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1 Introduction

In games and social choice theories, many domain restrictions have been used
in order to obtain positive results. In most cases, these results were obtained
when special conditions were imposed on preference profiles. For example,
limiting the preference of agents to linear orders or allowing some very limited
indifference classes simplifies the expression of the conditions considerably, as
well as the proofs of results based on restricting the domains of social choice
rules. Among these conditions, the well-known notions are single-peaked pre-
ferences that were introduced by Black (1948) and single-dipped preferences that
were provided by Inada (1964). In addition to these properties, other important
conditions have been imposed on preference profiles and they are useful tools
that obtain interesting results.1

Nevertheless, many authors have considered that some of the conditions
imposed on preferences profiles are very strong. Thus, they have tried to relax
these conditions to wider classes. For example, the fact that they have only one
maximal element in a single-peaked domain, without admitting the indifference
of at least one other alternative, is not always considered natural. Hence, many
enlargements to this domain have been explored to allow either many best
indifferent elements, which are now known as single-plateaued domains, or
many worst indifferent elements, which were introduced by Cantala (2004)
and they are referred to as outside options.2 We also cite the extension of the
single-dipped preferences domain to a wider class of preferences where agents
can express their indifference among multiple worst alternatives, termed single-
trouthed preferences, or multiple best alternatives, which were introduced by
Manjunath (2011) and Aragón and Caramuta (2011).

The motivation for this article is to study the implications of these exten-
sions in the implementation literature that has a close connection with social
choice theory. Before explaining the problematic and providing our contribution
in this direction, we start by giving a brief definition of implementation theory.
This theory studies the problem of a society that chooses a social choice
correspondence (SCC) to represent the social welfare of individuals or desired
outcomes and the planner confronts the difficulty of how to implement this rule.
This occurs because the planner does not know the exact preferences of indivi-
duals regarding these outcomes. Thus, in order to participate with a lower cost

1 For a more detailed survey, see Gaertner (2001).
2 For further details see, for example, Moulin (1984), Ehlers (2002), Barberà (2007), Berga
(1998), Berga (2006), Berga and Moreno (2009), Bossert and Peters (2013), Doghmi and Ziad
(2013a, 2013b) and Klaus and Bochet (2013).
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(e. g., in the case of the construction of public goods), the agents may falsify
their preferences. To ensure that they disclose their true preferences, the planner
will organize a non-cooperative game among these individuals. In a given
solution context, when the set of equilibrium outcomes of this game coincides
with the set of socially desired alternatives, we can say that an SCC is imple-
mentable in this given solution context.

To achieve this objective, some conditions should be imposed on the SCCs
that the planner hopes to implement. Thus, Maskin (1977, 1999) was the first to
show that there is an important connection between the implementability of
SCCs and a property now known as Maskin monotonicity. He proved that this
requirement is a necessary condition for an SCC to be Nash implementable, and
it becomes sufficient together with an additional property called no-veto power.
Since this latter requirement fails to be satisfied for many examples of Maskin
monotonic SCCs in economic and political applications like, among others,
the core correspondence, the individually rational correspondence in voting
problems and assignment of indivisible goods, the stable rule in matching
problems, and the no-envy correspondence, the individually rational corre-
spondence from equal division in private good economies, many studies have
proposed either alternative conditions or different mechanisms to overcome this
deficiency. For instance, Moore and Repullo (1990), Dutta and Sen (1991),
Sjöström (1991) and Danilov (1992) provided full characterizations whereas
many other authors proposed either necessary conditions, such as Ziad (1997,
1998), sufficient conditions, such as Yamato (1992) and Doghmi and Ziad
(2008a), or different mechanisms like the one recently proposed by Doğan
(2015) to implement the no-envy correspondence on general domains of
economies.

In relation to the standard domain restrictions with private values of single-
peaked and single-dipped preferences, Thomson (1990, 2010), Doghmi and Ziad
(2008b), and Doghmi (2013a) tried to apply some of these theoretical results to
implement many examples of solutions of the problem of fair division. On single-
peaked domain, Thomson (1990, 2010) proved that only the Pareto correspon-
dence can be implemented by Maskin’s theorem (1999). To implement the no-
envy correspondence, the individually rational correspondence from equal divi-
sion and their intersection, he applied Yamato’s theorem (1992). For the imple-
mentability of the intersections of the Pareto correspondence with the no-envy
correspondence, and with the individually rational correspondence from equal
division, these tools do not work and hence he appealed to Sjöström’s algorithm
(1991). On single-peaked and single-dipped domains, Doghmi and Ziad (2008b),
and Doghmi (2013a) applied the results they developed in Doghmi and Ziad
(2008a) and they examined the implementability of all these correspondences
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in an easy way. They proved that only Maskin monotonicity is a necessary and
sufficient condition to implement these unanimous solutions.

In these domains of private good economies when we allow different types of
indifference between alternatives, the properties used in these previous findings
do not always apply, and they are only a few studies which are interested in this
topic. To our knowledge, only the recent works of Doghmi (2013b) and Doghmi
and Ziad (2013a, 2013b, 2015) are concerned with this issue. They studied Nash-
implementability of SCCs when preferences profile are single-plateaued, and
single-dipped with best indifferent allocations. Thus, they extended the results
of Doghmi and Ziad (2008b), Thomson (1990, 2010), and Doghmi (2013a) on
single-peaked and single-dipped domains in considering preference profiles
which admit multiple best indifferent elements. However, these studies do not
cover preference profiles which contain multiple worst indifferent elements.

Our objective in this article is to fill this gap and to contribute to the
understanding of the implications of implementability in these domains of
economies which admit different types of indifference between alternatives.
We examine in particular the following domains.
1. Single-peakedness with worst indifferent allocations. This class of preferences

extends the standard concept of single-peaked preferences by allowing
multiple worst indifferent alternatives. It was introduced by Cantala
(2004)3 and explored recently by Klaus and Bochet (2013) to study the
relationship between monotonicity and strategy-proofness.

2. Single-plateauedness with worst indifferent allocations. This class of prefer-
ences contains two types of indifference between alternatives: multiple
best indifferent elements and multiple worst indifferent elements when
generalizing the well-known domains of single-peaked and single-plateaued
preferences.

3. Single-troughedness. This class of preferences is a natural enlargement of the
domain of single-dipped preferences, which requires that each agent is
indifferent among several worst alternatives. These worst alternatives are
called the “trough”. More recently, Bossert and Peters (2014) examined the
notion of single-troughedness in a choice-theoretic setting.4 This domain of
preferences has also been used by Manjunath (2011) to characterize all rules
that satisfy unanimity and strategy-proofness properties.

3 In Cantala (2004), single-peaked preferences with worst indifferent allocations are referred to
as single-peaked preferences with outside options.
4 In Bossert and Peters (2014), single-troughed preferences are called single-basined
preferences.

770 A. Doghmi



4. Single-troughedness with best indifferent allocations. This domain is an
enlargement of the domain of single-dipped preferences with best indiffer-
ent allocations, which was explored recently by Aragón and Caramuta
(2011) and Doghmi (2013b), but also an extension of the single-troughed
domain examined by Bossert and Peters (2014), and by Manjunath (2011).

