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Abstract: Ambiguity in the ordinary language sense means that available infor-
mation is open to multiple interpretations. We model this by assuming that in-
dividuals are unaware of some possibilities relevant to the outcome of their
decisions and that multiple probabilities may arise over an individual’s subjective
state space depending on which of these possibilities are realized. We formalize a
notion of coherentmultiple priors and derive a representation result that with full
awareness corresponds to the usual unique (Bayesian) prior but with less than full
awareness generatesmultiple priors.When information is receivedwith no change
in awareness, each element of the set of priors is updated in the standard Bayesian
fashion (that is, full Bayesian updating). An increase in awareness, however, leads
to an expansion of the individual’s subjective state and (in general) a contraction in
the set of priors under consideration.
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1 Introduction

The idea that choices under uncertainty are subject to problems arising from
ambiguity was first put forward by Ellsberg (1961), drawing on the earlier work of
Knight (2006). Like Knight, Ellsberg argued that, in many cases, decisionmakers
do not, and could not be expected to, act as if they assignedwell-definednumerical
probabilities to all the possible outcomes of a given choice. His well-known
thought experiments illustrating this argument formed the basis of a large sub-
sequent literature both theoretical and empirical.

Inmost of this literature, the term “ambiguity”has been treatedas a synonym for
what Knight called “uncertainty” namely the fact that relative likelihoods are not
characterized by well-defined numerical probabilities. The standard method of
dealing with ambiguity in decision theory is to endow the decisionmaker with mul-
tiple priors as in Gilboa and Schmeidler (1989). This approachmay be combinedwith
a variety of preference models, notably including the maxmin model of Gilboa and
Schmeidler (1989) and the smoothmodel of Klibanoff,Marinacci, andMukerji (2005).

For a non-specialist this is puzzling; there is no obvious link to the ordinary
meaning (or meanings1) of ambiguity as a characteristic of propositions with more
than one interpretation. In its normal usage, ambiguity is a linguistic concept, but
in decision theory it is typically treated as a property of preferences.

The now-standard usage is quite different from that in Ellsberg’s (1961) orig-
inal article. Ellsberg treated ambiguity, not as a property of preferences or relative
likelihoods, but as a property of the information on which judgments of relative
likelihoods might be based.

“Responses from confessed violators [of the expected utility (EU) axioms] indicate that the
difference is not to be found in terms of the two factors commonly used to determine a choice
situation, the relative desirability of the possible payoffs and the relative likelihoodof the events
affecting them,but ina thirddimensionof theproblemof choice: thenature ofone’s information
concerning the relative likelihoodofevents.What is at issuemightbe called theambiguityof this
information, a quality depending on the amount, type, reliability and ‘unanimity’ of informa-
tion, and giving rise to one’s degree of ‘confidence’ in an estimate of relative likelihoods.”

In this paper, we argue that informational ambiguity, in the ordinary language
sense that the available information is open to multiple interpretation, may be
modeled using concepts from the literature on unawareness.When individuals are
unaware of some possibilities relevant to the outcome of their decisions, there are

1 Empson (1930) famously distinguished seven types of ambiguity.
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multiple probability distributions that may be applicable, depending on whether
or not these possibilities are realized.

To represent this idea, we adopt a syntactic representation, in which the state
of the world is characterized by the truth values of a finite set of elementary
propositions P. The state space Ω is given by the set of all logically possible
combinations of truth values, that is, by the truth table for P. Events in Ω corre-
spond to the truth values of compound propositions in P.

An unboundedly rational decision-maker is aware of all the propositions in P,
and in the logical closure of P, and therefore has access to a complete and un-
ambiguous description of the state space Ω. If her unconditional and conditional
preferences over acts (mappings from the state space to a set of consequences)
conform to expected utility theory, then it is as if the decision-maker can assign a
unique subjective probability π to any event E, and update that probability in line
with Bayes rule as new information is received.

In contrast, we represent a boundedly rational decision-maker as one who is
unaware of at least some propositions in P. For simplicity, consider the case when
an agent is aware of a proposition p, but not of a related proposition q. In this
situation, the proposition p is ambiguous since it may mean either p ∧ q or p ∧ ¬q.
From the agent’s viewpoint, her information about p is incomplete, since it is open
to multiple interpretations.2

In this paper, we formalize this idea to derive a coherent multiple priors (CMP)
model. Our goals are twofold. First, we derive a representation theorem for the
CMP model and show that, with full awareness, it corresponds to the usual
Bayesian model. Second, we consider the problem of updating beliefs. In our
setting, updating may arise in response to the receipt of new information or to
increased awareness, represented as awareness of new elementary propositions
p. When information is received with no change in awareness, each element of
the set of priors is updated in the standard Bayesian fashion as in Ghirardato,
Maccheroni, andMarinacci (2008). An increase in awareness is represented by an
expansion of the state space to which the decision maker has access, and by a
corresponding contraction in the set of priors under consideration. As the deci-
sionmaker approaches full awareness, the set of priors contracts to a singleton
{π∗}. Relative to π∗ the set of priors at any time t is made of conditional proba-
bilities, depending on the truth values of propositions of which the decision-
maker is unaware.

2 Ambiguity also arises in interactive contexts as in Grant, Kline, and Quiggin (2018), where
different agents may interpret the same proposition differently.
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1.1 Roadmap

The paper is organized as follows. We begin with a motivating example, involving
a policy-maker’s response to an epidemic disease outbreak. This example illus-
trates the relationship between bounded awareness and ambiguous beliefs and
explains the notion of coherence.

We next set up the description of the decision-making problem in both
propositional (syntactic) and state-space (semantic) terms. Awareness, informa-
tion and acts are defined. Under full awareness, individuals have access to a set of
propositions P such that the associated truth table 2P encompasses all relevant
distinctions between states of theworld. Boundedly aware individuals have access
to a more limited set of propositions Awhich gives rise to a coarser state space SA,
as well as an associated ‘complementary’ space of unawareness states, with each
‘unawareness state’ corresponding to an assignment of truth values for the
propositions of which the individual is unaware.

Next we consider preferences and ambiguity. We restate the Ghirardato,
Maccheroni, and Marinacci (2004) axioms. The crucial result of this section is to
show that preferences satisfying theGhirardato,Maccheroni, andMarinacci (2004)
axioms may be derived from the preferences of a fully aware EU-maximizer, by
introducing unawareness.

As in Ghirardato, Maccheroni, and Marinacci (2004), the preference over acts

on SA has a sub-relation which is incomplete and obeys the Independence axiom.
This sub-relation may be represented by a unique, closed convex set of priors: an
act is preferred over another by this sub-relation if it yields greater expected utility
for every prior in the representation. Hence, a DM who is unaware of some of the
propositions is endowed with an ambiguous preference relation which is coherent
(in a sense thatwill bemade precise) with the expected-utility preferences of a fully
aware DM with the same utility function and the appropriate unique prior.

Our new key assumption, Axiom 6, states that if an act is conditionally pref-
erable to another by each conditional preference relation obtained by conditioning
the complete expected utility preference of a fully aware agent on each ‘un-
awareness state’, then it is unambiguously preferred.

We next consider updating in response to increases in information and aware-
ness. We represent updating as a two-stage process. First, in even periods, the DM
gets to know an event (in the part of the state space she is aware of). Second, in odd
periods the DM becomes aware of proprositions she had not previously considered.

For changes in information with constant awareness, we show that the pref-
erences we derive display prior-by-prior Bayesian updating, as in Ghirardato,
Maccheroni, and Marinacci (2008) and Pires (2002). To convey the intuition for
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changes in awareness, we first address the simplest case where the individual
becomes aware of a single additional proposition. We show that the result is to
expand the state space, dividing each existing state into two new states, one in
which the newly discovered proposition is true and the other in which it is false.
Conversely, any pair of priors conditioned on events that differ only on the truth
value of the newproposition is replaced by a convex combination of the two. In the
finite setting we have here, the state space doubles in size, while the set of priors
halves. This result is shown to hold more generally for any changes in awareness
consistent with our model structure.

In Section 7, we discuss important links between the concept of bounded
awareness used here and problems arising in econometric and statistical theory
associated with concept such as ‘latent variables’ and ‘unobserved heterogeneity’
and the techniques for their estimation as developed by Dempster, Laird, and
Rubin (1977). The crucial idea is that the relationship between observed variables
of interest may be influenced by unobserved variables. In some cases, these var-
iables are known on theoretical grounds to be relevant but cannot be measured. A
variety of classical and Bayesian methods may be applied to this case. More
generally, any trained statistician understands that relationships estimated on the
basis of a given data set may be rendered unreliable by the omission of relevant
variables, without necessarily being aware of which variables might be relevant in
a particular case. This may be seen as an example of “awareness of unawareness”.

Section 8 relates our work to the existing literature. Finally, in Section 9, we
offer some concluding comments.

2 Illustrative Example

Consider the regrettably topical problem of developing a public health response to
an epidemic disease outbreak. The disease has only recently been discovered in the
country in question, but has already had severe impacts elsewhere.

The possible options include a low-cost campaign, focusing on basic hygiene
measures such as hand-washing and a high-cost response involving putting the
entire population into some form of quarantine. To simplify, we will assume that
the high-cost option is guaranteed to control the pandemic if applied sufficiently
early before the number of cases reaches some critical proportion of the popula-
tion. The policy-maker (hereafter, PM) has sufficient data to estimate the proba-
bility that the number of cases is below the critical level, which wewill denote by r.
For the purpose of the numerical exercise below, we will set r = 4/5.

The success or failure of the low-cost option depends on a range of factors,
only some of which the PM is fully aware of. Consider the proposition
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q = “the low-cost optionwill contain the pandemic” and its negation ¬q = “the
low-cost option will result in uncontained spread”

The PM is aware that the success of the low-cost option will depend on the
extent of voluntary compliance, but is not explicitly aware of other relevant factors.
To make this more precise, she is aware of the propositions: p1 = “voluntary
compliance will be high”. Hence, the initial set of propositions of which the de-

cisionmaker is aware isA = {q, p1}. This defines the relevant state-space: SA = 2|A| =
{(q, p1), (q,¬p1), (¬q, p1), (¬q,¬p1)}

Given knowledge about the relevant population, the PM can form unambig-
uous statements about the probability of p1 being true, that is whether the popu-
lation is likely to comply with her advice. Given the current state of knowledge
about the disease, no further information is available.

The PM understands that there are other factors relevant to q, and therefore
that information about q is ambiguous in the sense described by Ellsberg. In
these circumstances, some advocates of evidence-based medicine point to
randomized controlled trials (RCT) as the ‘gold standard’ for assessing
interventions.3

Ideally, an RCT would yield precise estimates of the proportions π(q⃒⃒⃒⃒p1) and
π(q|¬p1) of programs that succeed in high compliance and low-compliance pop-
ulations respectively. However, there is no guarantee that RCTs conducted on
different populations will yield the same results, even if these populations are
similar with respect to compliance. On the contrary, it is possible that results differ
too much to be consistent with the hypothesis that low-cost interventions in
populations with similar compliance probabilities have the same probability of
success.

