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Abstract: We provide a tool to model and solve strategic situations where players’
perceptions are limited, aswell as situationswhereplayers realize that other players’
perceptions may be limited and so on. We define normal, repeated, incomplete
information, and extensive form games with unawareness using a unified meth-
odology. A game with unawareness is defined as a collection of standard games (of
the corresponding form). The collection specifies how each player views the game,
how she views the other players’ perceptions of the game and so on. The modeler’s
description ofperceptions, theplayers’description of other players’perceptions, etc.
are shown to have consistent representations. We extend solution concepts such as
rationalizability andNashequilibrium to these games and study their properties. It is
shown that while unawareness in normal form games can bemapped to incomplete
information games, the extended Nash equilibrium solution is not mapped to a
known solution concept in the equivalent incomplete information games, implying
that games with unawareness generate novel types of behavior.
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JEL Classification: C72, D81, D82

1 Introduction

As game theoretical modeling becomes more prevalent as a practical modeling
tool, a central problem arises due to a multitude of models that can be employed.
The reasoning players in a realistic strategic interaction seem likely to come up
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with different games representing the situation at hand. This discrepancy may be
the result of players being unaware of some aspects of the situation, or that the
mere act of modeling and reasoning about the situation leads the players to
incorporate only a selection of aspects they deem most crucial. In either case the
players may formulate a restricted perception of the game. The objective of this
paper is to provide a model that allows the players to have differing game models
for their interaction, recognize and model other players’ different perceptions of
the game and iteratively higher order perceptions, and analyze reasoning and
behavior in this setting.

Players who model the game differently should also be allowed to recognize
that other players may well have different models for the strategic interaction. We
provide a new game form that allows the representation of players with varying
restricted perception of the environment at hand. The game form that we call –
games with unawareness – is a collection of standard games describing the
perception of each player, their perception of other players’ perceptions and so on.
The standard games in the collection are related to each other based on properties
of higher order reasoning in a manner that guarantees that how each player views
all interactive perceptions of the game is itself a game with unawareness – players
perceive the situation much like the modeler does as a collection of standard
games. We use the same methodology to extend normal (strategic) form games,
repeated games, incomplete information games and extensive form games,
providing a unified framework for reasoning about limited perceptions, or un-
awareness. We then turn to solution concepts and extend rationalizability and
Nash equilibria to normal form games with unawareness, as well as extend
Bayesian Nash equilibria (BNE) for games with incomplete information and un-
awareness, and Nash equilibria and refinements such as sequential equilibria are
extended to extensive form games with unawareness.

Our first result demonstrates the consistency of the representation of games
with unawareness for the aforementioned game forms, i.e., that every player in
every game form views the game as a game with unawareness, that all players
perceive other players’ view of the game as a game with unawareness, and so on.
We also prove the existence of the extended Nash equilibrium (NE) solution.
Finally, we show that while games with unawareness can be naturally mapped to
games with incomplete information, the latter cannot replace the explicit
modeling of games with limited perceptions since the mapping does preserve this
new solution concept. In particular, the extended Nash solution concept generates
a tighter (subset) prediction about behavior than the Bayesian NE of the equivalent
incomplete information game, whereas the latter corresponds to an extended
rationalizable solution.
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1.1 Three Examples

We operationalize restricted perception of the game as follows: A player – Alice –
can be unaware of some of the actions available to another player – Bob. This will
imply that the game she perceives does not contain some of Bob’s actions. Alter-
natively, Alice may not include a third player in the game at all. This again rep-
resents a restricted game. It might also be the case that Bob perceives that Alice is
unaware of some aspect of the game, in this case his view of her view of the game is
restricted but it does not imply that Alice is indeed restricted in this manner. It
might well be that Alice is aware of all aspects of the interaction, yet Bob’s
perception of her perception is limited. The two examples below provide some
variations on these type of situations. They also shed some light on how the
solutions to these games are constructed. The guiding principle for behavior is that
every player chooses a strategy in the game they perceive which reacts (e.g., with a
best response) to strategies the player believes others will be playing in the game
she thinks they perceive.

Our first example is of a normal form game with unawareness. We begin with
the gamedepicted in (1) below. This game represents all the actions available to the
players – Alice and Bob – and the payoffs associated with each action profile.
Assume that in the situation we are modeling Alice and Bob are both aware of all
the actions available in the game, so when they write a description of the actions
and payoffs it corresponds to (1) below. However, Alice is unaware that Bob is
aware ofallher actions. In particular, She thinks that he is only aware of the actions
{a1,  a2,  b1,  b2,  b3} – She does not realize that her third action is included in the
game as Bob perceives it. This situationmay arise if Alice perceives that action a3 is
secret, or if, say, Bob is new to the environment in which this interaction occurs
and there is no reason to think he would model action a3.

This situation may arise if Bob actually learns about Alice’s secret action, or
talks to an “old-timer”who reveals the existence of the not so obvious third action
available to Alice. We note, that the strategy profile (a2,  b1) is the unique NE of the
gamedepicted in (1), hence if such games have beenplayed in the past (even if fully
perceived by all players) the action a3 may not have been observed. Hence, even if
Alice believes an inexperienced Bob will study similar past situations, she may
well conclude that hewill notmodel this action. In this examplewe further assume
that Bob realizes all this. Not only does he consider a3 he also deduces that Alice
does not realize that he is considering it, e.g., if he learned it was a secret action.
Hence, Bob is aware that Alice perceives Bob’s perception of the game to consist
only of the actions {a1,  a2,  b1,  b2,  b3}.We also assume that Bob is aware thatAlice is
aware of the whole action set {a1,  a2,  a3,  b1,  b2,  b3}.
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Turning to higher levels of interactive views of the game; since Alice is only
aware of Bob being aware of {a1,  a2,  b1,  b2,  b3}, we assume she cannot be aware
that he is aware that she is aware of anything beyond this set, otherwise, shewould
be aware that he is able to reason about her reasoning about the additional action
a3, so he must be able to reason about a3 as far as Alice can deduce, which would
contradict our assumption that Alice is unaware that Bob is aware of a3. In
particular, any higher order iteration of awareness of Alice and Bob which is not
considered above is assumed to be associated with the set {a1,  a2,  b1,  b2,  b3}.

Bob

Alice 

b1 b2 b3

a1 0, 2 3, 3 0, 2
a2 2, 2 2, 1 2, 1
a3 1,0 4,0 0, 1

(1)

As noted above, the initial game we started out with in (1) has a unique NE (a2,  b1)
obtained by iteratively eliminating strictly dominated strategies. However, while
both players are aware that this is the game being played, we assumed that Alice
perceives that Bob is aware of only two of her actions. In other words, Alice is
unaware that Bob is aware of a3. While Alice and Bob both view the game as in (1)
Alice perceives that Bob finds the game being played as depicted in (2).

Bob

Alice 
b1 b2 b3

a1 0, 2 3, 3 0, 2
a2 2, 2 2, 1 2, 1

(2)

Hence, Alice also finds that Bob finds that she perceives the game as in (2), and so
on for every higher order awareness. We obtain that Alice perceives that Bob views
the game as a standard normal form game with complete awareness – a game
where all participating players are aware of all aspects of the game, they are aware
that all other players are aware of the same game, and so on. Taking Nash equi-
libria as the solution concept for normal form games, Alice may deduce that Bob
plays according to the NE (a1,  b2) of the game in (2) which is also the Pareto
dominant outcome of this normal formgame. Alice, who sees herself as beingmore
aware than Bob, will be inclined to choose her best response to b2 which is a3 in the
game as she perceives it. Bob can make the exact same deduction that we, as
modelers, just made, since he is aware of all the actions and he fully realizes how
Alice perceives his awareness. Hence, Bob may deduce that Alice, being unaware
of his full awareness, will assume he plays b2 and she will play a3 as her best
response. Bob being aware of all that can deduce this behavior based on the
iterated best response principle. Thiswould leadBob to play his best response to a3
which is b3.Wewill have that Alice chooses a3 andBob chooses b3 as a result of this
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higher order unawareness. Starting with a NE and considering best responses, we
end up with the worst possible payoff for Alice and a payoff below all Nash
equilibria of either games for both players, even though both are aware of the full
extent of the game, both are commonly aware of the action profile of the unique NE
(a2,  b1) in that game and both act rationally given their perceived view of the game
and assume the other player does as well.

This example illustrates the general formulation of a game with unawareness
as a collection of standard normal form games: A game describing how each player
views the game, a game describing how each player views another player’s view of
the game, games describing how they view how others view others’ view of the
game and so on.We also introduced one of the properties linking these viewpoints
whenwe assumed that if Alice is aware that Bob is aware ofX she is also aware ofX.
This corresponds to the interpretation that if Alice thinks Bob thinks X is an
important part of the game, she can definitely reason about X and would model
and consider it as well. We also introduced how solutions can be extended by
assuming players use reasoning principles based on solutions in the games as they
perceive themwhile taking into account other playerswill apply those principles in
the games theyperceive. HerewehaveAlice, in the gameas she perceives it, plays a
best response to a strategy of Bob in the game Alice think that Bob is considering
and Bob using this reasoning w.r.t. the viewpoints he perceives to devise his best
response.

Our second example applies the same principles of modeling and reasoning to
a repeated game setting. In this example a simple twist in the players unawareness
leads to a cooperative result based on best response reasoning. Consider the
following prisoner’s dilemma repeated, say ten times:

Bob

Alice 
b1 b2

a1 2, 2 −1, 3
a2 3,−1 0,0

(3)

We denote this stage game by G1. Assume both Alice and Bob are fully aware and
perceive the game being played is G1. However, both players initially perceive that
the other player is unaware of the non-cooperative action, i.e., each player per-
ceives the other player as perceiving the game as follows:

Bob

Alice  b1

a1 2, 2
(4)

Let us denote the game with the single cooperative action by G2. As the game is
played repeatedly these perceptions remain unchanged as long as the players both
cooperate, however if any one of the players defects the players immediately
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become commonly aware of the full game, in other words they attribute the same
full perception of the game as G1 to each other iteratively to any high order.

We can capture this situation with the following representation. For a given
history of play hwe can denote byG(h,i) howplayer i views the game after observing
the history h. Similarly, we denote by G h,i( )⋀ h’,j( ) how i after history h perceives that
j ≠ i will perceive the game after j observed history h’. In our example, G(ϕ,i) = G1,

G ϕ,i( ) ⋀ ϕ,j( ) = G2, G ϕ,i( )⋀ ϕ,j( ) ⋀ ϕ,i( ) = G2 and so on. Similarly, as long as the histories

h,  h’,  h’’ being considered only include the cooperative actions (a1,  b1) we have
G(h,i) = G1, G(h,i) ⋀(h’ ,j) = G2, G(h,i) ⋀(h’ ,j) ⋀(h’’ ,i) = G2 and so on. However, if defection

occurs the perceptions change. Hence if either (a2,  b1), (a1,  b2) or (a2,  b2) has
occurred in h’ we have that G(h,i) ⋀(h’ ,j) = G1. In particular, player i realizes that if

defection is played then player j’s perception will include the complete game.
The description above does not paint a full picture of how the players perception

of the gamemight evolve. For example, after seeing defection by Alice it could be the
case that Bob realizes that Alice was aware of the full game all along, or Bob may
reason that she just recently became aware of the possibility of defection. These are
different scenarios and canbe capturedby correspondingly completing thedefinition
of various higher order perceptions in this game. For example, we can assume that
G(h,i) ⋀(h’,j) ⋀(h’’,i) = G1 when defectionhas occurred in h’ for all h’’ including say h’’ = ϕ.
This amounts to assuming that i believes that once defection occurs then jwill realize
that iwas aware of the full game all along. Or, we canmodel a situation were i thinks
that j thinks that i learned about the defection action, rather than perceived it all
along. Similarly, further variations could represent a difference in how higher order
perceptions evolvebasedon theparticular playerwhodefected.For example, if in the
history h’ player i was the first to defect then player jmay reason that player i knew
about defection all along, while if it was only j that defected first, i may think that j
only learned about defection at that point in time fromher. Clearly this can be further
complicated as one considerers various higher level bifurcations of how players
interpret each others’ past perceptions based on learning something unexpected.

No matter how we complete some these higher order perceptions, it is
important to note that the only perceptions relevant are those that the players think
possible. Hence, sinceG(ϕ,1) ⋀(ϕ,2) = G2 we do not consider the perception of (ϕ,  1) –
Alice before actions are taken – of the perception of ((a1,  b2),  2), since Alice at the
beginning does not think that Bob is reasoning about action b2. In other words we
do not consider the following iterated view of the game G(ϕ,1) ⋀((a1 ,b2),2) as relevant.
Hence, the higher order perceptions that are considered respect the restrictions of
reasoning that the players attribute to one another for each perception associated
with a player and a relevant history of play.
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We can now turn to a quick intuitive analysis of reasoning in this example.
Each player reasons that if they choose to defect at any point it will cause the
common perception that the game being played is G1. Hence, each player would
anticipate that as long as they play cooperatively, they will receive a payoff of 2
since they assume the other player will play cooperatively as they perceive them to
be unaware of any other action. Each player will reason that playing cooperatively
until the final round and defecting in round ten would lead to a payoff of
2*9 + 3 = 21 from their perspective. Any deviation earlier would lead to a payoff of 3
instead of 2 in that early round of assumed unilateral defection, followed by def-
ection by both players until the end if we assume any of the standard solution
concepts to the remaining commonly perceived finite prisoner’s dilemma. Hence
the maximum payoff attained by defecting earlier is strictly lower. We have that
both players will therefor play cooperatively in all nine rounds and defect in the
last one. Needless to say that both players would be surprised to see the other
player defect in the last round. The best response reasoning we described is based
on assuming that once the game unravels to be G1 both players will deviate
throughout which is supported in the extension of standard solution concepts to
our game forms.

We note that one can consider higher order variations of this example, such
as a case where each player perceives the full game G1 and perceives that the
other player also perceives the game as G1 but that the other player perceives
them as perceiving the game as G2, in other words G(ϕ,i) ⋀(ϕ,j) = G1 and

G(ϕ,i) ⋀(ϕ,j) ⋀(ϕ,i) = G2. In this case, under the assumption that any defection un-

ravels any misperception and that reasoning in the unraveled game leads to
defection throughout, there is a cooperative solution where the players will
cooperate up to round eight, and then defect in the last two rounds expecting the
other player to defect only in round ten.

Our third example applies the same principles of modeling and reasoning to
a dynamic setting which allow us to also capture how the players’ perceptions
might change or be changed strategically. We begin with a story in which Alice –
the baker – has contracted with Bob – the coffee shop owner – to produce and
deliver baked goods from her bakery to his coffee shop. Alice and Bob have
contracted on the baked goods based on their expected costs and revenues from
the transaction. Alice’s cost for producing and delivering the baked goods on
Monday is 4. The value to Bob if the goods arrive on Monday is 7 and we assume
they contracted on a price of 5 for the baking and delivery of the goods on
Monday. Hence, their payoffs will be 1,  2 respectively. However, Alice can also
bake the goods and deliver them on Tuesday. Given how busy Monday is, her
cost of baking and delivering the goods on Tuesday is lower and stands at 2, the

Games with Unawareness 439



value to Bob for receiving the goods on Tuesday is much lower and stands at 3
since many of his customers prefer to purchase the goods on Monday. Antici-
pating that, Alice and Bob have stipulated in the contract that if Alice delivers
the goods on Tuesday Bob will only need to pay 2 instead of 5. Leading to a final
payoff 0, 1 to Alice and Bob respectively. This situation so far is depicted in
Figure 1.