In this work we give a full characterization of Nash-implementability of
SCCs on these four domains of economies. We introduce a weak variant of no-
veto power, namely I*-weak no-veto power, and we prove that this property
together with unanimity and a stronger version of Maskin monotonicity, termed
I-monotonicity, developed in Doghmi and Ziad (2015), are sufficient for Nash-
implementability in general environments. Using this result, which differs from
the previous findings, we show that on the above preference domains any SCC
that has full range is Nash implementable if and only if it satisfies Maskin
monotonicity. To derive this characterization, we first prove that the new prop-
erty of I*-weak no-veto power is implied by unanimity. In this auxiliary result,
the role of our new requirement is central given that the different variants of
no-veto power in the previous literature do not work. Second, we demonstrate
that Doghmi and Ziad’s property of I-monotonicity continue, together with the
full range requirement, to involve the property of unanimity in the preference
domains with different types of indifference under consideration here. Moreover,
I-monotonicity becomes equivalent to Maskin monotonicity. Given this full
characterization, we inspect the implementability of various well-known SCCs.
Firstly, we show that the monotonic solutions in the unrestricted domains,
which violate no-veto power, like the no-envy correspondence, the individually
rational correspondence from equal division and their intersection, are Nash
implementable in our setup. Hence, we deduce that these solutions that are
implementable in the domains of strict preferences persist and keep their imple-
mentability when we allow different types of indifference. Secondly, we give
examples of correspondences that are not monotonic in the unrestricted
domains but monotonic in our context, like the strong Pareto indifferent corre-
spondence and its intersections with the no-envy correspondence, with the
individually rational correspondence from equal division, and with the Pareto
correspondence and therefore Nash implementable. Finally, we provide exam-
ples of correspondences which do not satisfy Maskin monotonicity in general
domain, like the Pareto correspondence and its intersections with the no-envy
correspondence and with the individually rational correspondence from equal
division, and we prove that these correspondences continue to violate
this property in our setup, and hence they are not Nash implementable. Thus,
we conclude that these correspondences, which are Nash implementable
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in some domains of strict preferences like in single-peaked domains, lose
their implementability when we extend the preference domains to allow for
indifferences.

The rest of this paper is organized as follows. In Section 2, we introduce
notations and definitions for the general setup. In Section 3, we introduce a
weaker version of no-veto power and we provide a sufficient condition for Nash
implementation in general environment. In Section 4, we present our main
results on preference domains with private values and indifference; we discuss
the challenges for these domains compared to the previous findings, we give a
full characterization for Nash implementation, and we study the implementabil-
ity of various well-known SCCs. In Section 5, we provide a conclusion.

2 Notations and Definitions

Let A be a set of alternatives, and let N = f1, ..., ng be a set of individuals,
with generic element i. Each individual i is characterized by a preference
relation Ri defined over A, which is a complete, and transitive relation in some
class <i of admissible preference relations. Let <=<1 × ... ×<n. An element
R= ðR1, ...,RnÞ 2 < is a preference profile. The relation Ri indicates the individual
i’s preference. For a, b 2 A, the notation aRib means that the individual i weakly
prefers a to b. The asymmetrical and symmetrical parts of Ri are denoted
respectively by Pi and ⁓i.

A social choice correspondence (SCC) F is a multi-valued mapping from <
into 2Anf�g, that associates with every R a nonempty subset of A. For all Ri 2 <i

and all a 2 A, the lower contour set for agent i at alternative a is denoted
by: Lða,RiÞ= fb 2 A j aRibg. The strict lower contour set and the indifference
lower contour set are denoted respectively by LSða,RiÞ= fb 2 A j aPibg and
LIða,RiÞ= fb 2 Lða,RiÞ j a⁓ibg.

A mechanism (or a game form) is given by Γ= ðS, gÞ where S=�i2NSi; Si
denotes the strategy set of the agent i and g is a function from S to A. The
elements of S are denoted by s= ðs1, s2, ..., snÞ= ðsi, s− iÞ, where s− i = ðs1, ..., si− 1,
si+ 1, ..., snÞ. When s 2 S and bi 2 Si, ðbi, s− iÞ= ðs1, ..., si− i, bi, si+ 1, ..., snÞ is
obtained after replacing si by bi, and gðSi, s− iÞ is the set of results which agent i
can obtain when the other agents choose s− i from S− i =�j2N, j≠ iSj.

A Nash equilibrium of the game ðΓ,RÞ is a vector of strategies s 2 S such that
for any i, gðsÞRigðbi, s− iÞ for all bi 2 Si, i. e. when the other players choose s− i,
the player i cannot deviate from si. Given NðS, g,RÞ the set of Nash equilibria of
the game ðΓ,RÞ, a mechanism Γ= ðS, gÞ implements a SCC F in Nash equilibria if
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for all R 2 <, FðRÞ= gðNðS, g,RÞÞ. We say that a SCC F is implementable in Nash
equilibria if there is a mechanism which implements it in these equilibria.

A SCC F satisfies unanimity if for any a 2 A and any R 2 <, if for any i 2 N,
Lða,RiÞ=A, then a 2 FðRÞ.

A central theorem of the implementatability of SCCs is provided by Maskin
(1977/1999). It is based on the following properties:

Monotonicity: A SCC F satisfies monotonicity if for all R,R′ 2 <, for any
a 2 FðRÞ, if for any i 2 N, Lða,RiÞ � Lða,R′i Þ, then a 2 FðR′Þ.

No-veto power: A SCC F satisfies no-veto power if for each i, each R 2 <, and
each a 2 A, if Lða,RjÞ=A for all j 2 Nnfig, then a 2 FðRÞ.

Maskin (1977/1999) proved that any Nash implementable correspondence
must satisfy Maskin monotonicity and, when the number of agents is at least
three, any SCC that satisfies Maskin monotonicity and no-veto power is Nash
implementable.

3 A Weak Property of No-veto Power
for Sufficiency

Recently, Doghmi and Ziad (2015) provided a full characterization for the imple-
mentability of SCCs in private good economies with single-plateaued prefer-
ences. They showed that any SCC that has full range is Nash implementable if
and only if it satisfies Maskin monotonicity. To derive this result, they provided
a new sufficient condition in general environment. Nevertheless, this result of
general setup does not apply to domains of economies which admit multiple
worst indifferent alternatives. To fill this gap and generalize these results for
different types of indifference, we introduce a weak version of no-veto power
that covers a large domain of preferences with indifference. To define this
property, we start with the following definition.

Definition 1: (Indifferent options subset)
For any agent i’s preference Ri, any alternative a 2 FðRÞ for some singleton
“operator” fog 2 LIða,RiÞ with o≠ a, the indifferent options subset is the subset
Iða, o,RiÞ= fb 2 Anfa, og s.t. a ⁓i b ⁓i og. If jLIða,RiÞj ≥ 3, then Iða, o,RiÞ≠ ;,
otherwise Iða, o,RiÞ= ;.