Suppose, thus, that individual RCTs conducted in different countries have
yielded probability estimates πk(q|p1) ∈ [π(p1), π̄(p1)] and πk(q|¬p1) ∈ [π(q|¬p1),
π̄(q|¬p1)] and that the differences are too large to be explained by chance varia-
tion. As Cowan (2020) observes:

“A positive result for treatment against control in a randomized controlled trial shows you
that an intervention worked in one place, at one time for one set of patients but not why and
whether to expect it towork again in a different context. Evidence basedmedicine proponents
try to solve this problem by synthesizing the results of RCTs from many different contexts,
often to derive some average effect size that makes a treatment expected to work overall or
typically. The problem is that, without background knowledge of what determined the effect
of an intervention, there is little warrant to be confident that this average effect will apply in

3 This view is not universally shared. It is also argued that meta-analyses of large numbers of
studies provide better evidence.
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newcircumstances.Without understanding themechanismof action, orwhatwe call a theory
of change, such inferences rely purely on induction.

“The opposite problem is alsopresent. An intervention thatworks for some specific people or in
some specific circumstances might look unpromising when it is tested in a variety of cases
where it does not work. It might not work ‘on average’. But that does not mean it is ineffective
when the mechanism is fit to solve a particular problem such as a pandemic situation. Insis-
tence onanarrownotionof evidencewillmeanmissing these interventions in favor of ones that
work marginally in a broad range of cases where the answer is not as important or relevant.”

In these circumstances, the PM is cognizant of the fact that there are differences
between the populations of the various countries that result in differing rates of
success for the low-cost intervention, but is unaware what these differences might
be.4Wemay suppose that some of the RCTpopulationsmatch that of the country in
question.

How can the PM reason about the probability that the treatment will be suc-
cessful for a population with known compliance rates?

One possible answer, noted by Cowen, is to impute the mean probability
π(q|p) (respectively, π(q|¬p)) averaged across RCT studies of populations with
high (low) compliance. Given that the country is a member of a particular, yet
undefined, sub-class, this answer is wrong with probability 1, although the di-
rection and magnitude of the error cannot be determined.

An alternative might be to set up a higher-order probability model. That is, the
PM might impute a subjective probability wk to the proposition ‘the relevant
characteristics of my country are most similar to those of the patient population of
country k’. This yields, for compliant populations, the success probability

π*(q⃒⃒⃒⃒p1) = ∑
k
πk(q

⃒⃒⃒⃒
p1)wk. Some version of this subjective approach would be

required of an agent satisfying the Savage axioms. Yet the solution is obviously

problematic. While the success rates for each country, πk(q
⃒⃒⃒⃒
p1), are objectively

defensible, the choices of wk are just guesses. The resulting weighted average

π*(q⃒⃒⃒⃒p1) cannot be justified to the public, or to another policy-maker whose

guesses wk are different.
The third response to unawareness is to say that the success probability lies in

the interval [π(p1), π̄(p1)]. With this response, bounded awareness implies
ambiguous probability beliefs.

4 Here we deliberately use “cognizant” instead of “aware”, in light of the observation made by
Grant and Quiggin (2013) that the proposition “I am aware that there exist propositions of which I
am unaware” is self-contradictory for plausible definitions of awareness.
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The idea that probabilistic judgments apply to large populations but not to
individual cases (in our case, that of individual countries) may be traced back to
Knight. It is eloquently expressed byMukerjee (2015) as applied tomedical research:

“We have invented many rules to understand normalcy - but we still lack a deeper, more
uniformunderstanding ofphysiologyandpathology. This is true for even themost commonand
extensively studied diseases - cancer, heart disease, and diabetes.…Why do certain immune
diseases cluster together in some people, while others have only one variant? Why do patients
with some neurological diseases such as Parkinson, have a reduced risk on cancer?

“These ‘outlying’ questions are the Mars problems of medicine … ”

In all these questions there is “awareness” of several different outcomes, but
“unawareness” of what the cause of these different outcomes might be, and how
they apply in particular cases.

Suppose indeed, that the reality in our epidemic example ismore complicated:
whether or not a low-cost program succeeds depends not only on the population
compliance, p1 but also onwhether household size is small, p2.What ismore, these
two factors are interrelated.

In particular, traditional societies with large families are more inclined to
follow directives from established authorities. Suppose no other factors are
relevant.

Thus the set of propositions P = (q, p1, p2) defines an eight element “small
world” in the sense of Savage (1954).

The following table gives the joint probability of the validity of the relevant
propositions, p1 and p2 for the population in question.

For later reference, Pr(p1
⃒⃒⃒⃒
p2) = 3/11, (Prp1|¬p2) = 9/13.

Given the interplay between p1, p2 and q explained above, we specify
the following conditional probabilities of q given the truth realizations of
p1 and p2:

5

5 In the general model specified in Section 6, we require that all relevant events be non-null so as
to avoid discussing updating of beliefs upon the occurrence of a null event. For the purposes of the
example, we assume that some of the states do occur with probability 0. Note that this does not
generate a contradiction in as far as the example does not require updating conditional on such
0-probability events.
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This implies that the joint probability distribution of the truth values of q, p1 and p2 is:

and the joint (marginal) probability distribution of q, p1 is:

A fully aware PM can thus state the unconditional probability of q as Pr{q} = 23/48.
In this context, learning the truth value of p2 generates a partition

F 1 =
⎧⎪⎪⎨⎪⎪⎩

{(q, p1, p2),(q,¬p1, p2),(¬q, p1, p2),(¬q,¬p1, p2)},
{(q, p1,¬p2),(¬q, p1,¬p2),(q,¬p1,¬p2),(¬q,¬p1,¬p2)}

⎫⎪⎪⎬⎪⎪⎭
and the updated conditional probabilities are calculated as usual, e.g.,

Pr{q, p1

⃒⃒⃒⃒
p2} = Pr{(q, p1, p2)}

Pr{(q, p1, p2)} + Pr{(q,¬p1, p2)} + Pr{(¬q,p1,p2)} + Pr{(¬q,¬p1, p2)}
.

Hence, for each realization of the truth value of p2, we obtain the probability
distribution on the state space SA:
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Pr{q, p1|p2} = 3/11 Pr{q, p1|¬p2} = 9/26
Pr{¬q, p1|p2} = 0 Pr{¬q, p1|¬p2} = 9/26
Pr{q,¬p1|p2} = 4/11 Pr{q,¬p1|¬p2} = 0

{¬q,¬p1|p2} = 4/11 Pr{¬q,¬p1|¬p2} = 4/13

(5)

Now consider a partially aware PM. We suppose that the PM entertains two priors

over SA, corresponding to the possible truth values of p2. These priors represent the

PM’s perception of theambiguity of the information shehas available concerning SA.
We will be particularly concerned with the case of coherent priors. Coherent

priors correspond to the conditional probabilities the agent would assign if she
were actually aware of the truth values. The underlying idea is that, while the PM

cannot articulate p2, her beliefs on SA correctly reflect the beliefs she would hold if
she were fully aware. That is, each row in (5) defines an interval of probabilities a

PM may entertain about the occurrence of a state in SA.
In our example, the probability distribution in the right column in (5) corre-

sponds to a data set from an RCT study conducted in a country with small
households whereas the left column would correspond to RCT data generated in a
country with large households.

Thus, with k ∈ {1, 2}, where p2 is true for country 1 and ¬p2 holds for country 2,
we would have

π1(q⃒⃒⃒⃒p1) = 1,π1(q|¬p1) = 1
2

π2(q⃒⃒⃒⃒p1) = 1
2
,π2(q|¬p1) = 0

Realistically, for most countries, the proportions of households would be between
the extreme values, giving rise to a convex set of probabilities.

The range of possible probabilities over SA is given by an interval in [0, 1]4 with
extreme points given by the two conditional distributions (3/11,0, 4/11, 4/11) and
(9/26, 9/26,0, 4/13) identified in (5).

Upon learning the truth value of p1, that is, the compliance characteristics of
the population, and using full Bayesian updating on the set of priors, the beliefs
over the value of q reduce to:

580 S. Grant et al.



where the extreme points of the interval in each case reflect the two distributions
conditional on the truth of p2 presented in Table 2.

The resulting convex set of priors is illustrated in Figure 1. The upper red line

shows the set of priors for the pair (Pr(p1),Pr(q
⃒⃒⃒⃒
p1)). Point A represents the prior

belief derived from the implicit assumption of p2. PointB represents the prior belief
derived from the implicit assumption of ¬p2.

Similarly, the lower blue line represents the set of priors for the pair

(Pr(p1),Pr(q|¬p1)). Point A′ represents the prior belief conditional on the implicit

assumption of p2. Point B
′ represents the prior belief conditional on the implicit

assumption of ¬p2.
The information represented by Points A and A′ is sufficient to represent the

prior belief over the state space {(q, p1), (q,¬p1), (¬q, p1), (¬q,¬p1)} derived from
the implicit assumption of p2. Similarly, the information represented by Points B

and B′ is sufficient to represent the prior belief derived from the implicit
assumption of ¬p2.

Now suppose our PM becomes aware of p2 and assigns the “correct” prior
probability 11/24 to p2 being true. (If the available data is representative, this prior
could also be inferred from the data, once the truth value of p2 has been measured

for each observation). Now the two priors on SA, (3/11,0, 4/11, 4/11) and
(9/26, 9/26,0, 4/13), are collapsed into one, namely that given by (4):

Figure 1: Convex sets of priors for illustrative example.
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Pr(p2)π1(q⃒⃒⃒⃒p1) + Pr(¬p2)π2(q⃒⃒⃒⃒p1)
= 11
24

( 3
11
,0,

4
11
,
4
11
) + 13

24
( 9
26
,
9
26
,0,

4
13

) = ( 5
16
,
3
16
,
1
6
,
1
3
)

and the interval convex hull shrinks to a single point.
Note that the so-obtained probability distribution will coincide with π∗ if and

only if the relative frequency of p2 observed in the RCTs, coincides with the actual
probability of p2 for the population in question.

In Figure 1, upon becoming aware of p2, the pairs (A,B) and (A′,B′) are

replaced by the single priors C and C′ respectively, where C = λA + (1 − λ)B with

λ = Pr(p2
⃒⃒⃒⃒
p1), and similarly C′ = λ′A′ + (1 − λ′)B′ with λ′ = Pr(p2|¬p1). The vertical

axis values of C and C′ are the prior conditional probabilities Pr(q⃒⃒⃒⃒p1) and

Pr(q|¬p1), taking account of available information about p2.
6

As we will show below, under appropriate conditions on beliefs and prefer-
ences, this coherence result holds in general. Becoming aware of some new
propositions, while remaining unaware of others, and updating each element of
the set of coherent priors according to Bayes rule yields a set of posteriors which is
the same as the set of coherent priors obtained by beginning with expanded
awareness and information, and then deriving priors as above. Moreover, the
derivation above shows that coherence is, in principle, testable. Once the PM is
fully aware, a probability distribution overΩ can be elicited, and this is sufficient to
derive the set of priors associated with any state of partial awareness and any
information set.

Now consider the choice faced by the PM, between the low-cost and high-cost
responses. We may consider three possible outcomes: an uncontrolled pandemic,
a successful high cost response and a successful low-cost response. We will
associate these outcomes with payoffs 0, 1/2, and 1.

The high-cost option αh generates an unambiguous lottery yielding 1/2 with
probability r = 4/5 and 0 with probability 1 − r = 1/5. The expected utility of this
lottery is 2/5.

Under full awareness, the low cost option αℓ also generates an unambiguous
lottery yielding 1 with probability 23/48 and 0 with probability 25/48.

By contrast, a PM unaware of p2 entertains the two priors (3/11,0, 4/11, 4/11)
and (9/26, 9/26,0, 4/13).