The contract also stipulates that in the case of unforeseen contingencies
beyond her control that prevent Alice from delivering the baked goods onMonday,
she is expected to deliver them on Tuesday but will be paid the full 5 payment at
that point and not the reduced payment. The payoffsmay depend on the particular
contingency. For example, if Alice produces the goods but her delivery truckmeets
an unforseen contingency she may need to produce and deliver the baked goods
again on Tuesday which will cost her a total cost of 6 = 4 + 2. In such a case, even
though she is paid 5, she ends up with −1. While, if there is a severe snow storm on
Monday and roads are closed, she could reasonably decide not to produce on
Monday and produce and deliver on Tuesday and incur only a cost of 2 and receive
5 from Bob to end up with 3.

Driving to his coffee shop early Monday morning Bob notices that unan-
ticipated major road work is scheduled for that day (and that day only). He
estimates that if Alice attempts to deliver the baked goods onMonday then there
is a 50%chance it will not arrive on time and in that case the baked goods will be
ruined. Bob is confident that Alice is not aware of the pending construction
since the bakery is in the other side of town and he knows Alice lives close to the
bakery. Bob realizes that the strategic situation is no longer as he envisioned it
and was depicted in Figure 1. Bob realizes that there was a nature move that
resulted in major road delays. Moreover, Bob realizes that he now has new

Figure 1: Alice’s shipping decision.
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possible actions; he can either call Alice and let her know about the road work
or not.

Let’s consider the payoffs given this new situation. If Bob does not call Alice
then Alice will not know about the possibility of road work, she will be unaware of
it and assume the game is as depicted in Figure 1. However, the payoffs will be
different. If Alice attempts the delivery on Monday then with 50% chance it will go
through and Bob’s payoff will be 2, at the same time Alice will receive 1 if it gets
through on time.With 50% chance the deliverywill not go through and in this case
Alice will need to bake and deliver the goods again on Tuesday. In that case
unforeseen contingencies will be invoked and Alice will still receive the full pay-
ment on Tuesday. Bob’s payoff will be −2 = 3 − 5, at the same time Alice will
receive −1 = 5 − 6 since her cost will include the production and delivery costs for
both days. Note that these are the eventual payoffs and are also the payoffs as
perceived by Bob’s viewpoint. But when Alice makes her decision wether to make
and deliver the goods on Monday or Tuesday, she is unaware of these payoffs and
believes the game is as depicted in Figure 1.

If Bob decides to tell Alice about the impending road work, the expected
payoffs for an attempted delivery on Monday will not change for either player.
But now Alice will be aware of the unforeseen contingency and realize that road
work is possible and actually occurred. At that decision point she can invoke it
as a justifiable reason to produce and deliver the baked goods on Tuesday
without penalty based on the unforeseen contingency clause. Hence, her payoff
will be 3 = 5 − 2, while Bob will have to pay the full price and end up with
−2 = 3 − 5.

We depict this game with unawareness using extensive form games as they
are perceived by the players in every decision point. The game with unaware-
ness we just described is depicted in Figure 2. The game includes Nature
choosing whether there is road work. If there was no road work we have the
game depicted in blue which represents how Alice (and Bob) perceive the game
when she is unaware of the road work. If road work occurs as in our story (or
considered explicitly), Bob can choose whether to tell Alice or not. If he doesn’t
tell Alice she is still unaware of the road work although it happened, hence she
perceives herself to be at a different decision point corresponding to the game
depicted in Figure 1 imbedded in the game depicted in Figure 2 after the “no road
work” option. We depict this link as a blue arrow indicating where Alice per-
ceives the game is. Hence the game depicted in blue corresponds to the game
when there is no awareness of the road work or its possibility. If Bob does let
Alice know about the road work she becomes aware of it and realizes the full
scope on the game and takes an action at that decision point. The game as
perceived by Bob after he learns of the road work and will be perceived by Alice
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if he tells her is the combined game in black and blue. Whereas aware Bob and
Alice also view Alice’s view of the game when she is unaware as denoted by the
blue game and the blue arrow.

Given the description of the game we can now consider the players’ behavior.
Using a backward induction principle it seems that Alice would choose to produce
and deliver on Monday if she believes the game is as depicted in Figure 1. Hence,
she is expected to do so also if there is road work but Bob does not call in the game
in Figure 2. If Bob does call she is likely to choose Tuesday since she becomes
aware of the road work. Hence, Bob can conclude that his payoff will be −2 if he
calls Alice and 0 if he doesn’t, hence when he observes the road work he will, by
backward induction, not call Alice leading to a payoff of 0,0. Hence, we applied a
backward induction reasoningwhere each player is considering how other players
in the future will apply backward induction in the game which the player thinks
they will perceive.

Consider now another twist of the baked goods delivery scenario. This time, it
turns out that Carol who works for Alice at the bakery lives nearby the road con-
struction area and observes the unanticipated road work as well. Carol has two
actions, she can text Alice about the potential road work or not. Her payoff for

Figure 2: Bob’s Calling Decision.
This is the game as seen by Bob, if he does not call Alice he thinks that Alice views the game as in
Figure 1 depicted in blue (the arrow indicates that in both decision points of the information set
the Alice perceives the same game, in particular she is unaware that there is an information set).
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reporting it is 1while her payoff if she does not report it is 0. Had there been no road
work Carol’s payoff is assumed to be 0 as well. In this case Bob is unaware of
Carol’s actions, in fact he may be unaware of Carol’s existence and may have not
modeled the possibility of an employee living next to the road work. Hence, Bob’s
view of the game as is we described in Figure 2. However, the game now has a third
player, Carol and her action can impact the awareness of Alice.We depict the game
in Figure 3. Here we have the game as originally modeled by Alice in blue, the
games in green and blue describe how Bob views the game and how he views Alice
will view the game if he does not call her to let her know about the road work (in
blue) as well as if he does call her (in green). The game now also has Carol’s
decision points and payoffs (in black) aswell as howwill Alice perceive the game if
Carol texts her about the roadwork (in black). Hence, if Carol texts Alice then Alice
will view the game as in Figure 3, while viewing Bob’s view of the game if he
observes road work as depicted in the game with unawareness in Figure 2 which
includes howBob viewsAlice’s view of the gamewhen she is unaware of roadwork
as in Figure 1. The payoffs remain unchanged from the previous game and we just
note that Alice’s payoff whenCarol texts her is now3 (andBob’s −2) if she produces
and delivers on Tuesday nomatter if Bob calls her or not, since she can now invoke
the unforeseen contingency. In fact, we can imagine a situationwhere her payoff is
even higher if Bob does not call her especially since she is aware that he is aware of
the road work1.

The game form illustrates the nested nature of higher order view points. In
this game the green decision points and actions constitute a subtree hence
naturally correspond to a game tree. Furthermore, there is unawareness of a
player (Bob is unaware of Carol). The reasoning can be applied similarly as
before, Carol will text Alice who will then become aware of the full scope of the
gamewith unawareness andwill choose to invoke the contingency and deliver on
Tuesday. Bob will not call Alice being unaware of Carol and he would expect
Alice to try and ship on Monday.

The extensive form game with unawareness is a collection of standard exten-
sive form games corresponding to how Alice perceives the game at her decision
points, how Alice perceives how Bob perceives the game at his decision points in
the game she considers, how she perceives the game he perceives that she per-
ceives in her decision point in the game she perceives he is considering, and so on.

1 This game is a slightly simplified version of the gamewe defined in Feinberg (2012). In that game
Alice could deliver the goods on Monday, Tuesday and Wednesday and we used that setting to
allow Alice to get an even higher payoff if she was aware of the road work and Bob decided not to
call her. A similar setting can be achieved here by increasing the payoff for Alice and decreasing it
for Bob at that particular outcome.
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These nested games will have consistency conditions that assure principles such
as Alice being aware of what she thinks Bob is aware of, as well asmaking sure that
the view fromeachdecisionpoint is indeed itself a gamewith unawareness. Aswith
the extension of normal form games, solution concepts can be extended by
applying reasoning principles to the decision points taking into account that these
will be applied to the nested extensive form games as they are perceived in those
decision points.

1.2 Results and Related Literature

The examples above are meant to illustrate a number of features of our model.
First, the definition of games with unawareness for all game forms is based on a
collection of standard games, games that describe players’ viewpoints, views of
other players views of the game and so on. In the case of extensive form games,
viewpoints correspond to decision points, in incomplete information games
defined below they will correspond to types.We can also see the nested features of

Figure 3: With Carol’s E-mail Decision.
This is the game as seen by the modeler as well as by Alice once Carol texts her. The game in
green and blue indicates the game as Bob is aware of once he learns about the road work, it is
also how Alice views Bob’s view of the game once she knows about the road work. The game in
blue is the game that Alice plays if she is unaware of the road work, what Bob thinks she plays if
he doesn’t call her andwhat Alice thinksBob thinks she thinks the game is if he does not call her.
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these games where the actions and players that Alice views Bob is considering
become part of the game that Alice is considering. Hence the game form satisfies
the property that if Alice thinks Bob is aware of an aspect of the game she is also
aware of that aspect. The examples also demonstrate how solutions can come
about in these games as they illustrate the best response reasoning as Alice con-
siders the actions of Bob in the game she perceives he is considering.

After defining the extended forms for normal, repeated, incomplete informa-
tion and extensive form games with unawareness, our structural result,
Proposition 1, shows that all the definitions satisfy the property that each player’s
view of the game, view of others, and so on, itself is a game with unawareness
satisfying the exact same conditions as we, the modelers, are considering. In
particular, each view of each other player induces a game with unawareness and
so on at higher levels of iterative views. Hence we have a common perception that
all players are modeling a game with the same framework. Next we extend
rationalizability and Nash equilibria to normal form games with unawareness and
prove existence in these possible infinite structures using the generalizations of
equilibria existence conditions due to Glicksberg (1952) and Fan (1952). We simi-
larly define extended BNE for incomplete information games with unawareness
and extend the notion of assessment to extensive form games with unawareness
allowing the definition of assessment based equilibria (such as sequential equi-
libria). We then demonstrate that all extended solution concepts are non-empty
(assuming standard conditions for the underlying perceived games) and that the
extended solutions coincide with the standard solutions when there is no un-
awareness. Games with unawareness may have infinite hierarchies of the per-
ceptions of the game yielding an infinite number of different viewpoints within a
single game with unawareness. Using a result by Higman (1952) we provide suf-
ficient conditions for a game with unawareness to induce only a finite collection of
viewpoints and hence have a finite representation.

One of the main questions that arises with any new game form is whether it
can tell us something that the standard formulations cannot. With restricted
perceptions it is particularly important to study whether these situations can be
modeled using probability zero rather than unawareness. We show that indeed
normal form games with unawareness can be represented as games with
incomplete information. Moreover, there is a natural mapping (in the sense that
the mapping is independent of the exact payoffs in the game with unawareness)
to incomplete information games that fully captures all the relevant views in the
game. But while the structure can be mapped between game forms the extended
NE in games with unawareness does not map to any known solution of Bayesian
games. In fact, it seems that generating such a solution in the Bayesian game
equivalent would essentially amount to reconstructing the normal form game
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with unawareness. We show that the extended NE is a strict refinement of the
Bayesian NE of the incomplete information representation, while, interestingly,
the latter coincides with extended rationalizability for normal form games with
unawareness.

There are two general types of studies that relates to multi-person un-
awareness in economic theory. The first is a logic and foundational perspective.
One of the earliest works providing foundations for unawareness is Fagin and
Halpern (1988) who provide a host of logics for unawareness and study their
syntax and semantics. They mention the “semantic naturalness” of their
modeling as it provides a clear interpretation of the notion of awareness. Halpern
(2001) and Halpern and Rego (2008, 2009, 2013) expand the analysis as well as
provide more insights on the properties of unawareness, with the latter two
papers providing important insights on the foundational question of modeling of
awareness of unawareness. Modica and Rustichini (1994, 1999) have developed a
decision theoretic treatment of unawareness based on the notion of event-based
reasoning (partition models). The work of Heifetz, Meier and Schipper (2006,
2008) took an event-based approach to interactive unawareness. This semantic
approach provided a natural framework for interactive unawareness that also
allows to bypass the impossibility results of the classical partition model
framework. Li (2008a, 2009) provided an alternative product based construction
for modeling unawareness and Sadzik (2006) developed a novel framework for
the foundations of probability and unawareness. Board and Chung (2007) pro-
pose an alternative approach and an axiomatization that also touches on
awareness of unawareness and Walker (2014) provides an alternative semantic
approach.

The second type of studies considers the modeling of games with unaware-
ness, the extension of existing solution concepts and exploration of new ones as
well as applications to particular economic settings. Many of the foundational
papers were expanded or include the development of tools for modeling strategic
interaction with unawareness. Copic and Galeotti (2005) consider awareness ac-
tion equilibrium in the context of interactive awareness. Li (2006) considers un-
awareness in dynamic games. Mengel, Tsakas and Vostroknukov (2009) model
and study unawareness in repeated games. Grant and Quiggin (2013) provide an
alternative model for extensive form game and Halpern and Rego (2014) extend
their framework to extensive form game and defineNash equilibria while Rego and
Halpern (2012) define sequential equilibria. Meier and Schipper (2014) provide a
model for Bayesian games with unawareness, Heifetz, Meier and Schipper (2013a)
apply their foundational approach to strategic introductions and specifically
explore characteristics of the no-trade theorem. In Feinberg (2004a) a syntax based
approach to interactive unawareness is introduced and applied to extensive form
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games. Heifetz, Meier and Schipper (2013b) consider the application to dynamic
games and extend extensive form correlated rationalizability to these games.
Board and Chung (2009) explore the application of their axiomatic model to
interactive unawareness and Sasaki (2014) defines subjective rationality in games
where players may misspecify the game. Additional studies both model and apply
unawareness in interactive settings to particular classes of economic problems.
Chen and Zhao (2013) explore unawareness in principle-agent models and von
Thadden and Zhao (2012) study incentive schemes in the presence of unawareness
and in von Thadden and Zhao (2013) explore multi dimensional principal agent
problems with unawareness, Zhao (2011) studies the framing of contingencies in
contracts, Filiz-Ozbay (2012) studies unawareness modeling in contract theory,
Grant, Kline and Quiggin (2012) explore different notions of awareness and am-
biguity in contracts and Zhao (2008) studies moral hazard with unawareness. Our
approach extends the conceptual principle ofmodeling the subjective reasoning of
players from the perspective of every decision instance which we developed in
Feinberg (2005b, 2005c). Finally, the work in Feinberg (2005a) contains initial
results regarding modeling normal form games with unawareness and is sub-
sumed by the current paper. For more related work on unawareness also consult
the bibliography set up by Burkhard Schipper at https://www.econ.ucdavis.edu/
faculty/schipper/unaw.htm.

The use of standard games as the primitive building block for games with
unawareness allows us to keep the definitions relatively short and simplewith four
conditions applied to each game form and reduces the variation between the game
form being used. The nested structure of standard games also provides a relatively
clear extension of existing solution concepts to games with unawareness. Using
hierarchies of perceptions allows the proof of consistency of the representation in
the sense that themodeler, players, andhigher order players’ viewof other players,
all have the same form as games with unawareness. The importance of this
characteristic is evident if we view our modeling as prescriptive for reasoning
agents and, therefore, want its descriptive nature to coincide with how the
reasoning agents are assumed to model their strategic environment.

2 Modeling Games with Unawareness

A game with unawareness is defined by describing the set of players, actions and
payoffs in the strategic situation, howeachplayer views these, how theyviewothers’
views and so on, while allowing these views to be restricted – exclude players or
actions from such perceived games. The main principle for defining these games is
that every view point is described by a standard game of the corresponding form.
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We extend four game forms to games with unawareness: normal, repeated,
incomplete information and extensive form. We postulate four conditions that are
adapted to each game form:

Condition 1. The decision maker Alice views the decision maker Bob to be
relevant for the strategic situation if and only if she views Bob to be a player in the
game she is considering.