Now, we introduce the weak property of no-veto power that we call I*-weak
no-veto power. Before describing this property, we give the following key nota-
tion. The arguments of the minimum of a set of alternatives A at an individual i’s
preference Ri, denoted ArgminðRi,AÞ, are the set of the bottom-ranked

Nash Implementability in Allotment Economies 773



alternatives for an agent i at a preference profile R; i. e., ArgminðRi,AÞ= faj for
all b 2 A :bRiag.

Definition 2: (I*-weak no-veto power)
An SCC F satisfies I*-weak no-veto power if for each i, each R 2 <, each a 2 FðRÞ,
and each b 2 A, if for each R′ 2 <, b 2 LSða,RiÞ∪ Iða, o,RiÞ− argminðR′i ,AÞ �
Lðb,R′i Þ and Lðb,R′jÞ=A for all j 2 Nnfig, for some o 2 LIða,RiÞnfag, then
b 2 FðR′Þ.

Loosely speaking, the property of I*-weak no-veto power means that if an
alternative a is socially chosen in a profile R and, for an agent i, if an
alternative b is an element of the union of the subset of the alternatives
which are ranked strictly below a and the subset of the indifferent options, in
excluding all alternatives of i that are bottom-ranked in a new profile R′,
improves its ranking in R′i and becomes top-ranked for all j≠ i in R′j, then it
must be socially chosen in R′. To illustrate this property, we give the following
example.

Example 1: Let A= fa, b, c, dg, N = f1, 2, 3g and <= fR,R′g such that:

Let FðRÞ= fa, bg and FðR′Þ= fag. In this example, the I*-weak no-veto
power condition is satisfied. In profile R′ we have Lðc,R′i= 2, 3Þ=A, and in profile
R, we have two optimal alternatives: fa, bg � FðRÞ. For b 2 FðRÞ, we have for
player 1 Iðb, o=d,R1Þ= fc, eg, Iðb, o= c,R1Þ= fd, eg or Iðb, o= e,R1Þ= fc, dg. For
Iðb, o= d,R1Þ = fc, eg, we have c ∉ LSðb,R1Þ∪ Iðb, o=d,R1Þ− argminðR′1,AÞ =
feg 6� Lðc,R′1Þ= fcg. For Iðb, o= c,R1Þ= fd, eg, we have c ∉ LSðb,R1Þ∪
Iðb, o= c,R1Þ− argminðR′1,AÞ = fd, eg 6� Lðc,R′1Þ= fcg. For Iðb, o= e,R1Þ= fc, dg,
we have c ∉ LSðb,R1Þ∪ Iðb, o= e,R1Þ− argminðR′1,AÞ= fdg 6� Lðc,R′1Þ= fcg.
Now, for a 2 FðRÞ, we have Iða, o,R1Þ= f;g and c ∉ LSða,R1Þ∪ Iða, o,R1Þ −
argminðR′1,AÞ= fb, d, eg 6� Lðc,R′1Þ = fcg; thus c ∉ FðR′Þ.

I*-weak no-veto power lies between the standard properties of no-veto
power and unanimity, it is implied by the former, but it has no logical relation-
ship with the latter, as we show in the following observation.

R: R1 R2 R3

a c b
b,c,d,e a a,d

b,d c
e e

R′: R′1 R′2 R′3

a a,c b,c
d b,d a,d
e e e
b
c
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Observation 1: i) The I*-weak no-veto power property is implied by no-veto power,
but the converse does not always hold. ii) There is no logical relationship between
I*-weak no-veto power and unanimity.

Proof. For the part (i), it is trivial that no-veto power implies I*-weak no-veto
power. For the converse, it follows from Example 1 that I*-weak no-veto power is
satisfied, but no-veto power is not.

Concerning the part (ii), to prove that I*-weak no- veto power does not imply
the unanimity condition, it suffices to have an alternative b ranked at the top and
strictly preferred to an optimal outcome a 2 FðRÞ, in this case I*-weak no-veto
power is satisfied, but unanimity is not. For the converse, we just replace in
Example 1 the preference order for agent 1 at profile R′; we make aP′i dP′i c⁓′i eP′b
instead of aP′i dP′i eP′i bP′c. In this case, it is easy to see that the unanimity
property is satisfied, but I*-weak no-veto power is not. We have b 2 FðRÞ,
Iðb, o= d,R1Þ = fc, eg, c 2 LSðb,R1Þ∪ Iðb, o=d,R1Þ−ArgminðR′1,AÞ= fc, eg �
Lðc,R′1Þ= fb, c, eg and Lðc,R′i= 2, 3Þ=A, but c ∉ FðR′Þ. Q.E.D

The second property, called I-monotonicity, that we consider for sufficiency
has been introduced recently by Doghmi and Ziad (2015). An SCC F satisfies
I-monotonicity if for all R,R′ 2 <, for any a 2 FðRÞ, if for any i 2 N,
LSða,RiÞ∪ Iða, o,RiÞ∪ fag � Lða,R′i Þ for some o 2 LIða,RiÞnfag, then a 2 FðR′Þ.
This property can be equivalently reformulated as follows.

Definition 3: (I-monotonicity)
An SCC F satisfies I-monotonicity if for all R,R′ 2 <, for any a 2 FðRÞ, if
for any i 2 N, ½LSða,RiÞ∪ Iða, o,RiÞ− argminðR′i ,AÞ�∪ fag � Lða,R′i Þ for some
o 2 LIða,RiÞnfag, then a 2 FðR′Þ.

I-monotonicity says that if an alternative a is selected for some profile of
preferences R, and if for all agents, the alternatives produced by the union of the
subset of those that are ranked strictly below a and the subset of indifferent
options, in excluding all bottom-ranked alternatives in a new profile R′ (includ-
ing a) remain ranked below a (in large sense) in R′, then the alternative a must
be chosen for the new profile R′.

The next result provides a sufficient condition for an SCC to be Nash
implementable. We shall use this result, which differs from the previous
findings in the literature, as a principle tool to prove the main result in the
next section.

Theorem 1: Let n ≥ 3. Any I-monotonic and unanimous SCC satisfying I*-weak
no-veto power can be implemented in Nash equilibria.

Proof. See appendix.
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4 Main Result on Preference Domains with
Private Values and Indifference

In this section, we present a model of allotment economies in preference
domains with private values and different types of indifference, which general-
ize single-peaked and single-dipped preference domains. We show that I*-weak
no-veto power is implied by unanimity and I-monotonicity with full range
property imply the two properties of I*-weak no-veto power and unanimity.
Thus, we conclude that I-monotonicity with the full range property form a
sufficient condition for Nash implementation, and moreover I-monotonicity
becomes equivalent to Maskin monotonicity, which imply that an SCC with
full range is Nash implementable if and only if it satisfies Maskin monotonicity.
We use this result to study the implementability of some well-known correspon-
dences, such as the Pareto correspondence, the no-envy correspondence, the
individually rational correspondence from equal division, the strong Pareto
indifferent correspondence and some of their intersections.