6 Similarly, the horizontal axis values of C and C’ are convex combinations of the probability of p1
conditional on the realization of p2 with the same coefficients λ and λ′. The interpretation of these
values is more complicated due to the fact that the figure is attempting to represent an
8-dimensional state space in a two-dimensional graph.
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If the PM is uncertain about the degree of voluntary compliance of the pop-
ulation (the validity of p1), the MMEU of αℓ is determined using the minimal
probability of success for the low-cost option, Pr{q} = min{7/11, 9/26} = 9/26.

With these parameter values

9/26 < 2/5 < 23/48.
That is, under full awareness the low-cost option αℓ will be preferred to the high cost
option, but under partial awareness withMMEUpreferences, the high-cost option αh

will be preferred. The PM, realizing that there are relevant factors of which she is yet
unaware,might thusprefer to choose a costlier andmore aggressive courseof action,
which would however help control the pandemic with a known probability r, rather
than facing the worst possible scenario, in which the unknown factor drives the
probability of success to its lowest possible value 9/26. This can be interpreted as an
instance of the precautionary principle in face of unawareness.

3 Setup

3.1 The State of the World: Propositional and State-space
Descriptions

Information and awareness evolve over time. However, we will initially consider
an individual with fixed information and awareness, suppressing time subscripts.

The world is described by the truth values of a finite set of elementary prop-
ositions P = {p1,…, pN}. Compound propositions formed by conjunction and
negation of elementary propositions are denoted by boldface p.

Individuals have bounded awareness, represented by a set A ⊆ P of elementary
propositions which they can express. Awareness and information are mutually
dependent. On the one hand, as will be described inmore detail below, the individual’s
awareness depends on the information they have. On the other hand, that information
must be expressed in terms of propositions p ∈ A ⊆ P expressible by the individual.

This propositional description of theworldmay be represented equivalently in
state space terms more familiar to decision theorists. The state space associated

with the truth table for P may be represented by Ω = 2N with ω a representative
element/state.7 Let Σ denote the field of subsets of Ω with elements E.

7 Since a state specifies the truth value of each proposition in P, it can be expressed as a binary
number, i.e., ω ∈ {0, 1}N . While such a representation may be useful in some contexts, it is mostly
unnecessary for the purposes of this paper and is thus evoked only once in Section 6.2.
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Similarly, for an individual with awareness A the state space of which she is
aware can be expressed as

SA = 2A,

with a generic element sA and field of subsets ΣA with elements EA, referred to as
events. Note that each event EA corresponds to the truth of a compound proposi-
tion p made up of elementary propositions in PA.

Clearly, each state ω ∈ Ω uniquely identifies a state sA ∈ SA by its projection to

SA denoted by ωSA . Conversely, each sA ∈ SA corresponds to an event in Ω, that is,
the set of states ω whose projection to SA is exactly sA: EsA = {ω⃒⃒⃒⃒

ωSA = sA}. Such
events are measurable with respect to ΣA. More generally, an event E ⊆ Ω is

measurable with respect to ΣA iff

ω ∈ E implies ω′ ∈ E for all ω′ ∈ Ω with ωSA = ω′
SA . (7)

We define a probability as a mapping π : ΣA → [0, 1]with the usual properties, and
define the conditional probability operator π(⋅|E) according to Bayes rule

π(E′
⃒⃒⃒⃒
E) = π(E ∩ E′)

π(E)
whenever π(E) > 0.

Note that a probabilitymeasure π on Σ induces a unique probabilitymeasure π̃
on ΣA by setting

π̃(E) = π{ω|ωSA ∈ E}.
Let Ā = P \ A be the set of propositions of which the individual is unaware. The

“complementary state space” of which she is unaware can be expressed as S̄
A = 2Ā,

with generic element s̄A. Notice that Ω = SA ñ S̄
A
.

Furthermore, each (awareness) state sA ∈ SA corresponds to the event {sA} ñ S̄A in
Ω and each s̄A ∈ S̄A corresponds to the event SA ñ {s̄A} in Ω. That is, awareness of the
form described above leads to a “coarsening” of the state space as, for example, in

Quiggin (2016), represented by the projection of Ω onto SA. In the case of full aware-

ness, S̄
A
must be a singleton and similarly for SA in the case of maximal unawareness.

Unawareness in this sense may be distinguished from the case of “reduction”
or “restriction” of the state space, in which some possible elements of Ω are dis-
regarded or, equivalently, in which some propositions that are possibly true are
implicitly assumed to be false. This leads to the possibility of “surprise”, see, for
example, Grant and Quiggin (2015).

584 S. Grant et al.



3.2 Acts

Acts will be represented formally in the usual Anscombe-Aumann framework. To
understand how this framework is applicable in situations of differential aware-
ness, it is useful to recall that each state and event in Ω corresponds to the truth
value of a (typically compound) proposition.

In order to focus on beliefs rather than preferences over outcomes, we
concentrate on a set comprising just two final consequences Z = {0, 1}.8 Hence,
each simple act may be expressed in propositional terms as a bet of the form “If p,
receive 1, otherwise receive 0”. The extension to general outcome sets is
straightforward but adds complexity without additional insight.

Let Δ(Z) denote the set of all lotteries on Z, with a generic element denoted by
x ∈ [0, 1], yielding the (“good”) outcome 1 with probability x and the (“bad”)
outcome 0 with complementary probability 1 − x.

An act α maps Ω to Δ(Z). The set of acts available under full awareness is

denoted A , and is equal to ΩΔ(Z). Let C denote the set of all constant acts. Let B
denote the set of “bets (on events)”, that is, α ∈ B if and only if α(ω) ∈ {0, 1} for all
ω ∈ Ω.

The outcomes of acts considered by an individual with limited awarenessmust
be conditional on propositions of which the individual is aware. Hence, for given

awareness A ⊆ P, any act αmust be measurable with respect to ΣA, and we denote
by A (A) the subset of such acts. Formally:

A (A) = {α : Ω→ [0, 1]|α(ω) = α(ω′) for all ω,ω ′  with ωSA = ωSA ′ }.
Clearly, an agent with limited awareness cannot perceive such mappings. Hence,
the set of acts available to an agent with awareness A is given by:

A A = {α : SA → [0, 1]}.
Note that there is a one-to-one correspondence between the acts inA (A) and those
in A A, but that themappings defining these acts have different domains (Ω vs. SA).

Analogously,C A denotes the set of constant actsA A andBA denotes the set of bets

in A A.

8 In this paper, we abstract from the problem of how the agent deals with ambiguity and explore
the relation between the perception of ambiguity and partial awareness concentrating on agent’s
beliefs. Since only two outcomes are necessary for belief elicitation, the binary outcome
assumption iswithout loss of generality and all results in the paper hold formore generalfinite sets
of outcomes. Using a richer set of outcomeswould allowus (as in the standardAnscombe-Aumann
setting) to uncover the agent’s risk attitude, and, under some additional conditions, as for instance
in Ghirardato, Maccheroni, and Marinacci (2004) elicit his attitude toward ambiguity.
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Each act in A A induces a mapping of elements of SA into lotteries on Z. In

particular, for any sA an act α specifies the probability of obtaining 1, which with

slight abuse of notation we shall denote by α(sA).
As is standard, convex mixtures of acts are defined as state-by-state proba-

bility mixtures: for α and α′ ∈ A , and λ ∈ (0, 1), we define λα + (1 − λ)α′ by
(λα + (1 − λ)α′)(ω) = λα(ω) + (1 − λ)α′(ω)

for all ω ∈ Ω. Convex mixtures in A A are defined analogously with respect to the
state space SA.

Example 1. Suppose that an agent’s initial awareness consists of a single proposition,
A = {p1}, and that the agent later becomes aware of the full set of propositions
P = {p1,…, pN}. In the initial condition of partial awareness, the state space is
S{p1} = SA = {p1,¬p1}, and an act may be represented as an ordered pair of conse-
quences: (α(p1), α(¬p1)). There are only four simple acts available to the agent: the
two constant acts (0,0) and (1, 1) the bet on p1 (1,0) and the bet against p1, (0, 1).
The set of acts A A = [0, 1]2 consists of convex mixtures over these simple acts.
Trivially, each of these acts corresponds to an act inΩmeasurable with respect to ΣA.
For example, the bet on p1 can be represented as α(ω) = 1 if p1 is true in ω and
α(ω) = 0 if ¬p1 is true in ω. The logic of this simple example is fully general.

4 Preferences and Ambiguity

For each level of awareness A ⊆ P, we define preferences on A A by≿. We will

denote = ≿P preferences under full awareness. That is, we consider an agent with a

family of preference orderings over state spaces SA, one for each A.

4.1 The GMM Approach

We first impose the Ghirardato, Maccheroni, and Marinacci (2004) (hereafter,

GMM) axioms: for each A A, we assume the preference relation ≿A satisfies:

Axiom 1 Completeness and transitivity

Axiom 2 Archimedean axiom: for all α, α′, α″ ∈ A A, if α≻Aα ′ ≻Aα″, then there are λ
and μ ∈ (0, 1) such that
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λα + (1 − λ)α″≻Aα′≻Aμα + (1 − μ)α″.
Axiom 3 (a) Certainty independence: for α, α′ ∈ A A and ᾱ ∈ C A, α≿Aα′ iff
λα + (1 − λ)ᾱ≿Aλα′ + (1 − λ)ᾱ for all λ ∈ [0, 1].

(b) Independence under full awareness: if A = P, then for any α, α′, α″ ∈ A , α≿Pα′

iff λα + (1 − λ)α″≿Pλα′ + (1 − λ)α″ for all λ ∈ [0, 1].

Axiom 4 Monotonicity: for α, α′ ∈ A A if α(sA) ≥ α′(sA) for all sA ∈ SA, then α≿Aα′.

Axiom 5 Non-degeneracy: there are α and α′ ∈ A A such that α≻Aα′.
Axiom 2 is purely technical, Axiom 4 is intuitive and uncontroversial, while

Axiom 5 ensures the setting and the analysis that follows is not vacuous. Axiom 1 is
of more interest. The standard completeness axiom, adopted by GMM, is very
demanding, since it requires agents to have complete preferences over all
conceivable acts with respect to a state space whichmay be arbitrarily large. Since
we are restricting the axiom to apply to acts expressed in terms of propositions of
which the agent is explicitly aware, our Axiom 1 is consistent with reasonable
bounds on cognitive capacity. The same reasoning extends to transitivity.

For the case of partial awareness A ⊂ P, Axiom 3 is less restrictive than the
standard independence axiom (as in GMM) except in the special case of full
awareness, for which independence does hold. This implies that in our setting
partial awareness is the only source of deviations from expected utility.

Definition 1 For α, α′ ∈ A A, α is ≿A-unambiguously preferred to α′, if

λα + (1 − λ)α″≿Aλα′ + (1 − λ)α″ for all λ ∈ [0, 1] and all α″ ∈ A A. (8)

Whenever (8) is satisfied for two acts α and α′, we write α ≿A
∗α′. As in GMM, the

relationship ≿A
∗ is a preorder satisfying all the Anscombe-Aumann axioms (except

completeness), and so admits a representation as given in the Lemma below,
GMM, Proposition 5, p. 144. For the case of full awareness, this relationship is
complete.