Condition 2. Every action or player that Alice perceives that Bob is modeling
in the game, is also part of Alice’s perception of the game – Alice can consider the
aspects of the strategic situation that she thinks Bob is considering.

Condition 3. Alice’s view of Bob’s perception of the game coincides with her
view of Bob’s view of his own perception of the game.

Condition 4. Even if Alice is unaware of Bob’s participation in the game, the
outcomes she considers must agree with the outcomes of the game given one of
Bob’s actions.

We generalize these conditions to high order reasoning in the formal definitions
below. The rest of this section is organized as follows. We begin with a definition of
normal form games with unawareness which is followed by a discussion of the
hierarchy structure of the game form. The following subsections present the defi-
nitions of the other game forms concluding with the proposition stating that our
model provides a consistent representation of gameswith unawareness in the sense
that every player’s view of the strategic situation is itself a well defined game with
unawareness, as is a player’s view of the view of others, and so on, and that these
forms coincide with our description of the game as modelers.

2.1 Normal Form Games with Unawareness

In standard normal form games the modeler describes the set of players, their
possible actions and payoffs for action profiles. The modeler’s normal form game is

our starting point: G = (I,  ∏i∈IAi,  {ui}i∈I) where I is a finite set of players, Ai is the

finite set of actions available for each player and the functions ui associate the utility
for action profiles in∏j∈IAj. These are the set of players and actions that themodeler

is considering whether or not the players are aware of each other or of some of the
actions. Each player may have a restricted view of the game. Hence for a player v ∈ I

we consider a normal form gameGv = (Iv,  ∏i∈Iv(Ai)v,  {(ui)v}i∈Iv). Similarly, a player

considers how each of the players that appear in her game models the game. In
general, a finite sequence of players υ = i1,  …,  in( ) is associated with a normal form
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gameGυ = Iυ,  ∏i∈Iυ Ai( )υ,   ui( )υ{ }i∈Iυ( )where Iυ is the set of players that i1 finds that
i2 finds that … that in is considering, and similarly for the sets of actions Ai( )υ
and payoffs ui( )υ defined on the set of action profiles ∏i∈Iυ Ai( )υ. We call υ an

iterated view, or in short a view. Throughout, υ = ϕ corresponds to the mod-
eler’s view, i.e., Gϕ = G. Note that this is the modeler’s view of the relevant

players and their actions and payoffs not of the unawareness of players.
Correspondingly, we say that Gυ is the situation as viewed, or perceived at υ,
that Aj( )υ is the set of j’s actions as viewed from υ and so on. We denote an

action profile in Gυ by a( )υ. The singletons (v = i) corresponding to a player’s
view are called viewpoints and the set of viewpoints (players, in the case of
normal form games) is denoted V with a typical element v.

We denote the concatenation of two views υ = i1,  …,  in( ) followed by
υ̃ = j1,  …,  jm( ) as υ = υ ⋀ υ̃ = i1,  …,  in,  j1,  …,  jm( ). The set of all potential views is

denoted V = ∪
∞

n=0
(I)(n) where I(n) = ∏​n

j=1   I and I(0) = ϕ.

Definition 1. A collection Γ = Gυ{ }υ∈V where Gυ are normal form games and

V ⊂ V is a collection of finite sequences of players is called a normal form game with
unawareness and the collection of views V is called its set of relevant views if the
following properties hold:
C1 For every υ ∈ V we have

υ ⋀ v ∈ V  if  and only if v ∈ Iυ (5)

The first condition requires that the set of relevant viewsV is closed under the set of
players considered in the game perceived at a relevant view and that viewpoints of
non-players are irrelevant. There would be no impact on our results if players were
to consider the views of players not participating in the game, however we find
such redundancy unpleasing, as with any scientific modeling. The other direction
of this condition is crucial for our setting since if Alice models Bob as one of the
players in the game, it is required that Alice should find Bob’s view of the game to
be relevant.
C2 For every υ ⋀ υ̃ ∈ V we have

υ ∈ V (6)

ϕ ≠ Iυ ⋀ υ̃ ⊂ Iυ (7)

for all i ∈ Iυ ⋀ υ̃ we have ϕ ≠ (Ai)υ ⋀ υ̃ ⊂ (Ai)υ (8)

The first part of this condition states that if a relevant view’s perception of another
view is relevant, then the first view must itself be relevant, e.g., if it is relevant to
consider Alice’s view of Bob’s view of Carol, then Alice’s view of Bob is also
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relevant. Together with condition C1 this implies that the set of relevant views is
exactly the set of views inductively constructed from considering the players that
are perceived to be participating in the game. In particular, if there exists any
relevant view at all we also have, fortunately, that ϕ ∈ V – the modeler’s view is
relevant.

Condition C2 extends this principle to the set of players and actions: if Alice
finds that Bob is considering a player or an action as part of the game, she herself
must consider them to be part of the game. In otherwords, by themere fact that you
find it relevant that others find some aspect of the game to be relevant enough for
modeling, you must model that aspect yourself. Much like we, the modelers, do
when considering the reasoning of players. Restating this with the notation of
awareness the condition states that: what Alice is aware that Bob is aware of, are
things that Alice is aware of as well.
C3 If υ ⋀ v ⋀  υ ∈ V we have

υ ⋀ v ⋀ v ⋀  υ ∈ V (9)

G υ ⋀ v ⋀ υ = G υ ⋀ v ⋀ v ⋀ υ (10)

The third condition requires that each player, that is relevant along some view, has
a correct perception of their own perceived perception: if Alice perceives that Bob
has a certain perception of the game, she also perceives that he perceives to have
that perception. With awareness: if Alice is aware that Bob is aware of something,
she is also aware that he is aware that he is aware of it. It is important to point out
that this does not imply that Bob is actually aware of it. We note that when
considering a relevant view of the form υ ⋀ i( )we have that υ ⋀ i( ) ⋀ i( ) is relevant and
by C1we have i ∈ Iυ ⋀ i( ) hence all players are aware of their own participation in the

game.
C4 For every action profile2(a)υ ⋀ υ̃ = {aj}j∈Iυ ⋀ υ̃ there exists a completion to an action

profile (a)v = {aj,  ak}j∈Iυ ⋀ υ̃ , k∈Iυ∖Iυ ⋀ υ̃ such that

(ui)υ ⋀ υ̃((a)υ ⋀ υ̃) = (ui)υ((a)υ) (11)

Since a view may consider only some of the players considered by another
relevant view, or by themodeler, the payoffs may not be uniquely determined by
defining the restricted set of players and actions. The fourth condition requires
that the payoffs in a restricted game coincide with payoffs in the larger game

2 Weuse a set notation for the action profiles sincewe have varying set of players considered. This
assumes the action sets for players are notated in a distinct manner. Alternatively, one can use
vectors for action profiles but notate that they are different projections based on the players
considered.

450 Y. Feinberg



with more players by fixing some action profile for these players. We note that
for different action profiles of the restricted game we can have different
completing actions by players that only appear in the less restricted game3. In
other words, a restricted view of the game cannot introduce new payoffs. If one
wishes, this condition can easily be generalized to assume missing players are
playing mixed strategies, or even correlated strategies, without impact on our
results.

These properties are used in all game forms discussed below.While the objects
in the game may change (with the addition of histories, types, or game trees) we
obtain analogous properties describing the structure of games with restricted
reasoning translating conditions C1-C4 to the appropriate setting. Similarly, we
consider standard game forms, e.g., finite normal form games, as the building
blocks for our games with unawareness. While many of our results extend to a
variety of generalizations this simplifies stating our constructions and results in a
unified manner across game forms.

2.2 Hierarchies and Types

Before we define the extension to additional game forms, we briefly discuss our
choice for describing a game with unawareness as a collection of standard form
games – a “hierarchy” of games, rather than a “type space” – a set of type profiles
representing each player’s perception of the game and perception of the types of
other players. First we note that a representation a la Harsanyi’s type spaces is
possible and actually quite readily obtained and is briefly provided below.
Moreover, one can also define a universal type space which corresponds to the
incomplete information representation we provide in Section 3.2. Hence, the
transition from hierarchies to type spaces and back is quite a standard (if tedious)
exercise. However, this brings us to a central reason for choosing hierarchies: in
the standard incomplete information framework, the set of fundamentals gener-
ating the universal type space is fixed. In particular, all players are implicitly
assumed to be reasoning with the same set of fundamentals which, in the
Harsanyi’s approach, includes the collection of relevant payoff matrices for
the fixed and given set of players and their given sets of actions. This makes
the universal type space “common knowledge” in the sense that all players

3 This condition is weaker than the conditionwe proposed in Feinberg (2005a) where we required
that in all the games a certain player is missing, the same action of this player will be used to
determine the payoffs. We also note that conditions C1-C3 coincide with the weak axioms for
unawareness we postulated in Feinberg (2005a).
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would construct the same universal type space if they were modeling the game,
see Aumann (1999) for a discussion of this property. In contrast, our starting
point is that players may reason using different fundamentals – the building
blocks of the game. As such, they would construct different universal type
spaces – different from each other and different from the one the modeler uses.
Moreover, the players would also attribute different universal type spaces to
other players. As such, while we can combine all these to an abstract space as
sketched below, working with such a space seems much more difficult than the
analysis we did in the examples in the introduction via the hierarchy repre-
sentation. Working with a type space representation that captures reasoning
with differing fundamentals requires extra caution since one needs to figure out at
each state how each player perceives the type space. While this is possible, it
essentially amounts to reconstructing the hierarchies. Hence, we prefer working
directly with hierarchies. This is best exemplified when constructing solution con-
cepts. Ifwewant aplayer type toplay abest response towhat other players’ types are
playing we need to consider the types that correspond to this player’s type space,
which is not the modeler’s type space. In addition, this player will need to evaluate
the type spaces that each other player is considering, the spaces that each of them
associates to other players (more precisely, the spaces that the first player perceives
the other players think others are considering), and so on – recreating the hierar-
chies once again. Finally, the hierarchies allow us to obtain an “equal perception”
principle. In the sense that the modeler and the players are easily shown to model
the situation in the same manner (as well as model others’ perceptions and so on).
While they may use different fundamentals for reasoning and attribute different
fundamentals to others, the rules governing the reasoning, the relationships be-
tween these sets of fundamentals and the definition governing the game form all are
of the exact same form.Not onlyare the games theplayers consider of the same form,
the games they perceive other consider are of the same form and all these coincide
with themodeler’s game form. This is not a minor issue since, at least in economics,
one might consider it desirable that a model used in describing or predicting
behavior will not be at odds with its own predictions if the modeled players them-
selves were to use the exact same modeling approach. When one begins with an
abstractmodeler type space alone, it is not a priori clearwhether this property holds.

We describe a type space representation for normal form games with un-
awareness with two players that are aware of each other. The generalizations are
later described. The type space representation is defined as a product T1 × T2 × Λ
andmappings τ1,  G1,  τ2,  G2 such that for i,  j ∈ {1,  2} and j ≠ iwe have: Ti is player i’s
type space, Λ is a set of normal form games, τi : Ti → Tj and Gi : Ti → Λ. Hence,
each ti ∈ Ti, is mapped to a member τi(ti) ∈ Tj and a game Gi(ti) ∈ Λ, these
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correspond to how type ti views j’s view of the game with unawareness and the
game as ti views it. Note that the hierarchy of how i’s type views j’s view of i’s view
etc, is captured via iterations of the mappings τ and G.

We now add the conditions that correspond to conditions C1-C4 for the type
space representation. Condition C1will be represented by the requirement that the
game Gi(ti) is a two person game played by i and j. Condition C3 will hold
immediately from the type space representation. Condition C4 holds for this spe-
cific case where there is no unawareness of players. For condition C2 we will
require that the game Gj(τi(ti)) is obtained from the game Gi(ti) by (at most)
eliminating pure strategies.

We need to show that every game with unawareness corresponds to a hierarchy
of some type space and mappings which satisfy the above conditions and that for
every type spacewithmappings as abovewehave that every pair of types generates a
hierarchy that corresponds to a gamewith unawareness. The first part will be shown
when we discuss the canonical representation of games with unawareness later on.
The second part follows from noting that for a given type ti, we can define the
following hierarchy of gamesGi(ti),  Gj(τi(ti)),  Gi(τj(τi(ti))),  …, which corresponds
to the views i,  i ⋀ j, i ⋀ j ⋀ i, … respectively. For every pair of types t1, t2 we define Gϕ as

the game that contains the union of pure strategies of G1(t1) and G2(t2) (choosing
arbitrary payoffs for payoff of action profiles that are not already present in either G1

or G2). We define the games for all views by extending the above inductively so that
Gυ ⋀ v ⋀ υ = Gυ ⋀ v ⋀ v ⋀ υ and we have a game with unawareness satisfying C1-C4.

This equivalence extends to more than two players without any change in
conditions. For the casewhere playersmay be unaware of other players we need to
modify τi so that it does not necessarily map to a type profile of all other players,
but only the players that the specific type ti is aware of. Similarly,Gi(ti)will include
exactly the players that τi(ti) maps to in addition to player i herself. Finally, we
require that for a player j in Gi(ti) the game Gj(τi(ti)) is obtained from Gi(ti) by at
most eliminating actions and players and preserving the payoff condition as in
condition C4. Thus, the resulting type space and mappings will represent all
normal form games with unawareness. Note that while the representation has a
fairly simple space structure, the set of fundamentals considered by different types
(even of the same player) can be quite different.

For themost part a compact representation of a gamewith unawareness can be
produced. For example, in the first example in the introduction Alice and Bob are
both aware that the game is as in (1), but Alice thinks that Bob is unaware of one of
her actions and considers the game as in (2). Bob actually realizes that Alice
attributes to him this restricted view. The representation of this game with un-
awareness can be collapsed to three states {x,  y,  z}, two states x,  y corresponding
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to (1) and the state z to (2). Alice is unaware of the actual state x, at state x she
considers state y to be the actual state, at state y Bob would consider state z to be
the actual state and he would be unaware of state y. Hence, Alice thinks Bob views
the game as (2) while Bob realizes this and actually views the game as (1). For the
seminal formal treatment of interactive unawareness and in particular the rela-
tionship between models (state space formulation) and the syntax of hierarchies
see Fagin and Halpern (1988).

2.3 Repeated Games with Unawareness

Repeated games introduce a dynamic environment where the restricted view of the
players may change as the games unfolds. Their viewmay be widened from directly
observingbehavior they previouslydidnot consider, from reflecting about behavior,
or any other means of discovery. A view can also dynamically narrow from forget-
fulness, or by deeming some aspect of the game irrelevant at some point.

As with the normal form games, we consider a collection of repeated games
corresponding to relevant views – sequence of viewpoints. This time, however, a
player’s limited view may depend on the period in which the game is played and,
most importantly, it may also depend on the history of play that this player
observed. Hence, the collection of potential viewpoints includes every player at
every period conditional on every possible history of actions by a subset of players.

We define repeated games with unawareness as a collection of standard
repeated games satisfying the four consistency conditions as above. The first
condition accommodates the added dynamic constraint on relevant viewpoints
which now refers to specific histories. For example, if Bob cannot reason about a
certain action in the first period of the repeated game, he cannot reason in this
first period about his, or Alice’s, reasoning in the second period conditional on
this action being taken. As such, the viewpoint after the action has occurred is not
relevant for views that do not consider that action possible. The third condition is
modified to allow for imperfect monitoring and forgetfulness. In these cases a
player may not be aware of, or remember, the history of play which requires a
modification of the self awareness condition. The other two conditions remain
intact.