4.1 Model and Preference Domains

An amount Ω 2 R + + of certain infinitely divisible goods is to be allocated
among a set N = f1, ..., ng of n agents. The preference of each agent i 2 N is
represented by a continuous5 relation Ri over ½0,Ω� for the following types of
preference.6

Single-peaked preferences with worst indifferent allocations: A prefer-
ence relation Ri is single-peaked if there is a number pðRiÞ 2 ½0,Ω� such that for
all xi, yi 2 ½0,Ω� if yi < xi ≤ pðRiÞ or pðRiÞ ≤ xi < yi, then xiPiyi. We call pðRiÞ the peak
of Ri.

A preference relation Ri is single-peaked with worst indifferent allocations
if there exists an interval ½a, b� � ½0,Ω� and a peak pðRiÞ 2�a, b½ such that (i) Ri is
single-peaked on ½a, b�; (ii) for all xi 2�a, b½ and yi 2 ½0,Ω�n½a, b�, xiPiyi; and
(iii) for all xi, yi 2 ½0,Ω�n�a, b½, xi ⁓i yi. This definition provides an ordinal repre-
sentation of Cantala’s (2004) class of preferences.

5 In this case, continuous means that if ½a, b½∪ �b, c� � Lðxi,R′i Þ for some a, b, c, x and R′, then
½a, c� � Lðxi,R′i Þ.
6 For all xi, yi 2 ½0,Ω�, xiRiyi means that it is as good for agent i to consume a share xi as it is to
consume the quantity yi. The asymmetrical part is written as Pi and the symmetrical part as ⁓i.

776 A. Doghmi



The class of all single-peaked preference relations with worst indifferent
allocations is represented by <wia

spi � <i. Let <wia
sp =<wia

sp1 × ... ×<wia
spn be the domain

of single-peaked preferences with worst indifferent allocations. For a single-
peaked preference relation with worst indifferent allocations Ri 2 <wia

spi ,
the function ri is defined as follows: if xi 2 ½0, a�, then, riðxi = ½b,Ω� if such a
interval (or a number) exists or riðxiÞ=Ω otherwise; if xi 2 ½b,Ω�, then,
riðxiÞ= ½0, a� if such a interval (or a number) exists or riðxiÞ=0 otherwise; if
xi 2�a, b½, then we have the same definition to that of single-peaked preference
relations.

Single-plateaued preferences with worst indifferent allocations: A pre-
ference relation Ri is single-plateaued if there are two numbers xi, xi 2 ½0,Ω� such
that xi ≤ xi and for all xi, yi 2 ½0,Ω�: (i) if yi < xi ≤ xi or xi ≤ xi < yi, then xiPiyi; (ii) if
xi, yi 2 ½xi, xi�, then xi ⁓i yi. We call plðRiÞ≡ ½xi, xi� the plateau of Ri, xi is the left
end-point of the plateau of Ri, and xi is the right end-point.

A preference relation Ri is single-plateaued with worst indifferent allocations
if there exists an interval ½a, b� � ½0,Ω� and a plateau ½xi, xi� ��a, b½ such that (i)
Ri is single-plateaued on ½a, b�; (ii) for all xi 2�a, b½ and yi 2 ½0,Ω�n½a, b�, xiPiyi;
and (iii) for all xi, yi 2 ½0,Ω�n�a, b½, xi ⁓i yi.

The class of all single-plateaued preference relations with worst indifferent
allocations is represented by <wia

spli
� <i. Let <wia

spl =<wia
spl1

× ... ×<wia
spln

be the domain
of single-plateaued preferences. A single-plateaued preference relation with
worst indifferent allocations Ri 2 <wia

spli
is described by the function ri :½0,Ω�

! ½0,Ω� which is defined as follows: if xi 2 ½0, a�, then, riðxi = ½b,Ω� if such a
interval (or a number) exists or riðxiÞ=Ω otherwise; if xi 2 ½b,Ω�, then, riðxiÞ =
½0, a� if such a interval (or a number) exists or riðxiÞ=0 otherwise; if xi 2�a, b½,
then we have the same definition to that of single-plateaued preference
relations.

This super-domain is an enlargement of single-peaked, single-plateaued,
and Cantala’s preferences (2004), i. e., single-peaked preferences with worst
indifferent allocations. It lies between these preferences domains and that of
Dasgupta and al. (1979), where there is a top plateau of indifferent best elements
with additional plateaus.7

Now, we present the inverse configuration of the above preference domains.

7 A preference relation Ri is top-single-plateaued with additional plateaus if there are two
numbers xi, xi 2 ½0,Ω� such that xi ≤ xi and for all xi, yi 2 ½0,Ω�: (i) if yi < xi ≤ xi or xi ≤ xi < yi,
then xiRiyi; (ii) We call ½xi, xi� the top-plateau of Ri, xi is the left end-point of the plateau of
Ri, and xi is the right end-point.
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Single-troughed preferences: A preference relation Ri is single-troughed if
there are two numbers xi, xi 2 ½0,Ω� such that xi ≤ xi and for all xi, yi 2 ½0,Ω�: (i) if
< xi < yi ≤ xi or xi ≤ yi < xi, then xiPiyi; (ii) if xi, yi 2 ½xi, xi�, then xi ⁓i yi. We call
tðRiÞ≡ ½xi, xi� the trough of Ri, xi is the left end-point of the trough of Ri, and xi is
the right end-point. A preference relation Ri is single-dipped if xi = xi.

The class of all single-troughed preference relations is represented by
<sti � <i. Let <st =<st1 × ... ×<stn be the domain of single-troughed preferences.
For <st, let tðRÞ= ðtðR1Þ, ..., tðRnÞÞ be the profile of troughs. A single-troughed
preference relation Ri 2 <sti is described by the function ri : ½0,Ω� ! ½0,Ω�
which is defined as follows: riðxiÞ is the consumption of the agent i on the
other side of the trough which is indifferent to xi (if it exists), else, it is 0 or Ω.
Formally, if xi ≤ tðRiÞ, then, riðxiÞ ≥ tðRiÞ and xi ⁓i riðxiÞ if such a number exists or
riðxiÞ=Ω otherwise; if xi ≥ tðRiÞ, then, riðxiÞ ≤ tðRiÞ and xi ⁓i riðxiÞ if such a num-
ber exists or riðxiÞ =0 otherwise.

Single-troughed preferences with best indifferent allocations: A prefer-
ence relation Ri is single-troughed with best indifferent allocations if there exists
an interval ½a, b� � ½0,Ω� and a trough tðRiÞ= ½xi, xi� ��a, b½ such that (i) Ri is
single-troughed on ½a, b�; (ii) for all yi 2�a, b½ and xi 2 ½0,Ω�n½a, b�, xiPiyi; and (iii)
for all xi, yi 2 ½0,Ω�n�a, b½, xi ⁓i yi.