Lemma 1AxiomsA1-A5 imply for eachA the existence of a unique convex and (weak*)
closed set of priors ΠA such that for any two acts α and α′ ∈ A A

α≿A
∗α

′ if f ∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA) for all  π ∈ ΠA. (9)

In particular, ΠP is a singleton {π∗}.
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Remark 1 Just as in Anscombe-Aumann, for the case of full awareness, Axiom 3(b)
allows us to define conditional preferences and thus, identify conditional beliefs
π*(⋅|E) which satisfy Bayes rule.

Since each constant act can be identified with the probability x ∈ [0, 1], with
which it results in the outcome 1 in every state,wewrite αx ∈ C . As inGMM (pp. 153-
4), for α ∈ A A, define the interval of possible certainty equivalents:

CE∗(α) = { x ∈ [0, 1] ⃒⃒⃒⃒
 for any y ∈ [0, 1], αy≿A

∗α implies y ≥ x and
α≿A

∗αy implies x ≥ y
}.

GMM show that x ∈ CE*(α) iff
min
π∈ΠA

∑
sA∈SA

π(sA)α(sA) ≤ x ≤max
π∈ΠA

∑
sA∈SA

π(sA)α(sA).
Interpreting constant acts x as utilities, and noting that we have restricted utilities
to the unit interval, CE∗(α) corresponds to the set of utilities for α consistent with
some π ∈ ΠA. In the case of full awareness, CE*(α) is a singleton.

4.2 Unawareness and Ambiguity

The preferences described in the previous section are normally interpreted in
terms of ambiguity. Given our setup, there is a natural interpretation in terms of
awareness.

Consider EU preferences over A , ≿, described by the full awareness proba-
bility distribution π∗ derived using Axiom 3(b) in the previous section.9 In this
setting, conditional preferences can be defined as usual.

Definition 2 For α̂, α̂′ ∈ A , α̂ is preferred to α̂′ conditional on event E ∈ Σ, denoted
α̂≿Eα̂′ iff α̃≿α̃′ holds for some (and thus, by Axiom 3(b), for all) α̃, α̃′ ∈ A with
α̃(s) = α̂(s), α̃′(s) = α̂′(s) for all s ∈ E and α̃(s) = α̃′(s) for all s ∉ E.

Remark 2 The so-defined conditional preferences under full awareness can be shown
to satisfy the same Axioms 1–5 as above.

For any s̄A ∈ S̄A, that is, for any set of truth values for the propositions outside
of a given set A ⊆ P (which describes a possible level of awareness), π∗ induces a

9 Without loss of generality, we assign utilities 0 and 1 to the final consequences 0 and 1,
respectively.
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conditional probability distribution π∗(⋅⃒⃒⃒⃒s̄A) over SA. Correspondingly, the induced
conditional preferences ≿s̄A over A (A), are given by α̂≿s̄A α̂′ iff

∑
sA∈SA

π∗(sA ⃒⃒⃒⃒s̄A)α̂(sA) ≥ ∑
sA∈SA

π∗(sA ⃒⃒⃒⃒s̄A)α̂′(sA).
Now consider the family of preferences (≿A)A which satisfy Axioms 1–5. The
following axiom relates the preference relation at a level of awareness A to the
conditional preferences under full awareness.

Axiom 6 Unanimity: for α, α′ ∈ AA, α≿A
∗α

′ if and only if for every s̄A ∈ S̄A and every α̂s̄A ,
α̂′ s̄A ∈ A with α̂s̄A(s ñ s̄A) = α(s) and α̂′ s̄A(s ñ s̄A) = α′(s) for each s ∈ SA and
α̂s̄A(s ñ s̃A) = α̂′ s̄A(s ñ s̃A) for all s ∈ SA and s̃A ∈ S̄A \ s̄A, âs̄A≿â′ s̄A .

Note that this condition can be equivalently rewritten in terms of the condi-
tional preferences in Definition 2. Recall that to each act α ∈ A A paying off on the
state-space SA, there corresponds an act α̂ ∈ A (A) paying off on the state-space Ω
and measurable with respect to ΣA such that α̂(s̃) = α(s) for each each s̃ ∈ Es and
each s ∈ SA. Then Axiom 6 says that for any two acts α, α′ ∈ A A, α is unambiguously
preferred to α′, α≿A

∗α
′, if and only if for α̂, α̂′ ∈ A (A) with α̂(s̃) = α(s) and

α̂′(s̃) = α′(s) for each s̃ ∈ Es and each s ∈ SA, α̂ is preferred to â′ conditionally on any
state s̄A ∈ S̄A, α̂≿s̄A α̂′. Recalling that α̂ and α̂′ are measurable with respect to SA, the
only effect of s̄A is to determine the conditional probability distribution π*(⋅⃒⃒⃒⃒s̄A). So,
we are evaluating α and α′ with respect to a set of probability distributions. Axiom6
says that if α is preferable with respect to each such distribution, then it must be
preferred unambiguously.

This property may be viewed as a version of the sure-thing principle. Unam-
biguous preferences of the type α≿A

∗α
′ here correspond to comparisons for which

existing evidence is uncontroversial, i.e., for which the truth realizations of the yet
unknown propositions and thus of the states in Ā all yield the same preference
ranking for a given choice. Axiom 6 then requires a certain consistency when the
preferences of a decision maker in a state in which he is not yet aware of Ā are
revised upon becoming fully aware of all propositions in Ā. If it is the case that the
realizations of the uknown stateswere irrelevant for the comparison between α and
α′ ex-ante, then this should also be true ex-post for every such possible realization,
i.e., conditional on any possible truth value of the propositions in Ā. Vice versa, if
there is a truth value specification for the propositions in Ā for which the com-
parison between α and α′ is reversed, representative and accurate empirical evi-
dence would reflect this, even if the decision maker is yet unaware of the cause for
such a reversal. Thus, the decisionmakerwould not have unambiguous preference
for α versus α′ at awareness level A.
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Since Axiom 6 uses the conditional preferences derived from the full aware-
ness preference relation for each level of awareness A, its effect is to tie all the
preference relations ≿A to the fully aware preferences ≿ and thereby to each other.

4.3 The Awareness-based Multiple Priors Model

We now establish the claim that unawareness, as we have defined it, naturally
lends itself to a multiple priors model to represent preferences.

Definition 3 Multiple priors preferences are awareness-based if for each A ⊆ P, the
set of probabilities ΠA derived in Lemma 1 satisfies:

ΠA = C̄H{π*(⋅⃒⃒⃒⃒s̄A)⃒⃒⃒⃒⃒s̄A ∈ S̄A},
where C̄H stands for the convex hull of a set, and π∗ is a probability as described in
Section 1.

Clearly, for awareness-based preferences, under full awareness, Π is a
singleton (recall that in this case S̄

A
is a singleton).

Given these definitions we have the following implication of the axioms, the
proof of which is relegated to the Appendix:

Proposition 2 Under axioms A1–A6, the family of preferences (≿A)A are awareness-
based.

Notice that we do not expect the converse to hold. As we shall show, in the
absence of changes in awareness, the probabilities Π derived as conditional dis-
tributions based on unawareness follow Bayesian updating in response to the
arrival of new information. Axioms 1–6 are insufficient to ensure this – we need
additional properties as discussed by Ghirardato et al. (2008). These additional
properties give rise to a coherent multiple priors model.

5 Time, Information, Awareness and Histories

We now consider changes in information as well as awareness over time, and the
induced changes in beliefs and preferences. Time t = 0, 1, 2,…,T is discrete and
finite.

Information is formally modeled by partitions: F t denotes a partition of Ω at
time t. As with acts, understanding is assisted by considering the interpretation in
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terms of propositions. Each element of a partition corresponds to the truth value of
a compound proposition, and the set of such propositions must be exhaustive and
mutually exclusive. Information consists of learning that precisely one of these
propositions is true.

The element of F t that obtains at time t is denoted f t ∈ F t. The collection

F = {F t}Tt=0 constitutes a filtration. That is, for each t = 0,…,T − 1, F t+1 is a
refinement of F t, or equivalently, if f t+1 ∈ F t+1 then f t+1 ⊆ f t for some f t ∈ F t. We
write ρt(f ) for the element of the partition at time twhich contains f ⊆ Ω (provided
such an element exists). That is,

ρt(f ) = {f t ∈ F t

⃒⃒⃒⃒
f ⊆ f t}

In particular, for f t+1 ∈ F t+1, ρt(f t+1) is the immediate predecessor of f t+1.

We write σt′(f t) = {f̃ t′ ∈ F t′
⃒⃒⃒⃒⃒
ρt(f̃ t′) = f t} for the set of successors of f t at time

t′ > t. In particular, σt+1(f t) is the set of immediate successors of f t.
Without loss of generality, we will assume that non-trivial new information

arrives only at odd periods, that is,
⃒⃒⃒⃒
σt+1(f t)

⃒⃒⃒⃒
> 1 only if t = 2k for some k ∈ N0. For

even periods, t = 2k + 1 for some k ∈ N0, we haveF t+1 = F t andnonew information
is revealed.

We assume that no uncertainty is resolved at date t = 0, that is, F 0 = {Ω} and
all uncertainty is resolved by date T, so that for each ω ∈ Ω, {ω} ∈ F T .

10

The explanation above shows that information must be measurable with
respect to the awareness of the agent. An agent cannot learn the truth of a prop-
osition of which she is unaware. It is possible to become aware of a proposition
because its truth becomes evident. Next, we introduce the joint dynamics of in-
formation and awareness.

To do so, we associate with each pair (t, f ) such that f ∈ F t, an awareness level
A(t, f ). We impose the following restrictions on the awareness structure defined by
A(t, f ):

Definition 4 An awareness structure {A(t) : F t → 2P \ {∅ }}Tt=0 is admissible relative
to an information partition F if:
(i) Awareness is non-empty, increasing and can only change in even periods:

∅ ≠ A(t, f ) ⊆ A(t + 1, σt+1(f )) for all t and A(t + 1, σt+1(f )) = A(t, f ) if t = 2k for
some k ∈ N0.

10 Alternatively, we may assume that logical contradictions such as “the weather is sunny”AND
“theweather is rainy” are ruled out at t = 0, and that information received after t = 0 relates only to
conceivable states, which may therefore be assumed to have non-zero probability.
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(ii) Information ismeasurablewith respect to awareness: for an even period t = 2k
for some k ∈ N0 and a given f ∈ F t, each f t+1 ∈ σt+1(f t) is measurable with
respect to ΣA(t,f ) as defined in (7).

Wewill assume that at time T, the decisionmaker is fully aware:A(T , f ) = P for
all f ∈ F T .

Remark 3 The fact that for even t = 2k, σt+1(f t) is measurable with respect to the
awareness level at t, A(t, f t) = A implies that f t itself ismeasurablewith respect to ΣA.
We write f At for the projection of f t to A, whenever measurability is satisfied.

Definition 5An information structure {F t}Tt=0 and an admissible awareness structure
{A(t) : F t → 2P \ {∅ }}Tt=0 give rise to a set of histories

H = {h = (t, f ,A)|t ∈ {0, 1...T}, f ∈ F t ,A = A(t, f )}.
For a given h = (t, f ,A), the set of one-step-ahead histories is:

Hh
+1 = {h+1 = (t + 1, f ′,A′)⃒⃒⃒⃒f ′ ∈ σt+1(f ),A′ = A(t + 1, f ′)}

Definition 6 The awareness-adapted history hA corresponding to h = (t, f ,A) is given
by:

hA = (t, f A,A)
where f A is the projection of f on ΣA. For t = 2k, k ∈ N, and h = (t, f ,A), the set of one-
step-ahead awareness-adapted histories is:

Hh,A
+1 = {hA+1 ⃒⃒⃒⃒h+1 ∈Hh

+1}.
For t = 2k, and a history h = (t, f ,A), we recall that both f and every f ′ ∈ σt+1(f )
are measurable with respect to ΣA. Thus, for every such h and the corre-
sponding awareness-adapted history hA, the set of one-step-ahead awareness-
adapted histories, i.e., histories expressible in terms of propositions in A is
well-defined.