Let G(T) denote the T ≥ 1 repeated game with a stage game G = (I,  ∏i∈IAi,

 {ui}i∈I) and payoffs determined by the sum or average of the stage game payoffs
(similarly we can consider the infinitely repeated δ-discounted games G(δ)). Let
ht(J) = (a1,  …,  at) denote a history of (restricted) action profiles in the first t pe-
riods where for every s we have as ∈ ∏i∈JAi. Hence as is the action profile for the

given subset J ⊂ I. We denote by Ai(ht(J)) the actions taken by i along the
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history ht(J) assuming i ∈ J, i.e. the set {asi
⃒⃒⃒⃒
s = 1,  …,  t}. Let H = {ht(J)⃒⃒⃒⃒t =

0,  1,  …,  T − 1 and ϕ ≠ J ⊂ I} be the set of all histories up to length T − 1 with

h0(J) = ϕ for all J.
Each player after each history of play of a subset of players constitutes a

possible viewpoint. The set of possible viewpoints is defined as the collection

V = {(ht(J),  i)⃒⃒⃒⃒ht ∈ H,  i ∈ I,  ϕ ≠ J ⊂ I}, i.e., it is each player’s view of the game as a

function of the history at the time of observation when considering some of the
players in the game. As before, a typical viewpoint is denoted by v ∈ V .

The set of all finite sequences of viewpoints denoted V = ∪
∞

n=0
V(n) with

V(n) = ∏ ​n
j=1V and the convention V(0) = ϕ. As before a finite sequence of view-

points υ = v1,… , vn( ) is associated with a repeated game Gυ T( ) =
Iυ,  ∏i∈Iυ Ai( )υ,   ui( )υ{ }i∈Iυ( ) where Iυ is the set of players that v1 finds that v2 finds

that… that vn is considering, and similarly for the sets of actions Ai( )υ and payoffs
ui( )υ defined for the stage game with action profiles ∏j∈Iυ Aj( )υ and repeated T

times.

Definition 2. A collection Γ = Gυ T( ){ }υ∈V where Gυ T( ) are repeated games and

V ⊂ V is a set of relevant views is called a repeated game with unawareness if the
following properties hold:

CR1 For every υ ∈ V,  v = ht J( ),  i( ) we have
υ ⋀v ∈ V if and only if i ∈ Iυ,  J = Iυ,  Aj h

t J( )( ) ⊂ Aj( )υ for all j ∈ J (12)

The viewpoints that are considered relevant from the view υ are exactly those that
correspond to players and histories taken from the stage game Gυ(T).
CR2 For every υ ⋀  υ̃ ∈ V we have

υ ∈ V (13)

and

ϕ ≠ Iυ ⋀ υ̃ ⊂ Iυ (14)

as well as

ϕ ≠ Ai( )υ ⋀ υ̃ ⊂ Ai( )υ (15)

for every i ∈ Iυ ⋀ υ̃.

CR3 If υ ⋀ v ⋀  υ ∈ V where v = (ht(J),  i) then there exists some ṽ = (h̃t(J̃),  i) such that

Gυ ⋀ v ⋀ υ T( ) = Gυ ⋀ v ⋀ ṽ ⋀ υ T( ) = … = Gυ ⋀ v ⋀ ṽ…ṽ ⋀ υ T( ) (16)

and υ ⋀ v ⋀ ṽ… ṽ ⋀ υ ∈ V.
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This refines conditionC3by allowing a viewpoint to consider itselfwith respect

to the histories it can reason about. While a view υ may consider v = (ht(J),  i)
because the view finds the history ht(J) possible, it will recognize that the decision
maker i may not be aware of this history due to imperfect monitoring or forget-
fulness. Hence, he might associate himself with other viewpoints such as

ṽ = (h̃t(J̃),  i).
CR4 For every action profile a( )υ ⋀ υ̃ = aj{ }j∈Iυ ⋀ υ̃

there exists a completion to an action

profile a( )υ = aj,  ak{ }j∈Iυ ⋀ υ̃ , k∈Iυ\Iυ ⋀ υ̃
such that

(ui)υ ⋀ υ̃((a)υ ⋀ υ̃) = (ui)v((a)v) (17)

The dynamic features of repeated games with unawareness prompt us to consider
the properties that relate a player’s past and present views. As demonstrated in the
example of a repeated game with unawareness in the introduction, what players
learn about the perceptions of others may be quite intricate. This opens up the
possibility of modeling a variety of “learning” dynamics, where learning fits a
discovery of facets of the game previously not considered, included higher level of
perceptions. We find this to be more close to the casual use of the word, to quote
Alvin Roth: ”One of the most general things that experiments demonstrate is that
subjects adjust their behavior as they gain experience and learn about the game
they are playing and the behavior of other subjects.” (Roth 1995 p.327).

Memory For υ = i1 ht1( ),  …,  ik htk( ),  …,  in htn( )( ) and υ̃ = i1 ht1( ),  …, ik htk+l( ),(
 …,  in htn( )) where htk+l is a continuation of htk and such that υ, υ̃ ∈ V we have that
αυ ⊂ αυ̃. Memory assumes that awareness is monotonic, in the sense that what a
player (ik) is aware of after a history (htk) he will still be aware of after some
continuation of the game. This property states that a player remembers not only
actions but also what he was aware of others’ awareness, and it also assumes that
others are aware the player remembers. Our results hold both with and without this
assumption.

To get a better feel for the potential complexity of repeated games with un-
awareness consider the game depicted in Figure 1 repeated twice. In period 1 Alice
and Bob are viewing each other’s perception at the current period as before: Alice
and Bob are aware of the actions {a1,  a2,  a3,  b1,  b2,  b3}, and Alice perceives that
Bob is unaware of her action a3, i.e., she viewshim as viewing the game as depicted
in Figure 2 as in our original example. But how Alice views (at either period) the
viewpoint of Bob in period 2 will depend on the realization of play in period 1. If
Alice played a3 in period one, she may safely assume that Bob will remember this
action and she will attribute to him the awareness he actually already has.
Moreover, if Bob plays b3 in the first period, Alicemight deduce that Bobmust have
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been aware of a3 in the first period (and if he remembers, in the second period as
well) even if she did not choose a3 in the first period. Hence, Alice’s perception of
Bob’s awareness may change not only from the revelation of actions that were
considered secretive, but also from behavior that may best be explained by a
different scope of awareness Alice should attribute to Bob. In particular, Alice here
may realize that her perception was limited (she did not consider Bob considering
a3) and revise her perception. In this case, Alice may actually reason at period 1
about how she would reason in period 2 about Bob’s reasoning in period 1 if she
observes b3. The important feature of the game form illustrated here is that the
choice of relevant views may depend on how perception changes with observed
behavior– a choiceweusually associatewith a solutionmanifests here in the game
form. Formore on this game and how communication impacts strategic interaction
with unawareness see Feinberg (2007).

2.4 Incomplete Information Games with Unawareness

Incomplete information games with unawareness allow us to model uncertainty
about the awareness of players in addition to uncertainties about the payoffs as
well as high order uncertainties about both. They also allows us to model views
that do not consider all possible types. Aswith other game formswe begin with the
modeler’s view which begins with a standard Bayesian game with a prior
G(B) = (I,  ∏i∈IAi,  Θ0 ×∏i∈IΘi,  P,  {ui}i∈I) where I is a finite set of players, Ai is
player i’s finite actions set, Θ = Θ0 ×∏i∈IΘi is a set of type profiles where Θi is the
set of player i’s types and Θ0 is the set of states of nature, the ui’s are the players’
utilities defined for a realization of Θ and action profiles, and P is a probability
distribution over Θ. The distribution P is the probability over the type profiles as
seen by the modeler. Recall that in a standard incomplete information game each
type has a distribution over the other players’ type profiles. This will be captured in
our settingwhenwe describe the game as viewed by each typewhichwill include a
probability distribution corresponding to that type’s beliefs.

The set of viewpoints is the set of all possible types V = ∪i∈IΘi and a typical
viewpoint is denoted by v = θi ∈ V . The set of all finite sequences of viewpoints is

V = ∪
∞

n=0
V(n). A finite sequence of viewpoints υ = v1,  …,  vn( ) is associated with a

game Gυ B( ) = Iυ,  ∏i∈Iυ Ai( )υ,   Θ0( )υ ×∏i∈Iυ Θi( )υ,  Pυ,   ui( )υ{ }i∈Iυ( ) where Iυ is the set
of players that v1 finds that v2 finds that… that vn is considering, and similarly for
the sets of actions Ai( )υ, states of nature Θ0( )υ, types Θi( )υ, with
Θυ = Θ0( )υ ×∏i∈Iυ Θi( )υ, the distribution Pυ over the viewed type space

Θυ = Θ0( )υ ×∏i∈Iυ Θi( )υ, and payoffs ui( )υ defined for the viewed states of nature,
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types and action profiles Θ0( )υ ×∏i∈Iυ Θi( )υ ×∏j∈Iυ Aj( )υ. The conditions defining

the extension to unawareness are almost identical to those used for the normal
form games.

Definition 3. A collection Γ = Gυ B( ){ }υ∈V where Gυ B( ) are games as above

and V ⊂ V is a set of relevant views is called an incomplete information game with
unawareness if the following properties hold:

CI1 For every υ ∈ V, v = θi ∈ Θi we have

υ ⋀ v ∈ V if and only if i ∈ Iυ, θi ∈ Θi( )υ (18)

CI2 For every υ ⋀ υ̃ ∈ V we have

υ ∈ V (19)

and

ϕ ≠ Iυ ⋀ υ̃ ⊂ Iυ (20)

as well as

ϕ ≠ Θi( )υ ⋀ υ̃ ⊂ Θi( )υ (21)

ϕ ≠ Θ0( )υ ⋀ υ̃ ⊂ Θ0( )υ (22)

ϕ ≠ Ai( )υ ⋀ υ̃ ⊂ Ai( )υ (23)

for every i ∈ Iυ ⋀ υ̃.

CI3 If υ ⋀ v ⋀ υ ∈ V we have

Gυ ⋀ v ⋀ υ B( ) = Gυ ⋀ v ⋀ v ⋀ υ B( ) (24)

and υ ⋀ v ⋀ v ⋀ υ ∈ V.
CI4 For every state (nature and type profile) and action profile pair
θ,  a( )υ ⋀ υ̃ ∈ Θ0( )υ ⋀ υ̃ ×∏i∈Iυ ⋀ υ̃ Θi( )υ ⋀ υ̃ ×∏j∈Iυ ⋀ υ̃ Aj( )υ ⋀ υ̃ there exists a completion to a

pair θ,  a( )υ ∈ Θ( )υ ×∏j∈Iυ Aj( )υ that agrees with the appropriate coordinates of

θ, a( )υ ⋀ υ̃ such that

ui( )υ ⋀ υ̃ θ, a( )υ ⋀ υ̃( ) = ui( )υ θ,  a( )υ( ) (25)

Note that the notion of a type in an incomplete information game with unaware-
ness differs from a type in a standard incomplete information game. The difference
is that the beliefs a type has over the type space (as he perceives it) need not be held
in common knowledge. Moreover, types are allowed to perceive different type
spaces. For example, a type θi may have a belief Pθi yet type θj may conceive type
θi’s belief to be different, Pθjθi ≠ Pθi and even defined on a different space.

458 Y. Feinberg



It is natural to askwhether an analog toHarsanyi’s consistency condition– the
common prior assumption – can be found for these games with unawareness. The
obvious prior candidate is the modeler distribution P = P∅, however, since a type
θi may be unaware of the whole space Θ his distribution Pθi may be defined on a
different set of types (Θ)(θi), and if θi is unaware of some players then (Θ)(θi) may

not be a subset of Θ but rather a subset of a projection. Although this implies that
Pθi cannot be merely a conditional of P, it indicates that a projection of the prior
might do. Letting Pθi be exactly the conditional probability over Θ(θi) of the mar-
ginal of P with respect to Θ0 ×∏j∈Iθi

Θj, and extending this definition to iterated

relevant views provides a candidate for an extended common prior condition.

Definition 4. We say that consistency (in the sense of Harsanyi) holds for an
incomplete information game with unawareness if for every relevant υ ⋀ υ̃ ∈ V we
have

Pυ ⋀ υ̃ = Marg
Θ0( )υ×∏j∈Iυ ⋀ υ̃

Θj( )υPυ

⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒ Θ0( )υ ⋀ υ̃ ×∏j∈Iυ ⋀ υ̃ Θj( )υ ⋀ υ̃ (26)

Note that this is the marginal of Pυ with respect to Θ0( )υ ×∏j∈Iυ ⋀ υ̃ Θj( )υ and then

conditional on the types from the perspective υ ⋀  υ̃, i.e., conditional on the po-
tential subsets of types considered Θ0( )υ ⋀ υ̃ ×∏j∈Iυ ⋀ υ̃ Θj( )υ ⋀ υ̃. Copic and Galeotti

(2005) have independently modeled incomplete information games with un-
awareness in quite a similar manner. The difference is that they consider players
and actions as commonly known and modeled unawareness of types and their
beliefs. While our model above is more general, we find it reassuring that the
structure of the two definitions is essentially the same.

2.5 Extensive Form Games with Unawareness

The final, and in some sense most general, class of games we consider are
extensive form games. This game form captures both uncertainties and dynamics.
An extensive form game is composed of a game tree capturing decision points,
actions, nature moves, information sets, probabilities for nature moves and
payoffs. An extensive form game is denoted G(D) = ((W),  I,  A0 ×∏i∈IAi,

 {Fi}i∈I,  P,  {ui}i∈I) where W ,≺( ) is a finite tree (infinite games vary in definition
and unawareness can be extended accordingly) with a disjoint union of vertices
(a partition)W = V0 ∪  ∪i∈IVi ∪ Z where V0 is the set of natures moves, Vi denotes
the set of player i’s decision points and Z is the set of terminal vertices and the

order w′≺ w denotes that w′ occurs before w on the tree.
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Denote byPred(w) and Succ(w) the (immediate) predecessor, and respectively
successor, ofw – formally it is the maximal vertex smaller thanw and the minimal
larger than w respectively. A pair e = (w, Succ(w)) of a vertex and its successor is
called an edge and the set of edges emanating fromw is denoted E(w). We assume
that every two vertices in the tree are connected with a finite path – a finite
sequence of edges. Hence, every vertex has a (single) predecessor except for the
root that has none and the set of terminal vertices Z ⊂W is the set of vertices that

have no successor. The set of players is I. An edge e = (w,w′) belongs to player i,

resp. Nature, when w ∈ Vi, resp. w ∈ V0. The mappings Ai(w,w′) are defined for

player i’s edges, w ∈ Vi, w’ = Succ(w), A0(w,w′) when (w,w′) is a nature move,
and associate an action with each edge in E(w). The partitions Fi of the sets Vi

correspond to the information sets of player i and f i(w) ∈ Fi denotes the partition
member containing a vertexw ∈ Vi.We require that for everyw the functionAi(w, ·)
of the successors ofw is one to one, that for every pair w ≠ w’ the set of values that

Ai(w, ·) and Ai(w′, ·) obtain are disjoint unless w ′ ∈f i(w) ∈ Fi in which case they
are identical. The mapping P associates a probability distribution over the edges
following each of nature’s vertices. For every w ∈ V0 we denote by P(w) the
probability distributions over E(w). Finally, ui : Z → R are the utilities of players
defined for terminal vertices.

The set of viewpoints is the players’ set of decision points V = ∪i∈IVi and a
typical viewpoint is denoted by v. The set of all finite sequences of view-

points is V = ∪
∞

n=0
V(n). A finite sequence of viewpoints υ = v1,…, vn( ) is associated

with an extensive form game Gυ D( ) = Wυ,≺( ),  Iυ,   A0( )υ ×∏i∈I Ai( )υ,(
  Fi( )υ{ }i∈Iυ,  Pυ,   ui( )υ{ }i∈Iυ) whereWv = (V0)v ∪ ∪​

i∈Iυ(Vi)v ∪ Zv and similarly for all
other ingredients of the game in accordancewith the description above.We use the
same ordering ≺ since Wυ will be subsets of W.