The class of all single-troughed preference relations with best indifferent
allocations is represented by <bia

sti � <i. Let <bia
st =<bia

st1 × ... ×<bia
stn be the domain of

single-troughed preferences with best indifferent allocations. For Ri 2 <bia
sti , the

function ri is defined as follows: if xi 2 ½0, a�, then, riðxi = ½b,Ω� if such a interval
(or a number) exists or riðxiÞ=Ω otherwise; if xi 2 ½b,Ω�, then, riðxiÞ= ½0, a� if
such a interval (or a number) exists or riðxiÞ=0 otherwise; if xi 2�a, b½, then we
have the same definition in standard single-troughed preference relations. This
domain is a super-domain of the single-dipped preferences domain, the single-
troughed preferences domain and of the single-dipped preferences domain with
best indifferent allocations.

We denote these four domain restrictions with indifferent allocations
by <IA

DR = f<wia
sp ,<wia

spl ,<st,<bia
st g. Hence, without loss of generality, when we say

R 2 <IA
DR, it implies that R 2 <wia

sp , or R 2 <wia
spl or R 2 <st or R 2 <bia

st .
A feasible allocation for the economy ðR,ΩÞ 2 ð<IA

DR,R + + Þ is a vector
x ≡ ðxiÞi2N 2 R

n
+ such that

P
i2N xi =Ω and X is the set of the feasible allocations.

We note that the feasible allocations set is X � ½0,Ω� × ... × ½0,Ω�. Thus,
Lðx,RiÞ=X is equivalent to Lðxi,RiÞ= ½0,Ω�. For the set Lðx,RiÞ=X, xRiy for all
y 2 X implies that xiRiyi. Thus, the agents preferences are defined over indivi-
dual consumption spaces, not over allocation space. Then the properties of
implementation theory, presented in general setup in Section 2, become as
follows. An SCC F is a multi-valued mapping from <IA

DR into X. A SCC F satisfies
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monotonicity if for all R,R′ 2 <IA
DR, for any x 2 FðRÞ, if for any i 2 N,

Lðxi,RiÞ � Lðxi,R′i Þ, then x 2 FðR′Þ. A SCC F satisfies I-monotonicity if for
all R,R′ 2 <IA

DR, and for any x 2 FðRÞ, if for any i 2 N, ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ −
argminðR′i , ½0,Ω�Þ�∪ fxig � Lðxi,R′i Þ for some z 2 LIðx,RiÞ n fxg, then x 2 FðR′Þ.
A SCC F satisfies no-veto power if for each i, each R 2 <IA

DR, and each x 2 X, if
Lðxj,RjÞ= ½0,Ω� for all j 2 Nnfig, then x 2 FðRÞ. A SCC F satisfies I*-weak no-veto
power if for each i, each R 2 <IA

DR, each x 2 FðRÞ, and each y 2 X, if for R′ 2 <IA
DR,

yi 2 LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ � Lðyi,R′i Þ and Lðyj,R′jÞ= ½0,Ω� for
all j 2 Nnfig, for some z 2 LIðx,RiÞ n fxg, then y 2 FðR′Þ. A SCC F satisfies
unanimity if for any x 2 X and any R 2 <IA

DR, if for any i 2 N, Lðxi,RiÞ= ½0,Ω�,
then x 2 FðRÞ. We note that the free disposability of the good is not assumed.

4.2 The Challenges for the <IA
DR Domains Compared

to the Previous Findings

Before providing our main result in the next subsection, we discuss here the
challenges of the implementability of SCCs on the domain restrictions with
indifferent allocations <IA

DR compared to the previous findings of Thomson
(1990, 2010), Doghmi and Ziad (2008b, 2013a, 2013b, 2015), and Doghmi
(2013a, 2013b) for the restricted domains of single-peaked, single-dipped and
single-plateaued preferences, and single-dipped preferences with best indiffer-
ent allocations. On single-peaked domain, Thomson (1990, 2010) applied the
different techniques developed in Maskin (1999) and Yamato (1992) to examine
the implementability of a family of solutions of the problem of fair division. He
concluded that these tools do not always work. Hence, he appealed to Sjöström’s
algorithm (1991), which is not simple. In an easy way, Doghmi and Ziad (2008b)
and Doghmi (2013a) applied the results of Doghmi and Ziad (2008a) and proved
that Maskin monotonicity is a necessary and sufficient condition to implement
these solutions on single-peaked and single-dipped domains without appealing
to the different techniques used by Thomson (1990, 2010). Although this latter
result is encouraging, a difficulty occurs when we allow indifference between
alternatives. To overcome this difficulty, Doghmi and Ziad (2015) provided the
new properties of I-monotonicity and I-weak no-veto power8 to implement the

8 A SCC F satisfies I-weak no-veto power if for i, R 2 <, and a 2 FðRÞ, if for R′ 2 <,
b 2 LSða,RiÞ∪ Iða, o,RiÞ � Lðb,R′i Þ and Lðb,R′jÞ=A for all j 2 Nnfig, for some
o 2 LIða,RiÞ n fag, then b 2 FðR′Þ. This variant implies I*-weak no-veto power, but the converse
does not always hold.
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unanimous SCCs in general environment. Then, they showed that in single-
plateaued domains (and in single-dipped domain with best indifferent alloca-
tions by Doghmi (2013b)), (i) full range property and I-monotonicity implies the
two properties of unanimity and I-weak no-veto power, and (ii) unanimity
implies I-weak no-veto power, and hence I-monotonicity with the full range
property form together a sufficient condition for implementation. Moreover,
I-monotonicity becomes equivalent to Maskin monotonicity, which imply that
an SCC with full range is Nash implementable if and only if it satisfies Maskin
monotonicity. Nevertheless, this result does not manage the issue of the <IA

DR

domains, which include multiple worst indifferent allocations. The reason is that
in this area the variant of weak no-veto power provided by Doghmi and Ziad
(2015) is not implied by the property of unanimity when preference profile admit
indifference between the worst allocations, and hence the analysis proposed by
Doghmi and Ziad (2015) to achieve a full characterization does not work. Here,
our new property of I*-weak no-veto power has a key role to play in filling this
gap. We prove in the next subsection that I*-weak no-veto power is implied by
unanimity, and I-monotonicity together with the full range property imply
unanimity, and hence they also imply I*-weak no-veto power. Therefore, we
conclude that I-monotonicity maintains its robustness and remains a sufficient
condition in this context of preference profiles with multiple worst indifferent
elements. Moreover, it also remains equivalent to Maskin monotonicity, and
hence it constitutes with the full range property a necessary and sufficient
condition for an SCC to be Nash implementable. We shall detail and explain
this result in a formal way in the next subsection.

4.3 Full Characterization for Nash Implementation on <IA
DR

To provide a full characterization for an SCC to be Nash implementable on the
domain restrictions with indifferent allocations (<IA

DR), we first give some useful
tools. We begin by introducing the following Lemma.