Remark 4 For a given information structure F and an admissible awareness
structure

{A(t) : F t → 2P \ {∅ }}Tt=0, consider two consecutive periods t̂ = 2k, and
t̂ + 1 = 2k + 1. Setting F̂0 = {f }, F̂ 1 = σt+1(f ), and the corresponding awareness
structure to Â(0, f ) = A(t, f ) = A(t + 1, f ′) = A for all f ′ ∈ σt+1(f ) results in an
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information structure together with an awareness structure admissible with respect
to F̂ . For h0 = (0, f ,A), the corresponding set of one-step-ahead awareness-adapted
histories is given exactly by:

Hh0 ,A
1 = {hA1 = (1, f ′,A)⃒⃒⃒⃒f ′ ∈ σt+1(f )}

Note that up to renumbering of the periods, these histories correspond to the one-
step-ahead awareness adapted histories starting at h = (t, f ,A) under the original
partition structure F and awareness structure A(t, f ):

Hh,A
+1 = {hA+1 ⃒⃒⃒⃒h+1 = (t + 1, f ′,A), f ′ ∈ σt+1(f )}.

5.1 Conditional Preferences over Acts

For a given history h = (t, f ,A), the acts of which the decision-maker is aware at h
are those measurable with respect to her awareness level A, that is,

A A = {α : SA → [0, 1]}.
As usual, the information f available to the decisionmaker at history h allows us to
define conditional preferences.

In particular, for t = 2k and h = (t, f ,A), let ΣHh,A
+1 be the σ-algebra (the set of all

subsets) of all one-step-ahead awareness adapted histories. Preferences on A A

conditional on an event H ∈ ΣH
h,A
+1 are written ≿A

H . Such conditional preferences
reflect the fact that for a given awareness level, the arrival of information that the
true state is in Hwill in general change the beliefs of the decision maker and thus,
the evaluation of each of the available acts.

In contrast, for t = 2k + 1 and h = (t, f ,A), the direct successor of h is

h′ = (t + 1, f ,A′), where A ⊆ A′ with strict inclusion being the non-trivial case. The

transition between h and h′ is a change in awareness level, the information f

remaining unchanged. Thus, an agent with conditional preferences ≿A
h on

A A = {α : SA → [0, 1]} will adjust her preferences to the new awareness level, that

is, to ≿A′

h on A A′ = {α : SA
′ → [0, 1]}.

These two adjustment processes will obey different principles. The former will
incorporate new information in a deductive, Bayesian way, leaving existing am-
biguity unchanged. The latter will incorporate newly learned states into the model
by expanding the state-space and simultaneously reducing the level of perceived
ambiguity, that is, the set of priors.
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We now describe our desideratum, the coherent multiple prior model, which
explains how these principles can be combined in a coherent way.

5.2 The Coherent Multiple Prior Model

The following definition of the coherent multiple prior model combines the intu-

ition presented so far. For a probability distribution π ∈ Δ(Ω), denote by πh the
Bayesian update of π conditional on history h.

Definition 7 For a given information structure {F t}Tt=0 and an admissible awareness
structure {A(t) : F t → 2P \ {∅ }}Tt=0, let H be the set of corresponding histories. The
beliefs of an agent satisfy the coherent multiple prior model (CMP) if there exists a
probability distribution π∗ ∈ Δ(Ω) and for each h = (t, f ,A) ∈H a set of priors
Πh ⊆ Δ(SA) s.t.
(i) for t = 0, and h0 = (0,Ω,A0 = A(0,Ω)),

Πh0 = C̄H{π*( ⋅ ⃒⃒⃒⃒s̄A0)⃒⃒⃒⃒⃒s̄A0 ∈ S̄
A0}

(ii) for any t = 2k, k ∈ N, and any h+1 = (t + 1, f ′,A) ∈Hh
+1, with f ′ ∈ σt+1(f )

Πh+1 = {πhA+1
⃒⃒⃒⃒⃒
π ∈ Πh}

(iii) for any t = 2k + 1, k ∈ N0 and the direct successor of h, h′ = (t + 1, f ,A′) ∈H,

Πh′ = C̄H{π∗h( ⋅ ⃒⃒⃒⃒s̄A′)⃒⃒⃒⃒⃒⃒s̄A′ ∈ S̄A
′}.

Part (i) states that for the trivial history, h0, themodel mimics the static awareness-
based multiple prior model presented above. That is, there exists a probability
distribution π∗ of the fully aware agent, which, when applied to the situation with
partial awarenessA0 results inmultiple priorsπ∗(⋅⃒⃒⃒⃒s̄A0 ), one for each of the states of
which the agent with awareness level A0 is unaware.

Part (ii) is an analog of the generalized Bayesian updating rule for multiple
priors introduced by Ghirardato, Maccheroni, and Marinacci (2008) and is applied
to those periods, in which new information arrives.

Finally, Part (iii) is the inductive extension of the static awareness-based
multiple prior model: whenever awareness increases, the set of priors is redefined
on a larger set of states and the number of priors is reduced to the number of those
states S̄

A′

, of which the agent is still unaware. In particular, this part of the defi-
nition implies that as long as information remains unchanged, the sequence in
which awareness is updated does not matter for the final set of priors.
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6 Axiomatizing the Coherent Multiple Prior Model

In this section, we provide axiomatic foundations for the coherent multiple prior
model. We already provided a condition, Axiom 6, that relates beliefs under full
awareness to beliefs under partial awareness and thus, establishes property (i) of
the coherent multiple prior model. This axiom will now be extended to hold at all
conceivable histories, which will allow us to establish property (iii). In contrast, to
obtain generalized Bayesian updating upon arrival of new information, we will
make use of the axiomatization of this updating rule in Ghirardato, Maccheroni,
and Marinacci (2008).

6.1 Updating with Constant Awareness

In Definition 2, we defined conditional preferences for the case of full awareness.
Here, we first extend this definition to arbitrary levels of awareness and provide a
characterization of multiple prior updating with partial, but constant awareness.
In a second step, we incorporate changes in awareness and characterize beliefs
satisfying the coherent multiple prior representation.

For the remainder of the subsection, we will focus on the process of belief
updating between two consecutive periods t = 2k, and t + 1 = 2k + 1. As explained

in Remark 4, for a given h = (t, f ,A), setting F̂0 = {f }, F̂ 1 = σt+1(f ), and the cor-

responding awareness structure to Â(0, f ) = A(t, f ) = A(t + 1, f ′) = A for all

f ′ ∈ σt+1(f ) results in an information structure together with an admissible
awareness structure. For h0 = (0, f ,A), the corresponding set of awareness-
adapted histories is given exactly by:

Hh,A
+1 = {hA1 ⃒⃒⃒⃒h1 = (1, f ′,A), f ′ ∈ σt+1(f )}

Let ΣH
h,A
+1 denote the σ-algebra on such histories and define for each H ∈ ΣH

h,A
+1 the

conditional preferences ≿A
H on A A. Recall that the unconditional preferences are

given by ≿A
h .

For a fully aware agent, conditional preferences are defined on the one-step-
ahead histories

Hh
+1 = {h1 = (1, f ′,A = P)⃒⃒⃒⃒f ′ ∈ σt+1(f )}

In fact, for a fully aware agent, awareness can no longer change and thus, only the
information partition matters. Thus a history h = (1, f ,A = P) can be uniquely
identified by f. The relevant events are given by the algebra generated by F̂ 1, ΣF̂ 1 .
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The conditional preferences of a fully aware agent are definedusingDefinition 2 for
each E ∈ ΣF̂ 1 .

We are, in a first step, interested in the change in beliefs of an agent who
observes and reacts to changes in information while keeping awareness constant
at A. In order to ensure that such beliefs are well-defined we require in the
following all information events to be non-null, regardless of the relevant

awareness level. For an act α ∈ A A, let α−1(1) (respectively, α−1(0)) denote the

event in SA, on which α pays 1 (respectively 0).

Axiom 7 Non-null (information-)events: Let h = (t, f ,A) and the corresponding F̂ 1

and Hh,A
+1 be defined as above:,

(a) For any H ∈ ΣH
h,A
+1 , for the bets α, α0 ∈ A A ∩ B defined as α−1(1) = H and

α−10 (0) = H, we have α ≻A
H α0.

(b) For any E ∈ ΣF̂ 1 , for the bets α and α0 defined as α−1(1) = E and α−10 (0) = E we
have α≻Eα0.

The first part of the axiom ensures that an agent with awareness A at a given
history h considers every information event H corresponding to an element of the
information partition F̂ 1 adapted to her level of awareness, A as non-null. The
second part ensures the same property for the agent who observes the same history
h, but is aware of all possible propositions. In particular, since F T = {{ω}ω∈Ω},
applying Axiom 7(b) to histories at T − 1 ensures that each state ω is considered
non-null by the fully aware agent.

First consider the case of a fully-aware individual. As usual, Axiom 3(b) im-
plies Bayesian updating at every possible history h = (t, f ,P): a fully aware indi-
vidual, A = P, with prior probabilities π∗ replaces them by the conditional at
history h, π∗h = π∗(⋅|f ) upon learning f. Under Axiom 7(b), conditional preferences
are not-trivial and thus, every history and thus, every f is not null with respect to the
preferences≿. It follows that the Bayesian updating process is alwayswell-defined.

Extending this reasoning to all possible subsets of histories,Emeasurablewith
respect to the information partition F , Axioms 1–3(b), 4, 5 and 7(b) imply:

Lemma 3 The class of fully-aware preferences (≿E)E∈ΣF t , t∈{0...T} has an expected utility
representation with a prior given by π∗ and a system of conditional beliefs (π∗E)E
which satisfy Bayesian updating, i.e., π∗E = π∗(⋅|E) for every E ∈ ΣF t , t ∈ {0...T}.

In particular, the so-defined system of beliefs uniquely identifies, for each
history h = (t, f ,A), beliefs conditional on events of the type11 (h, s̄A), π∗h(⋅⃒⃒⃒⃒s̄A).
11 Eliciting such beliefs can be done by offering the agent at history h, an act α paying 1 in case s̄A

occurs and nothing otherwise (α(s) = 1 if s ∈ SA ñ s̄A, α(s) = 0, else) and asking him to identify the
constant lottery α′ ∈ C (α′(s) = x for all s ∈ Ω) he considers indifferent to α conditional on h, α∼hα′.
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We next turn to an agent who at history h = (f , t,A) has awareness level A. We
assume that for eachH ∈ ΣH

h,A
+1 , conditional preferences≿A

H over awareness adapted
acts A A satisfy the same set of axioms, 1–3(a), 4, 5, as the unconditional prefer-
ences ≿A. Adding 7(a), implies that for each H, ≿A

H is non-degenerate. Unambig-
uous preferences ≿A

*H are defined in analogy to ≿A
∗ . Thus, since A remains constant,

for any H, we can associate with the preference ≿A
∗H a set of probability distribu-

tions ΠH on SA such that for α, α′ ∈ A A,

α≿A
∗Hα

′ iff ∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α ′ (sA)for all π ∈ ΠH .