Definition 5. A collection Γ = Gυ D( ){ }υ∈V where Gυ D( ) are games as above and

V ⊂ V is a set of relevant views is called an Extensive FormGamewith unawareness
if the following properties hold:

CD1 For every υ ∈ V, v ∈ Vi we have

υ ⋀  v ∈ V if and only if i ∈ Iυ,  v ∈ Vi( )υ (27)

CD2 For every υ ⋀  υ̃ ∈ V we have
υ ∈ V (28)

ϕ ≠Wυ ⋀ υ̃ ⊂Wυ (29)
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ϕ ≠ Iυ ⋀ υ̃ ⊂ Iυ (30)

as well as for all i ∈ Iυ ⋀ υ̃, w ∈ Vi( )υ ⋀ υ̃
Vi( )υ ⋀ υ̃ = Vi( )υ ∩ Wυ ⋀ υ̃\Zυ ⋀ υ̃( ) (31)

V0( )υ ⋀ υ̃ = V0( )υ ∩ Wυ ⋀ υ̃\Zυ ⋀ υ̃( ) (32)

Fi( )υ ⋀ υ̃ = f ∩ Wυ ⋀ υ̃\Zυ ⋀ υ̃( )⃒⃒⃒⃒ f ∈ Fi( )υ{ } (33)

and

Ai( )υ ⋀ υ̃ w,  w′( ) = Ai( )υ w,  w′′( ) (34)

for the unique successor w′′ of w in Wv such that w′′ ≺w′, where w′ is the succes-
sor of w in Wυ ⋀ υ̃.

CD3 If υ ⋀ v ⋀ υ ∈ V with v ∈ Vi then we have f i v( ) ∩ Vi( )υ ⋀v ≠ ϕ and for every
ṽ ∈ f i v( ) ∩ Vi( )υ ⋀ v we have

Gυ ⋀ v ⋀ υ T( ) = Gυ ⋀ v ⋀ ṽ ⋀ υ T( ) = … = Gυ ⋀ v ⋀ ṽ  … ṽ ⋀ υ T( ) (35)

and υ ⋀ v ⋀ ṽ… ṽ ⋀ υ ∈ V.
The third condition states that a viewpoint must consider its information set to

be relevant. Moreover, the viewpoints it considers in its information set are
assumed to find themselves relevant and model the game in the same manner.
Otherwise, a player at an information set would be able to distinguish decision
points based on differing views at the decision points.

CD4 Let υ ⋀ υ ∈ V. For every terminal vertex w ∈ Zυ ⋀ υ there exists a vertex w′ ∈ Zυ

such that w ≺ w′ and

ui( )υ ⋀ υ w( ) = ui( )υ w′( ) (36)

Note that throughout our constructions and conditions the ordering ≺ for a subset
of the histories is inherited from the ordering in the original standard game. As
with incomplete information games we did not constrain the subjective proba-
bilities that a viewpoint, or a view, associates with nature moves. If a restricted
view of the game omits some nature moves one may still impose an analog for
common priors:

Definition 6.We say thatHarsanyi consistency holds for a extensive form game
with unawareness representing an incomplete information game with unawareness,
if for every relevant υ ∈ V we have at every w ∈ V0( )υ that

Pυ w( ) = P w( )⃒⃒⃒Eυ w( ). (37)
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We note that the definition of condition CD3 is stronger than the repeated games
version CR3 as it requires that a viewpoint not only see itself as a viewpoint in the
same information set and agree with it, but also that it will agree with all its
viewpoints in the restricted information set. This definition follows the interpre-
tation that every player at an information set perceives it as representing indis-
tinguishable information and indistinguishable awareness. In other words, in an
information set of a game with unawareness the relevant player will perceive all
their decision points to have the same perception of the game.

Our main structural result states that games with unawareness are consistent
in the sense that from every view of the game is seen as a game with unawareness
satisfying the exact same conditions as the modeler’s game.

Consider a game with unawareness Γ = Gυ ⋅( )}υ∈V{ where Gv(⋅) has one of the
four forms: normal, repeated, incomplete information or dynamic. For every

relevant υ ∈ V we define the relevant views as seen from v as: Vυ = υ̃ ∈ V
⃒⃒⃒⃒
υ ⋀ υ̃ ∈ V{ }.

For each relevant view υ̃ ∈ Vυ we define the game Gυ̃
υ ⋅( ) = Gυ ⋀ υ̃ ⋅( ) and the game

with unawareness as seen from v is defined as Γυ = Gυ̃
υ ⋅( )}υ̃∈Vυ{ .

Proposition 1. For every game with unawareness Γ with a relevant view
υ ∈ V the game Γυ is a game with unawareness with relevant views Vυ.

The proof of this as well as all other propositions in this paper appears in the
Appendix.

We note that this game form allows for imperfect recall, i.e., players may not
only discover aspects of the game they were not aware of, they can also forget past
actions. If one would rather maintain perfect recall two extra conditions are
required. First the actual game with all the players and actions must be a game of
perfect recall. Furthermore, at every decision point a player must consider a game
that includes the game they considered in the past, i.e., no player may have their
view of the game contract over time. Imposing the latter condition on higher order
views (everyone views everyone’s view… to include all past views) will allow the
conditioning on perfect recall at any reasoning level. Note that this condition still
allows a player to revise their view of what other players view of the game is. For
example, Alice can observe an action by Bob that may lead her to think that Bob is
less aware than she previously thought. This does not imply that she believes Bob
forgot, it is a revision of Alice’s view of Bob’s view at a given decision point for Bob.
Once she revises this view, she may well assign a restricted view for Bob in future
decision points. Still, she will assume that Bob has perfect recall as she revises all
of his views to be more restrictive.
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3 Solutions for Games with Unawareness

In defining solution concepts for games with unawareness we follow the same
principle used in constructing the games: Each relevant view considers equilib-
rium behavior in a manner consistent with the modeler’s definition of equilibrium
behavior. There are some degrees of freedom when taking this approach. Obvi-
ously, one needs to select the solution concept for standard gameswhose behavior
is being generalized, moreover, there may be some flexibility in the extension of
behavior to games with unawareness. The first solutions we analyze are NE and
Rationalizability (R) for normal form games with unawareness. The definition and
analysis of some solutions for the other game forms follow.

3.1 Rationalizability and Nash Equilibrium in Normal Form
Games with Unawareness

In order to define the solutions for games with unawareness we need to associate
behavior with each possible view.

Definition 7. Let Γ = Gυ{ }υ∈V be a normal form game with unawareness. An
extended strategy profile ESP in this game is a collection of strategy profiles
σ( )υ{ }υ∈V where σ( )υ is a strategy profile in the game Gυ such that for every

υ ⋀ v ⋀ υ ∈ V we have

σv( )υ = σv( )υ ⋀ v (38)

in the sense that the same pure strategies are assigned the same probabilities in the
two games Gυ and Gυ ⋀ v, as well as

σ( )υ ⋀ v ⋀ υ = σ( )υ ⋀ v ⋀ v ⋀ υ (39)

The first condition requires that the strategy that the view v associateswith player v
in the game Gυ is the same strategy that the view v finds the player playing in the
game as he is seen to see it, i.e., in the game Gυ ⋀ v. We abuse the notation in the
equalities in the definition since σv( )υ and σv( )υ ⋀ v may reside in different pure

strategy product spaces, however thewhole point is that one is a product of subsets
of the other where the support of the strategies must lie and the probabilities
coincide. Consider, for example our repeated game from the introduction, Alice
perceives that Bob is not aware of non-cooperation hence she will not consider he
would play it as she considers his strategy in the game with non-cooperation
actions that she is aware of. The interpretation is that whenever a strategy is
assigned to a player froma given perspectivewhile taking into account the player’s
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perception, that player is indeed assumed to be playing the strategy from that
perspective. The second condition follows the same logic behind condition C3 in
stating that the behavior associate by a player to the games he views is identical to
the behavior he reasons about himself associating to games, and that this principle
holds from every view. In otherwords, Bob’s strategy associatedwith the game that
Alice perceives that Bob perceives is the strategy that Bob is assumed to play in the
game as Alice perceives it. In addition Bob’s view of his own view of the strat-
egy coincides with his view of the strategy and this is commonly understood at
every view.

It is worthwhile noting that the definition of an extended strategy restricts the
behavior of players to actions they are aware of. In the definition of a game with
unawareness we allowed the possibility that a player may have an action he is
unaware of, i.e., a view υmay perceive a player v as having an available action a,
i.e., a ∈ Av( )υ, while at the same time v may perceive that v is unaware of a, i.e.,
a ∉ Av( )υ ⋀ v. In this case the right-hand side of (38)   is defined on a strictly smaller
set of actions and we assume that the right-hand side support is in that set, hence
the ESP is defined such that σv( )υ assigns 0 probability to the pure strategy awhen
the player is unaware of it.

We begin by defining rationalizability in games with unawareness. As ex-
pected, rationalizability corresponds to playing a best response in the
perceived game to perceived strategies that are themselves best responses in
how it is perceived the corresponding players view the game, and so on. This
extends rationalizability from normal form games to normal form games with
unawareness.

Definition 8. An ESP σ( )υ{ }υ∈V in a game with unawareness is called extended

rationalizable if for every υ ⋀ v ∈ V we have that συ( )υ is a best response to σ−υ( )υ ⋀υ
in the game Gυ ⋀υ.

The principle governing the extension of NE to games with unawareness fol-
lows the epistemic foundation of the solution concept. A NE requires ration-
alizability – players play a best response to conjectures, and some form of truth –
knowledge of conjectures, or agreement on strategies. These correspond in our
setting to strategies that are best responses at every view, and to strategies that
coincide when the views of the game coincide, respectively. The first property
corresponds to rationality in the sense of playing a best response to conjectures.
The second property requires that the conjectures, or best responses, are the same
when reasoning about the same game. In otherwords, when players have the same
perceptions about the game (with unawareness) they share the same conjectures
on behavior – agreement on strategies.
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For a game with unawareness two views υ, υ share the same perception of the
game if they agree on how all other views consider the game, i.e., they consider the

same game with unawareness Γυ = Γυ.
Definition 9. An ESP σ( )υ{ }υ∈V in a game with unawareness is called an

extendedNash equilibrium (ENE) if it is rationalizable and for all υ ⋀,  υ ∈ V such that

Γυ = Γυ we have that σ( )υ = σ( )υ.
Note that an ENE assigns the same behavior in games corresponding to the

concatenation of views once the perceptions of the game coincide, i.e., Γυ = Γυ

implies that for all υ̃ such that υ ⋀ υ̃ ∈ V we have (σ)υ ⋀ υ̃ = (σ)υ ⋀ υ̃. This follows from
noting that Γυ = Γυ implies that Γυ( )υ̃ = Γυ)υ̃( .

We justify the use of the term “extended”with the following result. This result
states that when all views see the game in the exact same manner – there is no
unawareness – then the extended solutions coincide with their standard coun-
terparts for the normal form game at hand. More generally, at every view such that
the game is seen to have no unawareness the extended solution coincides with the
standard one.

Proposition 2. Let G be a normal form game and Γ a normal form game
with unawareness such that for some v ∈ V we have Gυ ⋀ υ = G for every υ such that
υ ⋀ υ ∈ V. Let σ be a strategy profile in the normal form game G then
1. σ is rationalizable for G if and only if σ( )υ = σ is part of an extended rational-
izable profile in Γ .
2. σ is a NE for G if and only if σ( )υ = σ is part of an ENE for Γ and this ENE also
satisfies σ( )υ = σ( )υ ⋀ υ.

While a gamewith unawarenessmay correspond to an infinite collection of games,
the structure does support the existence of an equilibrium:

Proposition 3. Every normal form game with unawareness where the modelers
view has a finite number of players that have a finite set of pure actions has an ENE.
Hence, the weaker extended rationalizability solution is also non-empty.

ConditionC2 guarantees that every viewof howa viewpoint perceives the game is a
restriction of the original view of the game. However, a game with unawareness Γ
may still incorporate an infinite number of differing views of the game with un-
awareness, i.e., the set of games with unawareness Γυ{ }υ∈V could have an infinite

number of distinct members:
Example 1. Consider three players denoted 1, 2, 3 and let G be a normal form

game where player 1 has three actions and players 2 and 3 have a single action
each. Let F be a normal form game obtained from G by removing one of player 1’s
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actions, and let E be a normal form game obtained from F by removing one of the
two remaining actions of player 1. We define the game with unawareness Γ as
follows.

All views are relevant, i.e., V = V . Consider a view υ = v1, v2,…, vn such that
vi ≠ vi+1. It suffices to define Gυ for such views since Gυ′ for a view υ′ with consecutive
repetitions of vi is uniquely derived according to C3.

Define for every prime p > 2

ʋ′p = 1, 2, 1, 2,…, 1, 2, 1⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
p

, 3 (40)

ʋ″p = ʋ′p⋀ ʋ′p = 1,  2,  1,  2,  …,  1,  2,  1⏟̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅ ⏟
p

,  3,  1, 2, 1, 2,…, 1, 2, 1⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
p

, 3 (41)

For v with no consecutive identical viewpoints we define:

Gυ=
⎧⎪⎨⎪⎩
E ʋ=ʋ″pʋ̃   f or  some  prime  p>2  and  some  view   ʋ̃
F if  Gʋ   is  not  def ined  above  and  ʋ=ʋ′pʋ̃   f or  some  prime  p>2  and  view   ʋ̃
G otherwise.

⎞⎟⎠.

(42)

For v with consecutive identical viewpoints we define Gυ to be the same as the view
obtained by replacing each string of consecutive identical viewpoints with a single
representative.

Claim 4. Γ is a normal form game with unawareness.
To prove this claimwe need to show that Γ = Gυ{ }υ∈V satisfies the conditions of

a game with unawareness. Since for υwith some consecutive identical viewpoints
we define Gυ according to C3 this condition holds by definition. Since all players
participate in all games we have that all views are relevant and condition C1 holds
as well. Similarly, since all players participate in each of the viewed games, the
payoffs are well defined and condition C4 holds as well. Similarly, parts (6) and (7)
in conditionC2 hold. It remains to show that (8) holds, or in other words, whenever
Gυ ⋀ υ = F then Gυ ≠ E and that whenever Gυ ⋀ υ = G then Gυ = G. As before, we can
assume that υ,  υ ⋀ υ̃ have no consecutive identical viewpoints. In the first case, if by
way of contradiction Gυ = E then there is a prime p > 2 and some υ̃ such that
υ = υ″p ⋀ υ̃. In particular, υ ⋀ υ = υ″p   υ̃ ⋀ υ( ) which implies that Gυ ⋀ υ = E – a
contradiction. In the second case, we have that if Gυ ≠ G then υ = υ′p ⋀ υ̃ for some
prime p > 2 and view υ̃ (note that this holds whether Gυ equals F or E). Hence
υ ⋀ υ = υ′p ⋀ υ̃ ⋀ υ and we must have Gυ′p  υ̃ ≠ G which completes the proof that Γ is a
well defined normal form game with unawareness.

Claim 5. The set of normal form games with unawareness Γυ′p{ }
p>2 prime

are all

different.
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The proof of this claim follows from observing that for every prime p > 2 we

have that Gυ′p
υ = F for υ = ∅, υ = 1, υ = 12,…, υ = 121...21⏟̅̅⏞⏞̅̅⏟

p

and Gυ′p
υ′p = G. Hence for

all prime q such that q > p we have that Gυ′p
υ′p = F ≠ Gυ′p

υ′p which implies that every

member of the set differs from all the following members assuring that no two
members coincide.

Claim 5 illustrates that the existence of an ENE follows from the fact that at
each view each viewpoint is considered as playing a best response to strategies in
some finite game, so although we have an infinite number of games (one for each
view) the fixed point conditions are satisfied since payoffs for each view are
determined in a finite game. However, we would like to study conditions under
which the normal form game with unawareness is finite, in the sense that there is
only a finite set of games with unawareness associated with the views in the game.
This is particularly important if one wishes to represent the game in a state space
approach with a finite set of states. The following results demonstrate such a
condition.