Lemma 1: Let R,R′ 2 <IA
DR, x, y, z 2 X, and i 2 N. If yi 2 LSðxi,RiÞ ∪ Iðxi, zi,RiÞ −

argminðR′i , ½0,Ω�Þ � Lðyi,R′iÞ, then Lðyi,R′i Þ = ½0,Ω�.
The proof of Lemma 1 is omitted because it follows the same reasoning as

Lemma 1 in Doghmi and Ziad (2008b).
The following proposition shows that our new property of I*-weak-no-veto

power is implied by unanimity. This result can not be achieved by earlier
versions of no-veto power, and here where it appears the usefulness of this
new requirement.
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Proposition 1: In the private goods economies under domain restrictions
with indifferent allocations <IA

DR, any unanimous SCC satisfies I*-weak no-veto
power.

The proof of this proposition is omitted, it is immediate from Lemma 1. Next,
we provide the definition of the full range property.

Definition 4: (Full range)
An SCC F satisfies the full range property (or citizen sovereignty) if for each x 2 X,
there is a profile R 2 <IA

DR such that x 2 FðRÞ.
The full range requirement is satisfied vacuously for all SCCs considered in

this study on <IA
DR.

The following result extends Lemma 2 of Doghmi and Ziad (2015) from
single-plateaued preferences domain to a large domain of preferences with
indifference.

Proposition 2: In the private goods economies under domain restrictions with
indifferent allocations <IA

DR, any I-monotonic SCC that has full range satisfies
unanimity.

Proof. We consider the domain restriction <wia
sp . Assume that I-monotonic

SCC does not satisfy unanimity. Let x 2 X and any eR 2 <wia
sp , for any i 2 N,

½0,Ω�= Lðxi, eRiÞ, and x ∉ FðeRÞ. By the full range requirement, for all x 2 X,
there is a profile R 2 <wia

sp such that x 2 FðRÞ and thus for all i 2 N, ½LSðxi,RiÞ
∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig � ½0,Ω�= Lðxi, eRiÞ. By I-monotonicity,
x 2 FðeRÞ, a contradiction. We follow the same reasoning for the domain restric-
tions <wia

spl , <st, and <bia
st . Q.E.D.

By Propositions 1 and 2, we obtain the following corollary.

Corollary 1: In the private goods economies under domain restrictions with
indifferent allocations <IA

DR, any I-monotonic SCC that has full range satisfies
I*-weak no-veto power.

From Theorem 1, Propositions 1–2, and Corollary 1 we give the following
result.

Corollary 2: Let n ≥ 3. In the private goods economies under domain restrictions
with indifferent allocations <IA

DR, any SCC that has full range satisfying I-mono-
tonicity can be implemented in Nash equilibria.

In the following proposition, we show that I-monotonicity is not only
sufficient but is also necessary provided that it becomes equivalent to Maskin
monotonicity.
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Proposition 3: In the private goods economies under domain restrictions with
indifferent allocations <IA

DR, the I-monotonicity condition becomes equivalent to
Maskin monotonicity.

Proof. Let R,R′ 2 <IA
DR, x, y, z 2 X, and x 2 FðRÞ. i) I-monotonicity implies

Maskin monotonicity; this first implication is immediate from Observation 1 of
Doghmi and Ziad (2015). ii) Maskin monotonicity implies I-monotonicity; in this
case, assume that ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig � Lðxi,R′i Þ for
some z 2 LIðx,RiÞnfxg (1). We have four situations to study.

Situation 1: We consider the domain restriction <wia
sp . We suppose that xi ≤ pðRiÞ

(we follow the same reasoning for xi > pðRiÞ). We have three cases to consider.
i) If xi 2�a, pðRiÞ� then Iðxi, zi,RiÞ= ; and so we follow the same statement of

Lemma 1 in Doghmi and Ziad (2008b).
ii) If xi 2 ½0, a�, and 9fzig 2 ½0, a� s.t. 0 < zi < a then we have Iðxi, zi,RiÞ≠ ; and

hence we have the following possibilities:
ii.a− If xi < zi with xi ≠0, then ;≠ Iðxi, zi,RiÞ= ½0, xi½∪ �xi, zi½∪ �zi, a�∪ ½b,Ω�

and LSðxi,RiÞ= ;. For a profile R′, we have argminðR′i , ½0,Ω�Þ= ½0, a′� ∪ ½b′,Ω�,
in this case we have either xi 2 ½0,Ω�n�a′, b′½ or xi 2�a′, b′½. If xi 2 ½0,Ω�n�a′, b′½,
then by (1) ½a, b� � ½a′, b′� and thus ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0, Ω�Þ�
∪ fxig= fxig � Lðxi,R′i Þ= ½0, a′�∪ ½b′,Ω�. It is clear that Lðxi,RiÞ= ½LSðxi,RiÞ∪
Iðxi, zi,RiÞ − argminðR′i , ½0,Ω�Þ� ∪ fxig ∪ ½0, xi½∪ �xi, a� ∪ ½b,Ω� � Lðxi,R′i Þ = ½0, a′�∪
½b′,Ω�. By the continuity of preferences, Lðxi,RiÞ= ½0, a�∪ ½b,Ω� � Lðxi,R′i Þ=
½0, a′�∪ ½b′,Ω�. By Maskin monotonicity, x 2 FðR′Þ. If xi 2�a′, b′½, then from (1)
we have ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig= �a′, zi½∪ �zi, a�∪ ½b, b′
½� Lðxi,R′i Þ= ½0,Ω� if b < b′ (or ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪
fxig= � a′, zi ½∪ �zi, a� � Lðxi,R′i Þ = ½0,Ω� if b ≥ b′, in this case we follow the
same reasoning). By the continuity of preferences, ½LSðxi,RiÞ ∪ Iðxi, zi,RiÞ −
argminðR′i , ½0,Ω�Þ�∪ fxig= �a′, a�∪ ½b, b′½= Lðxi,RiÞ− argminðR′i , ½0,Ω�Þ � Lðxi,R′i Þ =
½0,Ω� (2). From (1) and (2) we have Lðxi,RiÞ− argminðR′i , ½0,Ω�Þ � Lðxi,R′i Þ.
Therefore, Lðxi,RiÞ � Lðxi,R′i Þ∪ argmin ðR′i , ½0,Ω�Þ. Since we have Lðxi,R′i Þ∪
argminðR′i , ½0,Ω�Þ= Lðxi,R′i Þ, then Lðxi,RiÞ � Lðxi,R′i Þ. By Maskin monotonicity,
x 2 FðR′Þ.

ii.b− If xi < zi with xi =0, then ;≠ Iðxi, zi,RiÞ= �0, zi½∪ �zi, a�∪ ½b,Ω�, thus we
follow the same reasoning in (ii.a).

ii.c− If zi < xi with xi ≠ a or zi < xi with xi = a, then we follow the same
reasoning in (ii.a).

iii) If xi 2 ½0, a�, and 9fzig 2 ½b,Ω� s.t. b < zi <Ω, ;≠ Iðxi, zi,RiÞ= ½0, xi½∪ �xi, a�
∪ ½b, zi½∪ �zi,Ω� and LSðxi,RiÞ = ;. For a profile R′, we have argminðR′i ,
½0,Ω�Þ= ½0, a′�∪ ½b′,Ω�, hence we have either xi 2 ½0,Ω�n�a′, b′½ or xi 2�a′, b′½. For
the two cases, we follow the same statement in (ii.a).
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Situation 2: We consider the domain restriction <st. We have three cases to
consider.