The next two axioms suggested by Ghirardato, Maccheroni, and Marinacci (2008)
impose the desired structure onΠH across all possiblemeasurable eventsH ∈ ΣH

h,A
+1 .

Axiom 8 Consequentialism: For a given h = (t, f ,A) and H ∈ ΣH
h,A
+1 , if α and α′ ∈ A A

such that α(h̃) = α′(h̃) for all h̃ ∈ H, α ∼A
H α′.

Axiom 9 Dynamic consistency of ≿A
∗H: For a given h = (t, f ,A) and H ∈ ΣH

h,A
+1 , and any

acts α and α′ ∈ A A such that α(h̃) = α′(h̃) for all h̃ ∉ H, α≿A
∗hα

′ iff α≿A
∗Hα

′.
Intuitively, Axiom 8, Consequentialism, requires that acts which have iden-

tical payoffs on any element of a setH are considered indifferent givenH. Notably,
this axiom is weaker than the corresponding version in Ghirardato, Maccheroni,
and Marinacci (2008), since it is only imposed on acts of which the agent is aware,
i.e., on acts measurable with respect to ΣA. Axiom 9 requires unambiguous pref-
erences to be dynamically consistent for a given level of awareness A. No such
restriction is imposed across histories with different levels of awareness.

The following corollary follows from the main result in Ghirardato, Maccher-
oni, and Marinacci (2008):

Corollary 4 If for a given t = 2k, and a corresponding history h = (t, f ,A) the family of
preferences ≿A

h and (≿A
H)H∈ΣH

h,A
+1

satisfies Axioms 1–3(a), 4, 5, 7(a), 8 and 9, then there
exist sets of probability distributions, Πh and (ΠH)

H∈ΣH
h,A
+1

such that
(i) unambiguous preferences at h, ≿A

*h
= ≿A

*Hh,A
+1

are represented by:

α≿A
∗hα

′ if f ∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA)f or all π ∈ Πh;

(ii) unambiguous preferences conditional on H ∈ ΣH
h,A
+1 are represented by:

α≿A
∗Hα

′ if f ∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA)f or all π ∈ ΠH ;
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(iii) for every H the set of posteriorsΠH is given by the generalized Bayesian updating
of Πh:

ΠH = {πH
⃒⃒⃒⃒
π ∈ Πh},

where πH is the Bayesian update of π conditional on H.

Proposition 5 For any given even period t = 2k, and a corresponding history
h = (t ;  f ;  A), the coherent multiple prior model satisfies consequentialism.
Furthermore, if πh ∈ int(Δ(SA)) for all πh ∈ Πh, the coherent prior model at h satisfies
dynamic consistency.

6.2 Changes in Awareness

We now consider pure changes in awareness. For t = 2k + 1, consider a history
h = (t, f ,A). To simplify the exposition, we first consider the case in which the
individual becomes aware of a single new proposition p. Suppose the individual’s

beliefs at h can be represented by a set of coherent probability measuresΠh ⊆ Δ(SA)
generated by the prior probability π∗ ∈ Δ(Ω) and the information f available at h.

Nowsuppose the individual becomesawareof a propositionp ∈ Ā ath′ = (t + 1, f ,A′)
so that A′ = A ∪ {p}.12 Consider any sA ∈ SA corresponding to a set of truth values for

all propositions pA ∈ PA, and giving rise to a compound proposition pA.

For each such pA, the individual at h′ considers two possible compound
propositions pA′

p, pA′ ¬p corresponding to the truth or falsity of p. Noting that
sA ∈ {0, 1}|A| is a binary number, we may define the states (sA, 1) (for p true) and

(sA,0) (for p false) in SA
′
. Similarly, any s̄A

′
∈ S̄A

′

corresponds to two complemen-

tary states (s̄A′
, 1) (for p true) and (s̄A′

,0) (for p false) in S̄
A
.

Wewish to compare the priors of the agent at h′ with those shewould have held
at h if shewere already aware of p. Aswe showed in our example in Section 2, under
coherence these will coincide.

Proposition 6 Consider an information structure {F t}Tt=0 and an admissible aware-
ness structure {A(t) : F t → 2P \ {∅ }}Tt=0 such that at history h = (t, f ,A) for t = 2k + 1
the change in awareness involves a single elementary proposition p: that is,
h+1 = (t + 1, f ,A′ = A ∪ {p}) for some p ∉ A. The coherent multiple prior model implies

12 Given the alternating dates setup the individual at h+1 does not learnwhetherp is true, although
this may be resolved by subsequent revelation of information.
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Πh = C̄H{π∗h( ⋅ ⃒⃒⃒⃒⃒(s̄A′
,0)),π∗h( ⋅ ⃒⃒⃒⃒⃒(s̄A′

, 1))⃒⃒⃒⃒⃒⃒s̄A′
∈ S̄A

′}
Πh+1 = C̄H{π∗h( ⋅ ⃒⃒⃒⃒s̄A′)⃒⃒⃒⃒⃒⃒s̄A′

∈ S̄A
′} (10)

where π∗h and π*h+1 represent the conditional beliefs of the fully aware agent and for
each of the priors π*h(⋅⃒⃒⃒⃒s̄A′ ),

π*h( ⋅ ⃒⃒⃒⃒s̄A′) = π*h(s̄A′
, 1)

π*h+1(s̄A′)π*h+1( ⋅ ⃒⃒⃒⃒⃒(s̄A′
, 1)) + π*h(s̄A′

,0)
π*h+1(s̄A′)π*h+1( ⋅ ⃒⃒⃒⃒⃒(s̄A′

,0)) (11)

We next adapt Axiom A6 to the intertemporal setting. Recall that Definition 2
specifies the conditional preferences under full awareness for each subset in Σ and
hence, allows us to talk about preferences conditional on the realization of any
event in Σ in conjunction with any history h.

Axiom 10 Conditional Unanimity: Let h = (t, f ,A). For α, α′ ∈ AA, α≿A
*h
α′ if and only if

for every s̄A ∈ S̄A and every α̂s̄A , α̂′ s̄A ∈ A with α̂s̄A(s ñ s̄A) = α(s) and α̂′ s̄A(s ñ s̄A) =
α′(s) for each s ∈ SA and α̂s̄A(s ñ s̃A) = α̂′ s̄A(s ñ s̃A) for all s ∈ SA and s̃A ∈ S̄A \ s̄A,
âs̄A≿hâ′ s̄A .

Just as Axiom 6, Axiom 10 can be equivalently expressed in terms of condi-
tional preferences to state that an act α is unambiguously preferred to act α′ at
history h and awareness levelA, α≿A

*h
α′, if and only if for every two acts α̂, α̂′ ∈ A (A)

with and α̂′(s̃) = α′(s) for each s̃ ∈ Es and each s ∈ SA, α̂ is preferred to α̂′ conditional
on history h and state s̄A, α̂≿s̄A , hα̂′, for all s̄

A ∈ S̄A. Axiom 10 thus requires that at any
history h = (t, f ,A) an act α is unambiguously preferred to α′ if and only if this
ranking is preserved for a fully aware agent, conditional on every possible truth
value of the propositions not contained in A.

Proposition 7. Consider an information structure {F t}Tt=0 and an admissible
awareness structure {A(t) : F t → 2P \ {∅ }}Tt=0 with a corresponding set of histories
H. If

(i) for each h, (conditional) preferences under full awareness (≿h)h∈H satisfy
Axioms 1–3(b), 4, 5 and 7(b);

(ii) for each t = 2k, h = (t, f ,A), (conditional) preferences under partial aware-
ness (≿A

H)H∈ΣH
h,A
+1

satisfy Axioms 1–3(a), 4, 5, 7(a), 8 and 9;
(iii) for each h = (t, f ,A), ≿A

h satisfies Axiom 10,
then there exists a prior π* on (Ω, Σ) and for each h = (t, f ,A) ∈H a set of priors

Πh on (SA, ΣA) s.t. for any two acts α and α′ ∈ A A and the corresponding α̂, α̂′ ∈ A (A)
with α̂(s̃) = α(s) and α̂′(s̃) = α′(s) for each s̃ ∈ Es and each s ∈ SA,
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α≿A
*h
α′ if f (12)

α̂≿s̄A , hα̂
′ f or all s̄A ∈ S̄A if f

∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA) f or all π ∈ Πh

and for any two acts α and α′ ∈ A , any h and any s̄A,

α≿hα′  if f ∑
s∈Ω

π*h(s)α(s) ≥ ∑
s∈Ω

π*h(s)α′(s) and

α≿s̄A , hα
′  if f ∑

s∈Ω
π*h(s⃒⃒⃒⃒s̄A)α(s) ≥ ∑

s∈Ω
π*h(s⃒⃒⃒⃒s̄A)α′(s) (13)

Furthermore, π*, together with the family of multiple priors (Πh)h∈H is a coherent
multiple prior model.

Proposition 7 shows that under Axiom 10, Conditional Unanimity, the set of
priors the decisionmaker entertains at h, before becoming aware of a certain set of
propositions is given exactly by the convex hull of the posteriors conditional on the
truth values of these propositions once she has become aware of them at h+1. Using
the fact that under Axioms 1–5 and 7–9, conditional beliefs are formed via
generalized Bayesian updating, we obtain the coherent multiple prior represen-
tation of beliefs.

Finally, since for each history h = (t, f ,A), the extreme points of the set Πh are
derived from conditional probabilities obtained from the (full awareness) prior
π* ∈ Δ(Ω), conditioning on h and in turn on each s̄A in S̄

A
, it follows that π*h ∈ Πh,

since from the iterative law of expectations, we have:

π*h = ∑
s̄A∈S̄A

π*h(s̄A)π*h(⋅⃒⃒⃒⃒s̄A).
More generally, for any history h = (t, f ,A), with t odd, and with an immediate
successor h+1 = (t + 1, f ,A′) embodying a pure increase in awareness (that is,
A ⊂ A′), we have from the construction thatΠh+1 ⊂ Πh. That is, themapping fromΠh

to Πh+1 may be viewed as a contraction with π*h as a fixed point.

7 An Application: Latent Variables and Mixture
Models

The interpretation of multiple priors models offered here may be considered in
relation to mixture and latent variables used in a variety of statistical settings.

600 S. Grant et al.



Consider a model in which the dataset consists of M observations, with each
observation consisting of a variable of interest y, taking the values 0 and 1, and a
vector of explanatory variables X.

Begin by considering a standard binary response model

y = { 1 if  f(X, β, ε) > 0
0 otherwise

where β is a vector of parameters and ε is a randomvariable determined by the state
of nature and characterized by parameters θ.

The parameters β and θ may be estimated by maximizing the log-likelihood
function

ℓ(β, θ) = ∑
m
log p(ym ⃒⃒⃒⃒Xm, β, θ)

In particular, if β is known, this estimation procedure amounts to Bayesian
updating with respect to θ.

To relate this model to the decision theory problems discussed suppose that
the variables in Xmay be partitioned into a vector of exogenous variables X1 and a
vector of control variablesX2. As before, utilitymay be given as u(y) = y. The agent
seeks to choose X2 to maximize expected utility p(y = 1), given the observable
value of X1 and the estimated parameters (β, θ).