Consider a view υ = v1,…, vn( ) ∈ V, each view υ′ = vk1,  …,  vkm( ) with
1 ≤ k1 <… < km ≤ n is called a sub-word of v and we denote the order induced by
sub-words as υ′ ≺ υ. The stronger version of condition C2 is stated as follows:
S-C2 For every υ ∈ V we have that for every υ′ ≺ υ

υ′ ∈ V (43)

and

ϕ ≠ Iυ ⊂ Iυ′ (44)

as well as

ϕ ≠ Ai( )υ⊂ Ai( )υ′ (45)

for all i ∈ Iυ.
We have

Proposition 6. If a normal form game with unawareness Γ satisfies condition
S-C2 then the set of games with unawareness Γυ{ }υ∈V is finite.

Condition S-C2 is quite strong as it requires that if Alicemodels Bob’s perception of
Carol reasoning about some action then Bob’s model of the game must indeed
include Carol’s reasoning about that action. Furthermore, Alice model of Carol’s
perceptions of the gamemust assume that Carol is reasoning about this action. The
interpretation of this condition is that the players do not “get it wrong”, in the sense
that when they reason about someone else’s perception they cannot attribute to
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that person an ability that he does not actually posses. While we do not advocate
setting condition S-C2 on the same level as the more intuitive assumption C2, we
point out that our introductory examples do satisfy this condition. We note that
condition S-C2 also implies that if two views of the game see it as a standard game
with no unawareness, then it must be the same standard game:

Proposition 7. For a normal for game with unawareness Γ which satisfies
condition S-C2 and such that Γυ and Γυ

′
are both standard games with

υ ⋀ υ′, υ′ ⋀ υ ∈ V , we have that Γυ = Γυ′ , and in particular we have the same ENE
behavior in both.

We point out that even with condition S-C2 the length of views at which there is a
change of the perception of the game need not be bounded.

Example 2. Consider three players denoted 1,  2,  3 and let G be a normal form
gamewhere player 1 has two actions and players 2 and 3 have a single action each.
Let F be a normal form game obtained fromGby removing one of player 1’s actions.
We define the game with unawareness Γ as follows.

All views are relevant, i.e., V = V . For a view υ = v1,  v2,  …,  vn such that for all i
we have vi ≠ 3 we define Gυ = G and otherwise we set Gυ = F.

We leave it to the reader to check that the example satisfies all required
conditions and note that for any view v that does not contain player 3 the
consideration of that player changes the game, i.e., Gυ ≠ Gυ ⋀ 3.

We conclude this section with the observation that any NE of a standard game
G such that all its actions are held in common awareness, corresponds to an ENE of
the normal form gamewith unawareness. The definition of an ENE readily implies:

Claim 8. Let Γ be a normal form game with unawareness with Gϕ = G . Assume

that σ is a NE of G and that every action in the support of σ is held in common
awareness, i.e., every view finds all the players in G and the actions in the support of σ
to be part of the game, then σ( )υ = σ for all v is an ENE.

3.2 Representing Games with Unawareness as Games with
Incomplete Information

The definition of a game with unawareness maps the strategic situation to a
collection of standard games – associating one standard game with each possible
relevant view of the situation. On the other hand the notion of unawareness or,
“leaving some aspect out of themodeled game”, begs the comparison to the notion
of assigning zero probability to an event. After all, one plausible interpretation of
zero probability events (in a finite setting) can be “things that the player is surewill
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not occur” and hence the player could safely operationally ignore. So it is natural
to ask why a novel structure is required, why not represent situations with un-
awareness with incomplete information games with zero probabilities replacing
unawareness. Indeed, such a construction is feasible, moreover there is a canonic
mapping of normal form games with unawareness to standard games with
incomplete information – canonic in the sense that varying the payoffs in the
game, renaming actions, or players, does not alter the state space under this
mapping. We provide this mapping below. Furthermore, the extended rational-
izable solution exactly coincides with BNE under this mapping. However, what
this mapping does not preserve is the extended NE solution. Hence, while normal
form games with unawareness can be mapped to corresponding games with
incomplete information, Nash equilibrium reasoning in games with unawareness
requires some additional structure without which it differs from the solutions of
incomplete information games. In other words, the extended NE solution in games
with unawareness does not correspond to an existing solution in games with
incomplete information.

With respect to the other forms of games with unawareness the imbedding
becomes more complicated, but not impossibly so. For example, incomplete in-
formation games with unawareness can be mapped to standard incomplete in-
formation games, yet the problem of mapping the solutions of the unawareness
form becomes more severe. The reason is that behavior in incomplete information
games with unawareness distinguishes between probability zero and unaware-
ness, a distinction that disappears in the representation with games with incom-
plete information. Since our solution dictates behavior with characteristics unique
to unawareness the elimination of this distinction in the standard incomplete
information form hinders the reproduction of the solution to games with un-
awareness. Similar difficulties arise when trying to imbed dynamic and repeated
games with unawareness which require the combination of extensive and
incomplete information games.

Consider a normal form game with unawareness Γ = Gυ{ }υ∈V with a set of relevant
views V with Gϕ = G = (I,  ∏i∈IAi,  {ui}i∈I). We define the following I-player incomplete

information game GBayesian game = (I,  ∏i∈IAi,  Θ0 ×∏i∈IΘi,  {Pi}i∈I, {ui}i∈I) where Ai

agree with the gameG,Θ0 = V = ∪​

n=0
∞
I(n), for every i ∈ I the players types are defined by

Θi = υ ⋀ i|υ ∈ V{ }, the players beliefs are Pi(υ ⋀ i,  (υ ⋀ i  ⋀  j)j∈I |υi) = 1 hence all other

υ̃,   υj  j( )j∈I( ) are assigned zero probability by the type υ ⋀ i. Finally, the payoffs ui are

defined as
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ui υ,   υ̃ j ⋀ j( )( )j∈I( ) aj( )j∈I( ) = { ui( )v when  aj( )j∈I are an extension where  ui( )υ is defined
−∞ otherwise.

(46)
where ui( )υ are the payoffs to i as defined in Gυ. Note that the payoffs are deter-
mined by the state of nature in Θ0 and that, following Harsanyi, we set the payoffs
for actions that are notmodeled inGυ at −∞. We also emphasize that thismapping
is not one to one since a gamewith unawareness where a player has a single action
according to some view v is mapped to the same game as a gamewith unawareness
for which at the same view v the player with the single action is not part of the
description of the game and the payoffs are determined according to the single
action, yet this minute difference has no impact on behavior. We also note that the
completion of the action set follows the spirit of Harsanyi’s games of incomplete
information. In our case it plays a structural role in the definition of the mapping
and when we consider whether solutions are preserved it retains the same set of
best responses (for any order of reasoning) by allocating −∞ to the augmented
actions. As with any mapping one wishes to minimize any increase in the re-
quirements on players reasoning as seen in Hu and Stuart (2001) who provided the
foundation for a mapping for the Harsanyi construction.

An equivalent representation of a normal form gamewith unawareness can be
provided via a formulationwhere the set of states isV and each player possesses an
information partition of the state space. For every player i and every υ ∈ V the
player’s partition member includes two states υ,  υ ⋀ i and player i assigns the
probabilities 0 and 1 to the two states respectively. This corresponds to the above
game in that it adds a partition, but preserves all probabilities. This mapping also
provides a graphic representation of games with unawareness which is depicted
in Figure 4. The tree representation indicates the relationship dictated by the
second condition (for each game form) where the arrow from a view v to a view
v ⋀ v indicates how the viewpoint v perceives the game according to v as a more
restricted version of the game Gυ ⋅( ).

A modification of the tree in Figure 4 can also capture unawareness of players
– the relevant views – by trimming the tree at views that are not relevant. Such
elimination of views still leaves us with a tree (and well defined partitions) since
the second condition implies that if a view is irrelevant so are all the views
following it on the tree. We note that all these alternative representations will
preserve extended rationalizability as Bayesian Nash, but will map ENE to a new
solution which refines Bayesian Nash.

Wenote that the representation does not depend on the payoffs of the games, it
also generates the same state space and beliefs if the names of the actions, the
extent of unawareness of actions and the names of the players are changed. In fact,
therewill only be a change if the unawareness of players changes and this is only in
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the last formulation above. The mapping is canonic in the sense that what de-
termines the state space and the beliefs are the set of relevant views, or the set of all
views depending on the representation, neither of which constrains payoffs.

We turn now to ENE and compare them the Bayesian representation of the
strategic situation when the game with unawareness is mapped to a game with
incomplete information. We first note the following:

Claim 9. Let Γ be a normal form game with unawareness and G(B) be the
Bayesian game corresponding to Γ as above. The extended rationalizable strategy

Figure 4: Representing games with unawareness.
Eachstate isdenotedbyavertex v and thesetof verticesV formsa treewith rootυ=ϕ (emphasized in
the figure). The pair of states forming player i’s partition are circled and the partition of player j is
similarly denotedwith a dashed line.We also denote the probabilities that player i assigns to each of
the two states in themember of the information partition.We omit the notation of player k’s partition
(which exactly corresponds to the edges not circled in the figure). We also removed the probabilities
for players j and k which assign 0 to the vertex closer to the root and 1 to further one. The game
associatedwith every state isGυ ⋅( ). The edges connecting the views denote howeach view views the
game as seen from the various viewpoints – the arrows point to the higher level views. We have
omitted the views of players’ view of themselves as this is redundant based on the third condition.
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profiles of Γ coincide with the BNE profiles of G(b) at the state of the world corre-
sponding to υ = ϕ .

The claim follows by observing that at every state the relevant player is
playing a best response to the state he assigns probability 1 to, where other
players play according to how he views their perception, in turn this applies for
iteration of views and as can be seen in Figure 4 the conditions for extended
rationalizability coincide with the Bayesian NE conditions. Claim 9 then implies
that ENE is mapped to a strict subset of the BNE. In particular, this is a subset
where at various states players must play the same strategy if the games at the
states they assign probability 1 to, they assign probability 1 to others assigning
probability 1, and so on, have exactly the same trees of payoffs corresponding to
these iterated beliefs. We note that trying to gage these higher order beliefs about
payoffs, amounts to the construction of the gamewith unawareness to beginwith
as a collection of normal form games corresponding to a set of views. Hence,
games with unawareness and the ENE provide a novel solution to settings with
restricted perceptions.

3.3 Equilibria of Incomplete Information Games with
Unawareness

The definition of extended BNE is constructed exactly in the same manner as the
normal form case. Every view considers a strategy in the game with incomplete
information such that every type plays a best response to the strategies in the game
which the type perceives. In turn, these strategies correspond to how the type
perceives the other players’ types play in the game as the first type perceives the
other types are considering, and so on. As with ENE we also require that if two
views perceive the same incomplete information game with unawareness – have
the same perception of the incomplete information game, the same perception of
how the types in the game view the incomplete information game, and so on– then
they prescribe the same behavior.

Definition 10. Let Γ = Gυ B( ){ }υ∈V be an incomplete information game with
unawareness. An extended strategy profile ESP in this game is a collection of
strategy profiles σ( )υ{ }υ∈V where σ( )υ is a strategy profile in the gameGυ B( ) such that
for every υ ⋀ v ⋀ υ ∈ V we have

σv( )υ = σv( )υ ⋀ v (47)

and
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σ( )υ ⋀ v ⋀  υ = σ( )υ ⋀ v ⋀ v ⋀ υ (48)

Recall that in this case each viewpoint v corresponds to one type of a player in
an incomplete information setting. As with normal form games we extend the
solutions:

Definition 11. An ESP σ( )υ{ }υ∈V in an incomplete information game with un-

awareness is said to be extended rationalizable if for every υ ⋀ v ∈ V we have that
σv( )υ is a best response to σ−v( )υ v in the game Gυ v.

and
Definition 12. An ESP σ( )υ{ }υ∈V in an incomplete information game with un-

awareness is called an extended Bayesian Nash equilibrium EBNE if it is rational-

izable and for all υ,  υ ∈ V such that Γυ = Γυ we have that σ( )υ = σ( )υ.
Wenote that, as with ENE for normal form games with unawareness, the EBNE

is a new solution concept. In order to capture this solution with standard incom-
plete information games one would require a fine tailoring of the game that dis-
tinguishes the beliefs that stem from uncertainty from those that are generated by
unawareness. One would need to choose a particular state space and define the
types’ beliefs on a case by case basis to capture the EBNE behavior in standard
incomplete information games, while in the process essentially mimicking the
construction of incomplete information games with unawareness.

3.4 Equilibria of Dynamic Games with Unawareness

Dynamic games provide a host of solution concepts. Many of these consider
alternative principles for belief revision. In particular, beliefs and behavior after a
deviation from the equilibrium path occurs. The extension of these solutions is no
different than the extensions to normal form, or incomplete information, games
with unawareness. The extensions require an epistemic foundation for the solution
determining the nature of reasoning about beliefs and rationality in a dynamic
setting, and will depend on the choice of epistemic characterization. Such char-
acterizations neednot be unique as can be seen in the epistemic characterization of
sequential equilibria for dynamic games with unawareness in Feinberg (2004).

Definition 13. Let Γ = Gυ D( ){ }υ∈V be a dynamic game with unawareness. An
extended strategy profile ESP in this game is a collection of strategy profiles
σ( )υ{ }υ∈V where (σ)v is a behavior strategy profile in the game Gυ D( ) such that for

every υ ⋀ v ⋀ υ ∈ V we have
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σv( )υ = σv( )υ ⋀ v (49)

and for every ṽ ∈ f i υ( ) ∩ Vi( )υ ⋀ v we have
σ( )υ ⋀ v ⋀ υ = σ( )υ ⋀ v ⋀ υ̃ ⋀ υ (50)

Recall that a viewpoint v corresponds to a decision point in the game tree. In
particular, this could be one of a number of points in an information set.
Furthermore, at that decision point the player may perceive the situation as cor-
responding to one of the other decision points at the same information set due to
beliefs about prior strategic behavior. We need to verify that using condition (50)
agrees with the definition of a dynamic game and with the interpretation of an
information set. Indeed, inductively applying (50) we have that

(σ)υ ⋀ v ⋀ υ =(σ)υ ⋀ v ⋀ ṽ ⋀ υ = (σ)υ ⋀ v ⋀ ṽ…ṽ ⋀ υ (51)

which is a well defined condition according to condition CD3.
As with standard dynamic games, rationality in a dynamic setting depends on

whether the payoff is calculated ex-ante, or conditional on reaching adecisionpoint.
With the latter requiring postulating conditions for belief revision aswell as forward,
backward and hypothetical rationality analysis. While one can analyze these al-
ternatives as in Feinberg (2004) here we simply extend NE directly without discus-
sion of the epistemic conditions. We do the same for refinements such as sequential
equilibria which consider assessments – strategies plus beliefs at information sets.

Definition 14. An ESP σ( )υ{ }υ∈V in a dynamic game with unawareness is called

an extended Nash equilibrium ENE if for every υ ⋀ υ ∈ V with υ ∈ Vi( )υ we have

that the behavior strategy σṽ( )υ
⃒⃒⃒⃒⃒
  such   that υ ⋀ υ ⋀ ~υ ∈ V{ } for player i is a best

response to σ−i( )υ ⋀ υ in the gameGυ ⋀ υ D( ) . In addition, for allυ,υ ∈ V such that Γυ = Γυ

we have that σ( )υ = σ( )υ.
We note that the definition requires that a player’s strategy is considered from

how a view perceives the perception of a decision point v. Even if the strategy
implies that this decision point is not reached and even if the player corresponding
to v has a different perception of the game at other decision points. This is not a
choice made in defining the solution, but rather a constraint of the definition of
games with unawareness since a behavior strategy as defined for player i in the
game perceived from v may be beyond the scope of strategies in the game as
perceived by υ ⋀ v.