i) If xi ∉ ½xi, xi�, then Iðxi, zi,RiÞ = ; and LSðxi,RiÞ= �xi, riðxiÞ½. In this case, we
have either xi 2 tðR′Þ= ½x′i, x′i� or xi ∉ ½x′i, x′i�. If xi 2 tðR′Þ= ½x′i, x′i� with tðR′Þ �
tðRÞ (we follow the same reasoning to prove all other configurations), then by
(1), ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig= fxig � Lðxi,R′i Þ= ½x′i, x′i�=
½x′i, riðxiÞi� if riðxiÞ exists (if the numbers riðxiÞ and r′iðxiÞ do not exist, we follow
the same reasoning and we obtain the same result). We have Lðxi,RiÞ=
½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ� ∪ fxig∪ �xi, riðxiÞ�. By the continuity
of preferences, Lðxi,RiÞ = ½LSðxi,RiÞ ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig∪ �
xi, riðxiÞ� = ½xi, riðxiÞ� � Lðxi,R′i Þ = ½x′i, riðxiÞ�. By Maskin monotonicity, x 2 FðR′Þ. If
xi ∉ ½x′i, x′i�. By (1) we have ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig= ½xi,
x′i½∪ �x′i, riðxiÞ ½� Lðxi,R′i Þ= ½xi, r′ðxiÞ� if tðR′Þ � ½xi, riðxiÞ� (we follow the same
reasoning to prove all other configurations). It is clear that Lðxi,RiÞ=
½LSðxi,RiÞ ∪ Iðxi, zi,RiÞ − argminðR′i , ½0,Ω�Þ� ∪ fxig ∪ �x′i, x′i½∪ �riðxiÞ, riðxiÞ� = ½xi, x′i
½∪ �x′i, x′i½∪ �x′i, riðxiÞ½∪ �riðxiÞ, riðxiÞ� � Lðxi,R′i Þ = ½xi, r′ðxiÞ�. By the continuity of
preferences, Lðxi,RiÞ= ½xi, rðxiÞ� � Lðxi,R′i Þ= ½xi, r′ðxiÞ�. By Maskin monotonicity,
x 2 FðR′Þ.

ii) If xi 2 ½xi, xi�, then Iðxi, zi,RiÞ≠ ; and hence we have the following
possibilities:

ii.a− If xi < zi with xi ≠ xi, then ;≠ Iðxi, zi,RiÞ= ½xi, xi½∪ �xi, zi½∪ �zi, xi�
and LSðxi,RiÞ= ;. In this case, we have by (1) ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ−
argminðR′i , ½0,Ω�Þ�∪ fxig= fxig � Lðxi,R′i Þ= ½x′i, x′i�. It is clear that Lðxi,RiÞ =
½LSðxi,RiÞ∪ Iðxi, zi,RiÞ− argminðR′i , ½0,Ω�Þ�∪ fxig∪ ½xi, xi½∪ �xi, xi� � Lðxi,R′i Þ, i. e.,
Lðxi,RiÞ= fxig∪ ½xi, xi½∪ �xi, xi� � Lðxi,R′i Þ. By the continuity of preferences,
Lðxi,RiÞ= ½xi, xi� � Lðxi,R′i Þ. By Maskin monotonicity, x 2 FðR′Þ.

ii.b− If xi < zi with xi = xi, then ;≠ Iðxi, zi,RiÞ= �xi, zi½∪ �zi, xi� and LSðxi,RiÞ= ;
and so we follow the same reasoning in (ii.b).

ii.c If zi < xi with xi ≠ xi or zi < xi with xi = xi then we follow the same reasoning
in (ii.a).

Situation 3: We consider the domain restriction <wia
spl . We suppose that

xi ≤ xi (we follow the same reasoning for xi > xi). We have four cases to
consider.

i) If xi 2�a, xi½ then Iðxi, zi,RiÞ= ; and so we follow the same statement of
Proposition 4 in Doghmi and Ziad (2008b).

ii) If xi 2 ½0, a�, and 9fzig 2 ½0, a� s.t. 0 < zi < a then we have Iðxi, zi,RiÞ≠ ; and
so we follow the same reasoning in (ii) of Situation 1.

iii) If xi 2 ½0, a�, and 9fzig 2 ½b,Ω� s.t. b < zi <Ω, then we have Iðxi, zi,RiÞ≠ ;
and so we follow the same reasoning in (iii) of Situation 1.
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iv) If xi 2 ½xi, xi� then we follow the same statement of Proposition 2 in
Doghmi and Ziad (2013b).

Situation 4: We consider the domain restriction <bia
st . Suppose that xi ≤ xi

(similar reasoning can be followed for xi > xi. We have three cases to consider.
i) If xi 2 ½0, a� and 9fzig 2 ½0, a� s.t. 0 < zi < a, then we have the following

possibilities to study.
i.a − If xi < zi with xi ≠0, then ;≠ Iðxi, zi,RiÞ= ½0, xi½∪ �xi, zi½∪ �zi, a�∪ ½b,Ω�

and LSðxi,RiÞ= �a, b½. For a profile R′, assume that tðR′i Þ � tðRÞ with
a′ < a < x′i < xi and xi < b < x′i < b′. By (1), ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ − argmin ðR′i ,
½0,Ω�Þ� ∪ fxig= ½0, zi½∪ �zi, x′i½∪ �x′i,Ω� � Lðxi,R′i Þ = ½0,Ω�. It is clear that
Lðxi,RiÞ= ½LSðxi,RiÞ∪ Iðxi, zi,RiÞ − argminðR′i , ½0,Ω�Þ�∪ fxig∪ fzig∪ ½x′i, x′i�, i. e.,
Lðxi,RiÞ= ½0, zi½∪ fzig∪ �zi, x′i½∪ ½x′i, x′i�∪ �x′i,Ω�. By the continuity of prefer-
ences, Lðxi,RiÞ= ½0,Ω� � Lðx,R′i Þ= ½0,Ω�. By Maskin monotonicity, x 2 FðR′Þ.
We follow the same statement for all other configurations.

i.b − If xi < zi with xi =0, then ;≠ Iðxi, zi,RiÞ= �xi, zi½∪ �zi, a�∪ ½b,Ω� and so we
follow the same reasoning in (i.a).

i.c− If zi < xi with xi ≠ a or zi < xi with xi = a, then we follow the same reason-
ing in (i.a).

ii) If xi 2 ½0, a� and 9fzig 2 ½b,Ω�, then we follow the same statement in in
case (i).

iii) If xi 2�a, xi�, then we follow the same statement of the proof of Situation
2. Q.E.D.

By Corollary 2 and Proposition 3 we complete the proof of the following
main result in this work.