A latent variable model associates with eachm a vector of K unobserved latent

variables (ukm)Kk=1, commonly taken to be discrete. Wewill focus on the case where
each ukm is a dummy variable taking the values 0 and 1. Hence, each latent variable
may be interpreted as the truth value of a proposition. Consider for simplicity the
case K = 1. In this case, the distribution of ε is determined by parameters θ0 if
um = 0, and θ1 if um = 1.

Oneway to approach this problemwould be to formulate two separatemodels,
one assuming um = 0, and the other assuming um = 1. Now, we have two possible

likelihoods, p0(ym
⃒⃒⃒⃒
Xm, β) = p(ym

⃒⃒⃒⃒
Xm, β, θ0) and p1(ym

⃒⃒⃒⃒
Xm, β) = p(ym

⃒⃒⃒⃒
Xm, β, θ1). This

corresponds to the simplest case of multiple priors discussed above. Hence, ex-
pected utility lies in the interval [p0, p1] and the choice of X2 might be given by a
criterion such as maxmin. In terms of the discussion above, this approach corre-
sponds to the case where the agent is unaware of the latent variable u.

Now consider the case where the agent is aware of u but cannot observe its
value, instead assigning a probability pm = p(um = 1|X1m). Hence, the log-
likelihood is given by a weighted sum
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ℓ(β, θ0, θ1) = ∑
m
log p(ym ⃒⃒⃒⃒Xm, β, θ0, θ1)

where

p(ym ⃒⃒⃒⃒Xm, β, θ0, θ1) = p(ym ⃒⃒⃒⃒Xm, β, θ1)(1 − p(um = 1|X1m))
+ p(ym ⃒⃒⃒⃒Xm, β, θ1)p(um = 1|X1m)

This corresponds to a latent variable model, more precisely a mixture model. A
standard iterative algorithm for estimating the parameters of amodel of this kind is
expectation-maximization or EM, due to Dempster, Laird, and Rubin (1977). The
algorithm proceeds with alternating steps: an “expectation” step in which esti-
mates of pm = p(um = 1|X1m) are updated and amaximization step inwhich the log-
likelihood ℓ(β, θ0, θ1) is maximized with respect to the parameter vector (β, θ0, θ1).

There is an obvious analogywith the dynamic process set out above,where the
alternating steps involve changes in awareness of previously unconsidered
propositions (that is, latent variables) and updating in response to new informa-
tion. We conjecture that it might be possible to represent a boundedly rational
individual as following a real-time dynamic version of the Dempster, Laird, and
Rubin (1977) algorithm in which the expectation and maximization steps incor-
porate changes in awareness and information respectively.

Finally, note that in the case when the agent is aware of u and can observe its
value, we have a standard dummy variable.

8 Related Literature

Our paper is related to the growing literature on unawareness, see Schipper (2014)
for an introduction. Two main approaches have arisen in this literature: the first
relies on explicitly modeling the knowledge and the awareness of the decision
maker at each possible state of the world. The second, consists in axiomatizing
choice behavior: either for a given awareness structure which is exogenously
specified, or for a subjective awareness structure, which can then be deduced from
preferences.

Fagin and Halpern (1988) were the first to introduce awareness structures
into a model of knowledge. Their approach was then followed by that of Heifetz,
Meier, and Schipper (2006). The main characteristic of this approach is the
exogenous specification of awareness at each state of the world. Combined
with the information structure, which at each state specifies the event the
agent is informed about, this gives rise to two knowledge operators: implicit
knowledge – that captured by the information partition and explicit knowledge,
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which necessitates the agent to simultaneously implicitly know the event and be
aware of it.13

A simple awareness structure, which captures this distinction is provided by
Li (2009). In the present paper, we adopt her framework by modeling un-
awareness of propositions (“questions” in her framework). At each state, the
model exogenously defines the subset of propositions the agent is aware of, as
well as the event known to have occurred. Li (2009) shows that such structures
can be used to generatemeaningful “knowledge” and “unawareness” operators.
Our structure is simpler in that we require information obtained at each state
(node) to be measurable with respect to the agent’s awareness at this node,
which need not be the case in Li (2009). This simplification proves convenient for
the analysis and the resulting model captures well the phenomena we have in
mind. A generalization to information structures non-measurablewith respect to the
awareness level would involve techniques similar to those used by Li (2009),
whereby the information actually revealed to the agent is the finest coarsening
measurable with respect to her current awareness level. This complicates the no-
tation without providing meaningful insights into our main results.

The relation between the model of Li (2009) and the awareness structures of
Fagin and Halpern (1988) and unawareness structures by Heifetz, Meier, and
Schipper (2006) are discussed in Schipper (2014, p. 4). In as far as thesemodels rely
on implicit knowledge, Schipper (2014, p. 3) suggests that such awareness struc-
tures can be viewed as capturing “features of logical non-omniscience”.

The class of axiomatic models of unawareness can be roughly divided into
two: in the first category fall the models, which take the awareness structure as
exogenously given and model preferences related to such structures. This com-
prises the work by Ahn and Ergin (2010), Grant and Quiggin (2013, 2015), Karni and
Viero (2013, 2017), Viero (2018), Lehrer and Teper (2014), Alon (2015), Dominiak
and Tserenjigmid (2018), Dietrich (2018). These papers study conditions, which
relate preferences across different levels of awareness.

In a seminal paper, Karni and Viero (2013) study growing awareness as a conse-
quence of discovering new acts or new consequences.14 This results in a refinement or

13 Less expressive structures, in which the exact specification of awareness at each state are
replaced by less informative propositions such as: “the agent is (is not) fully aware at this state”
have been introduced by Agotnes and Alechina (2008) and further developed by Walker (2014).
14 In thismodel,we are primarily interested in predictions (i.e., in agent’s beliefs). Hence,we keep
the binary set of outcomes {0, 1} constant. Acts can be thought as bets on the occurrence of an
event. Thus, the framework of Li (2009), in which the agent becomes aware of finer contingencies
through newpropositions (which in turn expands the set of possible predictions / available acts) is
more appropriate for our purposes than that of Karni and Viero (2013), where new states have to be
constructed either from new acts or new outcomes.
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in an expansion of the original state space. Karni and Viero (2013) impose a restriction
on beliefs – reverse Bayesianism, which implies that relative likelihoods of events
considered at lower levels of awareness are preserved when awareness increases.

Dietrich (2018) also considers partial awareness in terms of both coarsening
and reduction of both the state-space and the outcome space. He models a sub-
jective expected utility maximizer, who satisfies Savage axioms at all levels of
awareness. His axiomatization imposes stringent constraints on utility and beliefs
across awareness structures: both utility and probability at lower awareness levels
are intimately related to those utilities and probabilities the agent would entertain
were she fully aware.15 While we study ambiguity as arising from partial aware-
ness, our approach is similar both to those of Karni and Viero (2013) and Dietrich
(2018) in that beliefs under full awareness uniquely pin downbeliefs at lower levels
of awareness.16 The normative aspect of such constraints as captured by the ax-
ioms we propose is of interest in problems of inference, such as the latent variable
model discussed in Section 7.

While the approach taken by Karni and Viero (2013) and Dietrich (2018) is
purely Bayesian, Grant and Quiggin (2015), Karni and Viero (2017) and Viero (2018)
introduce the notion of unknown contingencies and associatewith themadecision
weight and a utility. In a similar spirit, Alon (2015)models awareness of unforeseen
contingencies by introducing an “unforeseen event” with an associated weight
and an associated “worst-case-contingency”.While in thesemodels, such decision
weights and utilities are purely subjective, our coherent multiple prior model
imposes restrictions on the way in which a partially aware agent incorporates the
possibility of becoming more aware into her decisions. In particular, partial
awareness leads to ambiguity, and thus, multiple priors reflecting all possible
ways in which the realization of the yet undiscovered states might affect the
probabilities of the currently known ones.

The papers by Lehrer and Teper (2014) and Dominiak and Tserenjigmid (2018)
advance the idea that the agent’s confidence/perception of ambiguity may depend
on her awareness. Both papers consider two preference relations, one corre-
sponding to a larger state-space (higher level of awareness), the other to a

15 Dietrich (2018) views such consistency requirements as normative. “One may legitimately
question the plausibility of such a hybrid agent: why should someone who can come up with
objective evaluations fail to comeupwith objective outcomes, states and acts in thefirst place? The
point of defining classical EU rationalizations is not to defend “objective evaluations of subjective
objects” as genuinely realistic, but to spell out the classical benchmark from which our less
classical rationalizations depart.”
16 Karni andViero (2015) allow for non-additivity bymodelingunawarenesswith probabilistically
sophisticated beliefs. While this captures Allais-style violations of additivity, it does not incor-
porate ambiguity.
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coarsening of it. Both papers argue that the agent behaving as an EUM when
partially aware might face more ambiguity / be less confident with a larger state-
space. This is captured by incompleteness of preferences on the larger state-space
in Lehrer and Teper (2014) and by perceived ambiguity on the expanded state-
space in Dominiak and Tserenjigmid (2018). In a similar spirit, Grant, Meneghel,
and Tourky (2019) characterize a family of beliefs conditional on realizations of a
stochastic process such that: (i) as new states are observed, there is maximal
ambiguity with respect to the probability of these new states; (ii) as information
about already known states accumulates, the agent updates her priors in a
Bayesian way, eventually learning the correct probabilities of each state. In the
limit, the expectations taken with respect to the posterior of each of the initial
priors are arbitrarily close.

Similarly to these works, we establish a relation between preferences and
beliefs with “varying degrees of awareness” and impose consistency re-
quirements across such beliefs. Our point of departure, however is that ambiguity
arises due to partial awareness and disappears as the agent becomes fully aware.
We thus propose a deductive (forward-looking) rather than an inductive
approach in that beliefs at lower levels of awareness already incorporate all
possible unforeseen contingencies as multiple priors. Furthermore, we concen-
trate on the characterization of ambiguous beliefs (multiple priors) for partial
awareness and remain agnostic as to how the agent deals with such ambiguity.
This allows for a simpler framework with a binary outcome space and fewer
restrictions on preferences.

Finally, Ahn andErgin (2010)’smodel of framing effects can be interpreted as a
model of preferences for different levels of awareness. Similarly, to the models in
the preceding paragraph, their premise is that the agent has non-additive beliefs
on the complete state-space, but forms additive beliefs for each subset of this space
(each possible frame). These additive beliefs are derived from the non-additive
capacity over the complete state-space.

The second class of axiomaticmodels uses preferences over extended classes of
objects (e.g.,menus or consumption streams) andproposes behavioral conditions to
identify the awareness of the agent. In Epstein, Marinacci, and Seo (2007) the coarse
state space is subjective and derived from preferences over menus, which violate
indifference to randomization. When choosing over menus, the agent takes into
account for each such coarse state, the worst payoff realization, thus exhibiting
complete ignorance about the probability of the individual utility realizations.

Preferences on richer domains can provide a distinction between ambiguity
and unawareness in an axiomatic framework. In particular, Piermont (2017) relates
awareness of unawareness to the agent’s unwillingness to commit to any contin-
gent plan even when delaying the decision is costly. Kochov (2017) interprets
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awareness of unawareness as the agent recognizing her inability to correctly judge
the autocorrelation of payoffs over time. In his framework, awareness of un-
awareness is revealedwhenever a payoff streamwith state-contingent outcomes to
which the agent assigns identical utility is assigned a utility different from that
assigned to the outcomes.