Thedefinitionof solutions basedonassessments ismore straightforward as they
already require reasoning at information sets. However, since these solutions
involve beliefs at information sets we must define extended assessments as well.
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Definition 15. Let Γ = Gυ D( ){ }υ∈V be a dynamic game with unawareness. An
extended assessment in this game is a an ESP σ( )υ{ }υ∈V and a collection of belief
function μv( )υ{ }υ ⋀ v∈V such that μv( )υ is a probability distribution over the information
set f i(v)∩ ​(Vi)υ ⋀ v such that for every υ ⋀ v ⋀ υ ∈ V we have

(μv)ʋ = (μv)υ ⋀ v (52)

and for every ṽ ∈ f i(v) ∩​(Vi)υ ⋀ v we have
(μ)υ ⋀ ṽ ⋀ υ = (μ)υ ⋀ v ⋀ ṽ ⋀ υ (53)

We are now set to define the extension of solutions based on assessments and will
do so in a general manner.

Definition 16. An extended assessment σ( )υ, μ( )υ{ }υ∈V in a dynamic game with

unawareness is called an extended⋆equilibrium if for every υ ⋀ υ ∈ V with υ ∈ (Vi)υ
we have for any ~ υ ∈ f i(υ) ∩​(Vi)υ ⋀ υ the mixed strategy (σ~υ)υ ⋀ υ maximizes the
expected payoff to player i at ~ υ in the game Gυ ⋀ υ(D), i.e., the expected payoff to i in
Gυ ⋀ υ(D) conditional on the information set f i(υ) ∩​(Vi)υ ⋀ υ being reached with the
probability distribution (μυ)υ, when other players play according to
(σ−f i(υ) ∩​(Vi)υ ⋀ υ)υ ⋀ υ. Where ⋆ stands for sequential or variants thereof, and we

require that (συ)υ and (μυ)υ satisfy the consistency, or other conditions imposed by
refinement ⋆ in the game Gυ υ(D) with respect to the strategies as perceived from the
view υ ⋀υ.

To see how the extended refinement can be implemented to various solution
concepts, consider sequential equilibria for example. In this case we can require
that (μv)υ agreewith the probability distribution generated by (σ−f i(v) ∩​(Vi)υ ⋀ v)υ ⋀ v
inGυ ⋀ v(D) if the information set is reached, and if not, it is the limit of probabilities
assigned by best responses ϵ-completely mixed strategies in the game Gυ ⋀ v(D).

We note that any of the ⋆ conditions are applied within a standard game,
hence they are not modified, rather they are applied to all the games constituting
the game with unawareness using a collection of assessments, one for each
perception of the game. Definition 15 simply assures that the views of these as-
sessments assign the same belief within a perceived information set. The added
complexity is verifying the properties such as probability assessments are pre-
served. This is obtained by simply conditioning on the relevant information sets,
i.e., the subsets generated by restricted views.

We can now state the generalizations of Propositions 3 and 2 which concludes
this paper:

Proposition 10. Assume the normal form, incomplete information and dynamic
games serving as building blocks for the gameswith unawareness we consider all have
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a finite set of players and correspondingly satisfy standard conditions for the existence
of equilibria. Then the set of extended solutions for normal form, incomplete infor-
mation and dynamic games with unawareness is non-empty. Furthermore, each
extended solution coincideswith the standard solutionwhen there is no unawareness.4

4 Conclusion

This work provides a uniform framework to model and analyze games with un-
awareness. The framework follows an identical treatment of various game forms
and allows for unawareness of participating players and their actions. The basic
approach asks that at every decision point (and given any information the player
has) the player has a view of what the game is, a view of how each player in that
game views the game and so on. Hence, all these views relate to standard games
and the collection of standard games constitutes the game with unawareness. Our
four conditions guarantee reasoning consistency in the sense that if Alice reasons
about Bob reasoning about a player or an action then she can directly reason about
them aswell, that Alice’s view about Bob’s view about his own view coincides with
how Alice views Bob and that when there is unawareness of a player the outcomes
are consistent with one of the player’s action.

We emphasize that these games can usually be described much like the ex-
amples in the introduction by indicating the relevant viewof thegame.Whenhigher
order views are relevant (as in the gamesdepicted in (1) and (2)) a further state space
formulation might be required (see the discussion in Section 2.2). Games with
unawareness can be represented as incomplete information games. Indeed, it has
been difficult to envision a situation that cannot be presented as simply a game
where players assign zero probabilities instead of being unaware. However, this
relationship between unawareness and zero probability is still quite open to inter-
pretation (see Li (2008b) and Schipper 2014 for additional discussions and insights).
Using the hierarchies approach the mapping to an incomplete information setting
allows an explicit formulation of this relationship. Moreover, it also demonstrates
why a separate formulation for unawareness may be useful. In particular, it shows
that the natural extension of Nash equilibria to games with unawareness does not
map to any known solution concept for incomplete information games.

4 For solutions requiring additional structures such as assessments, when there is no unaware-
ness we also assume that these assessments coincide for every high order (identical) perception of
the game.
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Appendix

Proof of Proposition 1

Proposition 1 states that from every relevant view, the game with unawareness
defined by considering higher order views, i.e., the game as seen from that view, is
itself a game with unawareness. Hence, we need to show that for each rele-
vant view v, the game defined by Γυ = {Gυ̃

υ(⋅)}υ̃∈Vυ with relevant views
Vυ = {υ̃ ∈ V | υ ⋀ υ̃ ∈ V} satisfies all the conditions for a game with unawareness.

Recall the notation Gυ
υ̃ denotes the game Gυ ⋀ υ̃. Similarly, we denote all the

components of the games Gυ
υ̃(⋅) accordingly, e.g., the set of players is denoted Iυυ̃,

player v’s actions by (Av)υυ̃ and so on.
Consider a normal form game with unawareness Γ = {Gυ}υ∈V and fix a relevant

view υ ∈ V. Recall that Vυ = {υ̃ ∈ V| υ ⋀ υ̃ ∈ V} and Γυ = {Gυ̃
υ}υ̃∈Vυ . Since υ̃ ∈ Vυ is

equivalent to υ ⋀ υ̃ ∈ V we have from applying C1 to Γ that

υ ⋀ υ̃ ⋀ v ⋀ ∈ V if and only if v ∈ Iυ ⋀ υ̃. (54)

Since the left hand side is identical with υ̃ ⋀ v ∈ Vυ and the right hand side
coincides with v ∈ Iυυ̃ we have

υ̃ ⋀ v ∈ Vυ if and only if v ∈ Iυ ⋀ υ̃ (55)

for all υ̃ ∈ Vυ and the first consistency condition holds for Γυ.
If υ ⋀ υ̃ ∈ Vυ we have υ ⋀ υ ⋀ υ̃ ∈ V which implies υ ⋀ υ ∈ V by (6) and is equivalent

to υ ∈ Vυ proving the first part of condition C2. Similarly, we have from (7) and (8)
that

ϕ ≠ Iυ ⋀  υ ⋀ υ̃ = Iυυ ⋀ υ̃ ⊂ Iυ ⋀  υ = Iυυ (56)

and

ϕ ≠ (Ai)υ ⋀  υ ⋀ υ̃ = (Ai)υυ ⋀ υ̃ ⊂ (Ai)υ ⋀  υ = (Ai)υυ (57)

for all i ∈ Iυ ⋀  υ ⋀ υ̃ = Iυυ ⋀ υ̃ which proves the second consistency condition holds for Γυ.
If υ̃ ⋀ v ⋀  υ ∈ Vυ we have

Gυ ⋀ υ̃ ⋀ v ⋀ υ = Gυ ⋀ υ̃ ⋀ v ⋀ v ⋀ υ (58)

and υ ⋀ υ̃  ⋀  v ⋀ v ⋀ υ ∈ V which is equivalent to

Gυ
υ̃ ⋀ v ⋀ υ = Gυ

υ̃ ⋀ v ⋀ v ⋀ υ (59)

and υ̃ ⋀ v ⋀ v ⋀ υ ∈ Vυ and the third condition holds.
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For every action profile (a)υυ ⋀ υ̃ = {aj}υj∈Iυυ̃ we have from (11) a completion to an
action profile (a)υ̃   ⋀  υ = {aj, ak}j∈I υ̃  ⋀ υ ⋀  υ̃, k ∈ Iυ ⋀ υ \ Iυ ⋀ υ ⋀ υ̃ hence the existence of an

action profile (a)υυ = {aj, ak}υj∈Iυ υ̃ , k ∈ Iυυ \ Iυ υ̃
υ such that

(ui)υ ⋀ υ ⋀ υ̃((a)υ ⋀ υ ⋀ υ̃) = (ui)υ ⋀ υ((a)υ ⋀ υ) (60)

which is equivalent to

(ui)υυ ⋀ υ̃((a)υυ ⋀ υ̃) = (ui)υυ((a)υυ) (61)

and the fourth condition holds for Γυ as required completing the consistency proof
for normal form games with unawareness.

For a repeated gamewith unawareness Γ = {Gυ(T)}υ∈V fix a relevant view υ ∈ V.
For every υ ∈ Vυ, v = (ht(J), i) ∈ Vυ where the history ht(J) contains only actions
from (A)υ and i ∈ Iυ, J ⊂ Iυ we have from applying (12) to Gυ ⋀ υ = Gυ

υ that

υ ⋀ v ∈ Vυ if  and  only  if  i ∈ Iυυ,  J = Iυυ,  Aj(ht(J)) ⊂(Aj)υυ  for all  j ∈ J (62)

which is the first consistency condition. The second condition is identical to the
normal form games case.

For the third condition let υ̃ ⋀ v ⋀  υ ∈ Vυ where v = (ht(J), i) and the history and
players are taken from Gυ. According to condition CR3 for Γ there exists some
ṽ = (h̃t(J̃), i) such that

Gυ ⋀ υ̃ ⋀ v ⋀ υ(T) = Gυ ⋀ υ̃ ⋀ v ⋀ v ⋀ υ(T) = … = Gυ ⋀ υ̃ ⋀ v ⋀ v …v ⋀  υ(T) (63)

and υ ⋀ υ̃  ⋀  v ⋀ ṽ… ṽ υ ∈ V. Which is equivalent to

Gυ
υ̃ ⋀  v ⋀  υ(T) = Gυ

υ̃ ⋀ v ⋀ v ⋀  υ(T) = … = Gυ̃ ⋀ v ⋀ ṽ…v ⋀ υυ(T) (64)

and υ̃ ⋀ v ⋀ ṽ… v ⋀ υ ∈ Vυ and the third condition holds. The fourth condition holds
exactly as in the normal form case completing the proof of consistency for repeated
games with unawareness.

For an incomplete information game with unawareness Γ = {Gυ(B)}υ∈V and a

relevant view vwe haveGυ
υ(B) = (Iυυ, ∏

i∈Iυ
υ

(Ai)υυ, (Θ0)υυ × ∏
i∈Iυ

υ

(Θi)υυ,Pυ
υ, {(ui)υυ}i∈Iυυ). The

first three consistency conditions hold in the exact samemanner as for normal form
games. Note that conditions (21) and (22) are shown to hold in an identicalmanner
as condition (23) which is identical to the normal form case. As for the fourth
condition, we note that it too follows a similar proof to the normal form case by
replacing partial actions profiles and their completion by partial pairs of state and
actions and their completion. More formally, for every state and action profile pair
(θ, a)υυ υ̃ ∈ (Θ0)υυ ⋀ υ̃ ×∏υ

i∈Iυ υ̃
(Θi)υυ υ̃ ×∏υ

j∈Iυ υ̃
(Aj)υυ ⋀ υ̃ there exists a completion to a pair
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(θ,  a)υυ ∈ (Θ)υυ ×∏j∈Iυ
υ
(Aj)υυ that agreeswith the appropriate coordinates of (θ,  a)υυ ⋀ υ̃

such that

(ui)υυ ⋀ υ̃((θ,  a)υυ ⋀ υ̃) = (ui)υυ((θ,  a)υυ) (65)

and the proof for incomplete information games with unawareness is complete.
Finally, let Γ = {Gυ(D)}υ∈V be a dynamic game with unawareness and fix a

relevant view v and consider the collection Γυ = {Gυ̃
υ(D)}υ̃∈Vυ . As before, the

components ofGυ
υ̃(D) are denotedwith the superscript v and in particular the game

tree is denoted Wυ
υ̃ as are its components (nature moves, players’ decision points

and terminal nodes) and the collection of information sets are denoted (Fi)υυ̃.
The first condition holds by noting that v ∈ (Vi)υυ̃ if and only if v ∈ (Vi)υυ̃.

Similarly, the equivalents of (28), (29) and (30) hold as in the normal form case and
(31), (32), (33) and (66) follow from noting that the sets of vertices and ordering
coincides between Gυυυ̃(D) and Gυ

υ ⋀ υ̃(D) as do intersections and complements of
the sets of vertices and since the order induced from ≺ is preserved, i.e.,

(Ai)ʋʋ ⋀ ʋ̃(w,  w′) = (Ai)ʋʋ(w,  w′′) (66)

for the unique successor w′′ of w in Wυ
υ such that w′′ ≺w′, where w′ is the succes-

sor of w in Wυ
υ ⋀ υ̃.

If υ̃ ⋀ v ⋀ υ ∈ Vυ with v ∈ Vυ
i then we have f υi (v) ∩​(Vi)υυ̃ ⋀ v ≠ ϕ from condition

CD3 applied to Γ as well as for every v’ ∈  f υi (v) ∩​(Vi)υυ̃ v we have
Gυ
υ̃ ⋀ v ⋀ υ(T) = Gυ

υ̃ ⋀ v ⋀ v′ υ(T) = … = Gυ
υ̃ ⋀ v ⋀ v′…v ⋀  υ(T) (67)

and υ̃ ⋀ v ⋀ v′…v ⋀ υ ∈ Vυ simply by applying (35) for Γ with υ ⋀ υ̃ for υ and v′
for ṽ.

Similarly, let υ̃ ⋀ υ ∈ Vυ. For every terminal vertex w ∈ Zυ
υ̃ ⋀ υ = Zυ ⋀ υ̃ ⋀ υ according

to CD4 for Γ there exists a vertex w’ ∈Zυ
υ̃ = Zυ ⋀ υ̃ such that w ≺ w′ and

(ui)υυ̃ ⋀ υ(w) = (ui)υ ⋀ υ̃ ⋀  υ(w) = (ui)υ ⋀ υ̃(w′ ) = (ui)υυ̃(w′ ) (68)

and the fourth condition holds as well. We have shown that dynamic games
with unawareness are also consistent in the sense that how every view is
modeled to perceive the game, is itself a game with unawareness and the proof
is complete.

Proof of Proposition 2

Let G = (I,  ∏i∈IAi,  {ui}i∈I) be a normal form game and Γ a normal form game
with unawareness such that for some υ ∈ V we have Gυ ⋀ υ = G for every υ such
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that υ ⋀ υ ∈ V. We will assume υ = ϕ the general case follows from considering
Γυ instead.

Assume a strategy profile σ is rationalizable for the normal form gameG. Then for
every player i ∈ I there is a strategy profile for all other players σ−i such that σi is a best
response to σ−i and such that for every j ∈ I \ {i} there is a strategy σ̃−j such that σj is a
best response to it, and so on. For every view vwedefine a strategy profile inductively
as follows: Let (σ)ϕ = σ, for v = i ∈ I let (σ)v = (σ−i, (σi)ϕ) i.e., combining player i’s
strategy σi with σ−i to which it is a best response. Given (σ)υ we define (σ)υ ⋀ v as the
strategy towhich(σv)υ is a best response (augmentedby(σv)υ ) if the last viewpoint in
v does not equal v, andwe let (σ)υ = (σ)υ ⋀ v if the last viewpoint in v coincideswith v.

