experiences strongly encourage such
priors. There are some pleasant experiences, like some drugs or cigarette smoking
that some people recognize to be harmful for them. However, when under their
influence, or sometimes just in their presence, they forget the particular, and
reason only from the general principle that pleasure is desirable. One occasionally
meets modern day Odysseuses who deliberately leave their money home so they
will not be tempted by anything fattening, or who join clubs like alcoholics
anonymous so that their drinking will be punished by shame as well as hangovers.
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