In contrast, our paper seeks to deduce ambiguity from unawareness rather
than distinguishing the two concepts. In that sense, it is related to the papers by
Mukerji (1997), Ghirardato (2001), Epstein, Marinacci, and Seo (2007) and Billot
and Vergopoulos (2018). For example, Mukerji (1997) shows that probability
weightingmay be derived froma decision-maker’s anticipation that her perception
of future contingencies is incomplete. Ghirardato (2001) models ambiguity as a
consequence of the coarse perception of state-contingent payoffs. Billot and Ver-
gopoulos (2018) show how ambiguity can arise when the observable state space
differs from the relevant state space.

The difference between these papers and our model is two-fold: first, we study
changes in awareness and in information and impose consistency requirements
across preferences and beliefs at different levels of awareness and information for
the same agent. To do so, we rely extensively the model of generalized Bayesian
updating for multiple prior preferences as developed by Ghirardato, Maccheroni,
and Marinacci (2008).

Second, we constrain the agent to reason only about acts which are measur-
able with respect to her coarse state space. Thus, ambiguity is not due to the fact
that the agent conceives of multiple outcomes related to a given coarse contin-
gency, but to the fact that the probabilities of the contingencies of which the
decision maker is aware depend on factors of which she is not. Rather than
assuming that such ambiguity leads to full ignorance and to behavior which is
guided by the worst possible outcome, in our context, ambiguity is objectively
related to the stochastic process which determines the realization of the factors of
which the decision maker is unaware.

Finally, there is a well-known formal result, see Ghirardato and Breton (2000)
andGilboa andSchmeidler (1994), showing that the Choquet integral (the standard
tool for modeling ambiguity-sensitive preferences) can be represented in an ad-
ditive way on an extended state-space (the set of {0, 1}-valued capacities). Our
construction is different: we do model additive beliefs on a larger state space and
non-additive ones on a smaller state-space, but the two spaces are not related as in
Ghirardato and Breton (2000) and Gilboa and Schmeidler (1994) and the resulting
evaluations of acts in general differ between the two spaces, reflecting the decrease
in ambiguity which accompanies growing awareness.
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9 Conclusion

Beginning in the late 1970s, alternatives to and generalizations of Expected Utility
theory have proliferated in response to behavioral violations of EU predictions and
theoretical criticism of the axiomatic foundations of EU. Examples have included
probability weighting models for choice under risk (Allais 1953; Kahneman and
Tversky 1979; Quiggin 1982; Yaari 1987), ambiguity models for choice under un-
certainty (Gilboa and Schmeidler (1989), Schmeidler (1989), Ghirardato, Mac-
cheroni, and Marinacci (2004), Klibanoff, Marinacci, and Mukerji (2005)) and the
rapidly growing literature on unawareness (Schipper (2014)).

We reviewed some of the attempts at unification of the two theories in Section
1. Similarly, in this paper, we have shown that the invariant biseparable model of
Ghirardato, Maccheroni, and Marinacci (2004) model of choice under ambiguity
(which incorporates α-maxmin EU as a special cases), may be derived from the
preferences of an EU maximizer with coarse awareness. Updating in response to
both new information and refined awareness is well-behaved.

This development raises the possibility of a more general unified theory of EU
behavior with bounded awareness thatmight encompass a wide range of observed
behavior as well as being consistent with the fundamental postulate that all
humans have bounded cognitive capacity.

Such models can prove useful as a decision-theoretical underpinning of sta-
tistical methods related to latent variables.

Appendix

Proof of Proposition 2:

Suppose that the family of preferences (≿A)A satisfies Axioms 1–6. Fix an aware-
ness level A. By Lemma 1, for the so-chosen A, there exists a unique closed and
convex set of priors ΠA such that the unambiguous preferences induced by ≿A, ≿A

*
can be represented by (15). Furthermore, by Axiom 6 and by Definition 2 of con-
ditional preferences, we obtain α≿A

* α
′ iff for any s̄A ∈ S̄A, the corresponding acts α̂s̄A

and α̂′ s̄A defined in statement of Axiom 6, satisfy α̂s̄A≿α̂′ s̄A , or, equivalently:

∑
s∈S
π∗(s)α̂s̄A(s) ≥ ∑

s∈S
π∗(s)α̂′

s̄A(s). (14)

Furthermore, since α̂s̄A(s) = α̂′ s̄A(s) for every s ∈ SA ñ S̄
A \ s̄A, we have that (14)

is equivalent to:
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∑
sA∈SA

π*(sA ⃒⃒⃒⃒s̄A)α̂s̄A(sA) ≥ ∑
sA∈SA

π*(sA ⃒⃒⃒⃒s̄A)α̂′
s̄A(sA)

and since α̂s̄A(s) = α(s) and α̂′ s̄A(s) = α′(s) for every s ∈ SA ñ s̄A, we have:

∑
sA∈SA

π∗(sA ⃒⃒⃒⃒s̄A)α(sA) ≥ ∑
sA∈SA

π∗(sA ⃒⃒⃒⃒s̄A)α′(sA). (15)

We thus conclude that the requirement that α̂s̄A≿α̂′ s̄A for every s̄A ∈ S̄A is
satisfied if and only if (15) holds for every s̄A ∈ S̄A, or, equivalently, if and only if

∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA) for all π ∈ Π̂ = C̄H{π∗(⋅⃒⃒⃒⃒s̄A)⃒⃒⃒⃒⃒s̄A ∈ S̄A}. (16)

Axiom 6 requires (16) to be equivalent to α≿A
∗α

′. But from Axioms 1–5 and
Lemma 1, we have that α≿A

∗α
′ iff

∑
sA∈SA

π(sA)α(sA) ≥ ∑
sA∈SA

π(sA)α′(sA) for all π ∈ ΠA,

where ΠA is unique. Thus, we obtain Π̂ = ΠA = C̄H{π*(⋅⃒⃒⃒⃒s̄A)⃒⃒⃒⃒⃒s̄A ∈ S̄A} as required by
the definition of awareness-based beliefs. Since the awareness level Awas chosen
arbitrarily, this holds for every A and the claim of the proposition obtains.

Proof of Proposition 5:

Assume a representation by an CMP model. Fix h = (t, f ,A). To see that Conse-
quentialism holds, note that generalized Bayesian updating implies that condi-
tional on H ∈ ΣH

h,A
+1 , all h̃ ∉ H are assigned 0-probability under all π ∈ ΠH . Let

Sh = {sA ∈ SA ⃒⃒⃒⃒sA ∈ f }
SH = {sA ∈ SA ⃒⃒⃒⃒sA ∈ σt+1(f ) with(t + 1, σt+1(f ),A) ∈ H}

be the set of states in SA consistent with histories in H. By the definition of α and α′

in Axiom 8, we have that for all π ∈ ΠH ,

∑
sA∈SH

π(sA)α(sA) = ∑
sA∈SH

π(sA)α′(sA)
so that α ∼A

*H
α′, which implies α ∼A

H α′.
As for dynamic consistency of ≿*

H , note that for any acts α and α′ as defined in
Axiom 9 and every π ∈ Πh

∑
sA∈Sh

π(sA ⃒⃒⃒⃒Sh)α(sA) − ∑
sA∈Sh

π(sA ⃒⃒⃒⃒Sh)α′(sA)

608 S. Grant et al.



= π(SH)
⎡⎣ ∑
sA∈Sh

π(sA ⃒⃒⃒⃒SH)α(sA) − ∑
sA∈Sh

π(sA ⃒⃒⃒⃒SH)α′(sA)
⎤⎦.

α≿A
*h
α′ holds iff the first difference is positive for all π ∈ Πh and, as long as all such π

are in the interior of Δ(SA), this is clearly equivalent to the last difference being
positive for all π ∈ ΠH , or to α≿A

*Hα
′.

Proof of Proposition 6:

Notice that

π∗h+1(s̄A′) = π∗h+1(s̄A′
, 1) + π∗h+1(s̄A′

,0)
where π* is the probability on Ω and its arguments are considered as events.
Furthermore, by condition (iii) of the definition of CMP,

Πh+1 = C̄H{π∗h+1( ⋅ ⃒⃒⃒⃒s̄A′)⃒⃒⃒⃒⃒⃒s̄A′
∈ S̄A

′} = C̄H{π∗h( ⋅ ⃒⃒⃒⃒s̄A′)⃒⃒⃒⃒⃒⃒s̄A′
∈ S̄A

′}
where the second equality follows from the fact that no new information arrives
between h and h+1, and hence π*h = π*h+1 .

For h−1 = (t − 1, ρt−1(f ),A), we have by property (iii) of CMP,

Πh−1 = C̄H{π*h−1(⋅⃒⃒⃒⃒s̄A)⃒⃒⃒⃒⃒s̄A ∈ S̄A}
and hence, by property (ii),

Πh = {π(⋅|h)⃒⃒⃒⃒π ∈ Πh−1} = {π*h(⋅⃒⃒⃒⃒s̄A)⃒⃒⃒⃒⃒s̄A ∈ S̄A}
= C̄H{π∗h(⋅⃒⃒⃒⃒s̄A)} = C̄H{π∗h( ⋅ ⃒⃒⃒⃒⃒(s̄A′

,0)),π∗h( ⋅ ⃒⃒⃒⃒⃒(s̄A′
, 1))⃒⃒⃒⃒⃒⃒s̄A′

∈ S̄A
′}.

Hence, Bayesian updating of the beliefs of the fully aware agent π*, together
with π*h = π*h+1 implies:

π*h( ⋅ ⃒⃒⃒⃒s̄A′) = π*h(s̄A′
, 1)

π*h+1(s̄A′)π*h+1( ⋅ ⃒⃒⃒⃒⃒(s̄A′
, 1)) + π*h(s̄A′

,0)
π*h+1(s̄A′)π*h+1( ⋅ ⃒⃒⃒⃒⃒(s̄A′

,0)).
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Proof of Proposition 7:

The representation of ≿h follows directly from the conditions in (ii) and Lemma 3.
These conditions uniquely identify π* and ensure Bayesian updating of fully aware
beliefs.

The representation of the conditional ≿A
*h

preference relations follows from
Axioms 1–3(a), 4, 5, 7(a) stated in condition (i) and Lemma 1. These axioms
identify the corresponding sets of priors Πh. Axiom 10 relates the partially aware
preferences conditional on h to the conditional preferences under full awareness
and implies condition (12).

Just as Axiom 6 for the static case, Axiom 10 relates Πh0 (the partially aware
preference with no information) to the conditionals of π(⋅⃒⃒⃒⃒s̄A0 ) and by Lemma 2
implies property (i) of the CMP model.

Property (ii) of the CMP model follows from Axioms 8 and 9, which by Cor-
ollary 4, imply generalized Bayesian updating of every prior in Πh.

Finally, the proof of property (iii) of the CMP model is a consequence of Axiom
10 and is shown exactly as in the proof of Proposition 2. Indeed, fix a history h and in
the proof of Proposition 2, replace preferences ≿A

* by ≿
A
*h
and ≿ by ≿h, whereas the set

of priors ΠA is replaced by Πh and the full awareness probability distribution π* is
replacedbyπ*h. Repeating the arguments in theproof of Proposition 2 gives property
(12). Property (13) follows from the fact that the fully aware preference at history h
satisfies all axioms of expected utility maximization for the probability distribution
π*h, Axioms 1–3(b), 4, 5 and by Axiom 7(b) all relevant events are non-null.
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