Since thegameassociatedwith all views isGandall viewsare relevant, the above
collection of strategies is a well defined ESP. By definition of rationalizability, every
view finds the player is playing a best response to the strategies they are considering
according to that view which is the definition of extended rationalizability.

Consider now the same game and let {(σ)υ}υ∈V be an ESP satisfying extended
rationalizability. Since at every view the game corresponds to G we have that all
views are relevant. In particular, for every sequence of players i1, i2,…, in we have a
sequence of strategies corresponding to n + 1 views: σ0 = (σ)ϕ, σ1 = (σ)i1,
σ2 = (σ)(i1 ,i2), …, σn = (σ)(i1 ,i2 ,…,in). These satisfy by extended rationalizability that
σk
ik+1 is a best response toσ

k+1
−ik+1 . Hence,we found that for every player i ∈ I the strategy

(σi)ϕ is a best response to (σ−i)i with (σj)i each being best responses to (σ−j)(i,j) and
so on making (σ)ϕ a profile of rationalizable strategies in the normal form game G.

The second part of the proposition follows similarly: Let G be as above and
without loss of generality assume the gamewith unawareness associatesGwith all
views, i.e., we begin with the view ϕ. Let σ be a NE. Then setting (σ)υ = σ for all
views is awell defined ESP. Hence the condition for identical strategies assigned to
identical views of the game with unawareness is satisfied. Since σi is a best
response to σ−i for all i ∈ I by NE, we have that (σi)υ is a best response to (σ−i)υi for
all v and every i ∈ I and the ESP satisfies extended rationalizability and is therefore
an ENE.

In the other direction, let σ be such that (σ)υ = σ for all v is an ENE. In
particular σ is a strategy profile in G such that σi = (σi)υ is a best response to
σ−i = (σ−i)υi making it a NE.

Proof of Proposition 3

The existence of ENE requires the examination of the possibly infinite collection of
views of the game assuring that a fixed point exists. Consider a normal form game
with unawareness Γ = {Gυ}υ∈V with views V. We define an auxiliary standard
normal form game G as follows:
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Let i denote a player in Gϕ. The set of players in this game is given by

N = {υ ∈ V \{ϕ}⃒⃒⃒⃒υ = (i1,…, in) with ik ≠ ik+1 for all k}. (69)

The action set for each player υ = (i1,  …,  in) ∈N , is given by

Aυ = (Ain)υ. (70)

We define the payoff function for each player υ = (i1,  …,  in) ∈N in this game by

Uυ({(aj)υ̃}υ̃∈N) = (uin)υ({(aj)υ}j∈Iυ) (71)

where (uin)υ({(aj)υ}j∈Iυ) is the payoff to in in the game Gυ when the actions played
are {(aj)υ}j∈Iυ.

The game G = (N ,  A,  U) constitutes a normal form game with a countable
number of players. However, the payoff function for each player depends on the
actions of only a finite number of other players. Consider the product space of
mixed strategies

Σ = ∏
υ∈N

Δ (Aυ). (72)

Since the game at each view has a finite action set we have that A is compact in
the product topology. Considering the best response mapping

B(σ) = ∏
υ∈N

Bυ(σ) (73)

where

Bυ(σ) = {συ ∈ Δ(Aυ)|E(Uυ(σ|συ)) ≥ E(Uυ(σ ⃒⃒⃒⃒⃒σ̃υ))    for  all    σ̃υ ∈ Δ(Aυ)} (74)

and E(Uυ(σ
⃒⃒⃒⃒⃒
σ̃υ)) is the expected payoff when considering the strategy σ modified

byhaving player vplay σ̃υ. The expected payoff iswell defined since for every υ ∈N
there is only a finite number of players influencing the payoffs.

The set valued functions Bυ are non-empty, compact and convex valued since
the payoff functions Uυ are linear continuous functions ofAυ. Hence, the product
map B is a non-empty, compact and convex valued set function on the compact
convex set Σ.B is also upper-hemi continuous since for every sequence σn → σwith
σ,  σn ∈ Σ for n = 1,  2,  …, we have that if σn ∈ B(σn) for all n and σn → σ then we
must also have σ ∈ B(σ). This follows from noting that for every υ ∈N we have

E(Uʋ(σn|σ n
ʋ
)) ≥ E(Uʋ(σn|σ̃ʋ)) for all σ̃υ ∈ Δ(Aυ) (75)

but since Uυ depends only on the actions of υ = (i1,…, il) and υ ⋀ j for j ∈ Iυ, j ≠ il,
the convergence of σn to σ implies convergence in all coordinates and hence the
continuity of the expectation of U yields
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E(Uʋ(σ|σʋ)) ≥ E(Uʋ(σ|σ̃ʋ)) for all σ̃υ ∈ Δ(Aυ) (76)

which holds for all υ ∈N and implies σ ∈ B(σ) as claimed.
The set valued map B satisfies the conditions for the generalized Kakutani

fixed point theorem and as shownby Fan (1952) andGlicksberg (1952) there exists a
σ ∈ Σ such that σ ∈ B(σ)hence there exists an equilibrium σ in the auxiliary gameG.
We now define an ESP for Γ by setting (σ)υ = συ for υ ∈N and inductively for
υ = (i1,  …,  in) ∈ V for which (σ)υ is defined, we set for υ̃ = (i1,  …,  ik ,  ik ,  ik+1,  …,  in)
the strategy (σ)υ̃ = (σ)υ hence we inductively get an ESP. By definition of a NE for
the auxiliary game this ESP is an ENE of Γ as required.

We note that theNE of the auxiliary normal form gameG defined in the proof of
Proposition 3 completely characterizes the set of ENE for the game Γ.

Proof of Proposition 6

Assume by way of contradiction that there is an infinite countable sequence of
relevant views υn{ }∞n=1 that offer distinct views of the game with unawareness.
Formally, for every pair n ≠m there is a υ̃ such that

(A)υn⋀ υ̃ ≠ (A)υm⋀ υ̃. (77)

We note that if the games differ in the viewed set of players they will also differ in
the set of actions as above.

From Lemma 11 whose proof follows, there exists an infinite countable sub-
sequence {υnk}∞k=1 such that υnk  ≺ υnk+1 (the order indicates a substring as in the
Lemma). In particular, for all υ̃ we have υnk⋀ υ̃ ≺ υnk+1  ⋀ υ̃. From condition S-C2 we
have for every k and υ̃ that

(A)υnk ⋀ υ̃ ⊃ (A)υnk+1  ⋀ υ̃. (78)

From (77) we have for every k > 1 there exists some υ̃k such that

(A)υnk−1⋀ υ̃k ≠ (A)υnk⋀ υ̃k (79)

and for this particular υ̃k we have that

(A)υn1⋀ υ̃k ⊃… ⊃ (A)υnk−1⋀ υ̃k⊋(A)υnk ⋀ υ̃k . (80)

Since (80) holds for every k > 1 we have a subsequence {υnk}∞k=1 and a sequence
{υ̃k}∞k=2 such that for all k = 2,  3,  … we have

 (A)υnk υ̃k ≠ (A)υnj υ̃k  ∀ j < k. (81)
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Using Lemma 11 once more, we can find an infinite subsequence {υ̃kl}∞l=1 such
that υ̃kl  ≺ υ̃kl+1 and considering the same subset of indices for υnk we have for all l

(A)υnkl  υ̃kl   ≠  (A)υnkj  υ̃kl  ∀ j < l, (82)

υnkl   ≺  υnkl+1, (83)

υ̃kl   ≺  υ̃kl+1. (84)

From (83) and (84) and since concatenation with the same word (recall that we
termed views as “words” comprised of viewpoints termed as “letters”) preserves
the order ≺ we have that for all l

υnkl
⋀ υ̃kl+1  ≺ υnkl+1  υ̃kl+1  ≺ υnkl+1

⋀ υ̃kl+2. (85)

From condition S-C2 and from (85) we have for every l

(A)υnkl⋀ υ̃kl+1 ⊃ (A)υnkl+1⋀ υ̃kl+1
⊃ (A)υnkl+1⋀ υ̃kl+2

. (86)

Since every (A)υ is a subset of the finite set A, we conclude that there exists a
t such that

(A)υnkt ⋀ υ̃kt+1
= (A)υnkt+1⋀ υ̃kt+1

. (87)

Since (87) contradicts (82) we have reached the desired contradiction and the
proof is complete.

Theproof of theproposition reliedon the following lemmadue toHigman (1952).

Lemma 11. For every sequence of views {υk}∞k=1 we can find an infinite countable
subsequence {υnk}∞k=1 such that υnk  ≺ υnk+1, i.e., each word υnk can be obtained by
deleting some letters of the word υnk+1.

Proof. This Lemma follows immediately from Theorem 4.4 in Higman (1952).
Higman shows (as a special case of his finite basis property theorems) that given a
finite alphabet I, every set of words X from this alphabet has a finite subset X0 such
that for every word w ∈ X one can find a word w0 ∈ X0 such that the letters of w0

occur in w in their right order, though not necessarily consecutively. In particular,
let X = {υk}∞k=1, from Higman’s theorem there exists a finite subset X0 ⊂ X such that
from each word in υ ∈ X one can obtain at least one of the words in X0 by elimi-
nating somemembers in v. Since X0 is finite and X is countable there exists a word
in X0 denoted υn1 that can be imbedded in an infinite subsequence of words from
X∖X0. Hence from every countable sequence of words we can find a subsequence
such that the first word in the subsequence can be obtained from every word that
follows by eliminating some letters. We can now consider the subsequence from
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the second word onwards and find a subsequence such that the second word can
be imbedded in all the words that follow. Maintaining the same first element υn1 we
now have that the first two words can be imbedded in everyword that follows. By
induction the required subsequence is derived.

The following direct proof of Higman’s theorem is due to Michael Ostrovsky:
By induction on k – the number of letters in the alphabet (main induction). For

k = 1, the claim is obvious. Suppose it is true for k up to n. Let us show that it is also
true for k = n + 1.

Claim 12. Any infinite sequence wi of words (made up of k = n + 1 different
letters) contains two words, wi1 and wi2, such that i1 < i2 and wi1  ≺ wi2.

Proof of claim
By induction on l – the length of the shortest word in the sequence. For l = 1 take
the one-letter word. Without loss of generality, the letter is A. Eliminate all the
words that go before that word from the sequence; we now have w1 = A. If any
other word in the remaining sequence contains the letter A, we are done. If not,
then the sequence (w2,  w3,  w4,  …) is made up of only n = k − 1 different letters,
and by the assumption of themain induction, this sequence contains an increasing
subsequence (wj1,  wj2,  …) with any two words, e.g., wj1 and wj2, satisfying the
requirement.

Suppose the claim holds for all l up to m. Let us show that it is also true for
l = m + 1. Take the shortest word in the sequence. Without the loss of generality, it
is thefirstword in the sequence, and thefirst letter in thisword isA. If there is only a
finite number of other words that contain the letter A, then the remaining infinite
subsequence is made up of only n different letters and we are done. Otherwise,
drop all the words that do not contain the letter A from the sequence. For each
remaining word wi, let Li be the part of the word that precedes the first occurrence
of A in the word, and Ri be the part that follows the first occurrence of A (e.g., if
wi = BCADCAB, then Li = BC and Ri = DCAB; if wi = ABC, then Li is the empty
word, and Ri = BC). Note that all words in the sequence (L1,  L2,  …,  Li,  …) are
made up of only n different letters, and so there exists an increasing subsequence
(Li1,  Li2,  …) such that for any t, it < it+1 and Lit  ≺ Lit+1. Note also that since we
assumed that w1 is the shortest word and starts with an A, we can let i1 = 1 – the
empty word is smaller than any other word.

Now, consider the corresponding sequence (Ri1,  Ri2,  …). The shortest word in
this sequence has length of at mostm (because R1, by construction, has lengthm),
and therefore, by theminor induction assumption there exist u and v such that u < υ
and Riu≺Riυ. But we also know that, by construction, Liu  ≺ Liυ, and so wiu  ≺ wiυ, and
the claim follows.
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We can now complete the proof of the step of the induction of Higman’s
theorem. Take any sequence of words made up of k = n + 1 different letters.
Consider all words wi in this sequence such that there does not exist j > i such that
wi  ≺ wj. There can be at most a finite number of such words, since otherwise the
subsequence formed from these words would be a counter-example to the claim.
Let wh be the last one of these words in the sequence, so that for any j > h there
exists k > j such that wj  ≺ wk. It is now possible to construct an infinite increasing
subsequence, e.g., take the subsequence (wit) such that i1 = h + 1 and for all t > 1,
it = mini>it−1{i|wit−1  ≺ wi} and the proof of Higman’s theorem is complete.

Proof of Proposition 7

Let υ and υ′ be such that Γυ and Γυ′ are standard games. Hence, for every
υ̃ such that υ ⋀ υ̃ ∈ V we have

Aυ ⋀ υ̃ = Aυ and Iυ ⋀ υ̃ = Iυ (88)

as well as for every υ̃ such that υ′  υ̃ ∈ V we have

Aυ′ υ̃ = A′υ and Iυ′ υ̃ = I′υ. (89)

Since υ′≺υ ⋀ υ′ ∈ V the condition S-C2 and (88) imply thatAυ = Aυ ⋀ υ′ ⊂ A′υ and using
(89) we similarly get Aυ′ ⊂ Aυ. Using the same argument we conclude that Iυ = Iυ′.
Since there is common awareness from these points onward we have that Gυ = Gυ′

as well as Gυ = Gυ ⋀ υ̃ = Gυ′ υ̃ = Gυ′ for all υ̃ such that υ ⋀ υ̃ or equivalently υ′  υ̃ is
relevant. Since ENE for games with unawareness where all views share the same
standard game coincides with NE of the standard game, the same behavior is
dictated by ENE in both Γυ and Γυ′.

Proof of Proposition 10

The proof of existence of the extended solution concepts for repeated, incomplete
and dynamic games with unawareness follows quite closely the proof of Propo-
sition 3. Similarly, the proof that the solutions coincide with the standard solution
once the views agree follows closely the proof of Proposition 2. We detail the
required modifications for the application of these proofs.

The proof for incomplete information games with unawareness is identical to
the normal form games proof with the exception that type spaces may be infinite.
Hence, there may be an uncountable set of views. Still, the critical condition (76)
holds as long as the utility of a type is continuous in other players types’ strategies,
but this amounts to continuity in a standard incomplete information game since all
we need is for the strategies to be measurable in the type space. Repeated games
and dynamic games with unawareness require a modification of the final part of
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the proof of Proposition 3 where the equilibrium of the auxiliary game is extended
to the game with unawareness. The difference here is that a viewpoint for a player
may consider itself as a different view point, for example, a viewpoint corre-
sponding to one member of an information set may view herself as corresponding
to another member of the (same) information set. This is illustrated in condition
CD3 in (35) (and condition CR3 for repeated games). Constructing a strategy for the
gamewith unawareness from a strategy for the auxiliary game that we construct in
the proof of Proposition 3 requires thatwe extend the strategies defined for a subset
of views to all relevant views. The subset of views is determined as iterating views
that can be associatedwith different strategies in the gameswith unawareness. For
dynamic games the subset of views that the auxiliary game considers will not have
two views from the same information set. When mapping these strategies to the
gamewith unawareness we complete the set of strategies, for all relevant views, by
identifying views that must be associated with the same strategy. In particular,
once the strategy for a view υ ⋀ v ⋀ υ is defined, we assign the same strategy for the
views υ ⋀ v ⋀ ṽ ⋀ υ,  …,  υ ⋀ v ⋀ ṽ ⋀ …ṽ ⋀ υ where ṽ is as determined by condition CD3.
The rest of the proof coincides with the proof for the normal form case.
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