Theorem 2: Let n ≥ 3. In the private goods economies under domain restrictions
with indifferent allocations <IA

DR, any SCC that has full range is Nash implemen-
table if and only if it satisfies Maskin monotonicity.

This result also applies to the domains restrictions of single-peaked prefer-
ences (<sp), single-dipped preferences (<sd), single-plateaued preferences (<spl),
and single-dipped preferences with best indifferent allocations (<bia

sd ). Thus, it
follows from Theorem 2, Theorem 1 of Doghmi (2013b), and Theorem 2 of
Doghmi and Ziad (2015), the next corollary.

Corollary 3: Let n ≥ 3. In the private goods economies under the domain restric-
tions of <sp, <sd, <spl, <bia

sd , and <IA
DR, any SCC that has full range is Nash

implementable if and only if it satisfies Maskin monotonicity.
In the next subsection, we provide some applications of Theorem 2 by

examining the implementability of some well-known SCCs.

784 A. Doghmi



4.4 Examples of Some Monotonic and Nonmonotonic Well-
known SCCs under Domain Restrictions with Indifferent
Allocations

To apply the result of Theorem 2 to the problem of the fair allocation of an
infinite divisible commodity among a group of agents, we introduce a variety of
well-known solutions to this problem and we inspect whether these correspon-
dences are implementable on the <IA

DR domains.

4.4.1 Some Well-known Correspondences

We begin by defining the no-envy solution that was introduced by Foley (1967).
No-envy correspondence, NE: This correspondence selects the feasible

allocations for which each agent prefers his own share than the shares of the
other agents. It is defined as follows: Let R 2 <IA

DR, NEðRÞ= fx 2 X if xiRixj for all
i, j 2 Ng.

Individually rational correspondence from equal division, Ied: This
correspondence selects the feasible allocations for which each agent prefers
his own share to the average one. It is defined as follows: Let R 2 <IA

DR,
IedðRÞ= fx 2 X :xiRiðΩ=nÞ for all i 2 Ng.

Pareto correspondence, P: This solution selects the feasible allocations
which are not weakly dominated by an other allocation for all agents and not
strictly dominated for at least one agent. It is defined as follows: Let R 2 <IA

DR,
PðRÞ= fx 2 X : = 9= x′ 2 X such that for all i 2 N, x′iRixi, and for some i 2 N,
x′iPixig.

Pareto indifferent, PI: This solution selects the feasible allocations which
are indifferent for all agents. It is defined as follows: Two allocations x, y 2 X are
Pareto indifferent under R if for all i 2 N, xi ⁓i yi.

In the next definition, we assume that for all agent the share of an allocation
x is not only indifferent to one share but to a set of shares.

Strong Pareto indifferent, SPI: An allocation x is strongly Pareto indiffer-
ent if there exists a subset Y � X with Y ≠ ; and Ynfxg≠ fyg such that for all
i 2 N, xi ⁓i yi for all y 2 Y .9

9 The notation Ynfxg≠ fyg means that if x 2 Y then Ynfxg is different to a singleton. If Ynfxg
is a singleton, the solution of SPI reduces to the PI correspondence, which violates Maskin
monotonicity on the <IA

DR domains.
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In addition to these correspondences, we also introduce some solutions
produced by intersections. We consider the intersection of the no-envy corre-
spondence with the individually rational correspondence from equal division
(NE ∩ Ied), and the intersections of the no-envy correspondence and the indivi-
dually rational correspondence from equal division with the Pareto correspon-
dence (NE ∩P, Ied ∩P). We also consider the intersections of strong Pareto
indifferent with the no-envy correspondence (SPI ∩NE), with the individually
rational correspondence from equal division (SPI ∩ Ied), and with the Pareto
correspondence (SPI ∩P).

4.4.2 Examples of Monotonic SCCs under Domain Restrictions
with Indifferent Allocations <IA

DR

In this subsection, we first give examples of SCCs that are monotonic in the
unrestricted domains and also monotonic in the current setup, and we second
provide exemples of SCCs that are not monotonic in the unrestricted domains,
but monotonic and therefore Nash implementable in our context.

4.4.2.1 Examples of SCCs that are monotonic in unrestricted domains
The monotonic SCCs that we examine their implementability are the no-envy
correspondence, the individually rational correspondence from equal division
and their intersection. We give the following observation.

Observation 2: In the private goods economies under domain restrictions with
indifferent allocations <IA

DR, the no-envy correspondence, the individually rational
correspondence from equal division and their intersection all satisfy Maskin
monotonicity.

Since the no-envy correspondence, the individually rational correspondence
and their intersection are monotonic in unrestricted domains, it is trivial that
these correspondences are monotonic in our area. Thus, the proof of Observation
2 is omitted.

It follows from Thomson’s results (1990, 2010) and Proposition 8 of
Doghmi (2013a) that the no-envy solution, the individually rational correspon-
dence from equal division and (NE ∩ Ied) correspondence all fail to satisfy no-
veto power on domain restrictions with indifferent allocations. Thus, Maskin’s
theorem is silent about their implementability in this environment. Therefore,
from Observation 2 we appeal to Theorem 2 and we give the following
corollary.
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Corollary 4: In the private goods economies under domain restrictions with
indifferent allocations <IA

DR, the no-envy correspondence, the individually rational
correspondence from equal division and their intersection are all Nash implemen-
table by Theorem 2.

4.4.2.2 Examples of SCCs that are nonmonotonic in unrestricted domains
In Example 2 we show that the SPI correspondence violates Maskin monotoni-
city in unrestricted domains. To illustrate this, we begin by adapting its notation
to the general context provided in Section 2. An alternative a is strongly Pareto
indifferent if there exists a subset B � A with B≠ ; and Bnfag≠ fbg such that for
all i 2 N, a⁓ib for all b 2 B.

Example 2: Let A= fa, b, c, d, e, fg, B= fb, e, fg � A, N = f1, 2, 3g and <= fR,R′g
such that:

From the definition of SPI we have SPIðRÞ= fa, b, e, fg and SPIðR′Þ = fb, c, e, fg.
It is clear that the SPI correspondence violates Maskin monotonicity, and hence
it is not Nash implementable in unrestricted domains.

As mentioned in Subsection 4.4.1, we construct new solutions produced
from the intersections of the SPI correspondence with the individually rational
correspondence from equal division (SPI ∩ Ied), with the no-envy correspondence
(SPI ∩NE), and with the Pareto correspondence (SPI ∩P). We show that these
solutions that violate Maskin monotonicity in general domains become mono-
tonic in our context.

To prove that the (SPI ∩ Ied) correspondence is nonmonotonic in unrestricted
domains, we fix the definition of Ied in this context. Let a0 and b be elements of
the set of alternatives A, and let R 2 <. We denote by I the notion of Ied in
general setup, IðRÞ= fa 2 A : aRia0 and a⁓ib for all i 2 Ng. In Example 2, let
a0 =d, therefore ðSPI ∩ IÞðRÞ= fa, b, e, fg and ðSPI ∩ IÞðR′Þ= fb, c, e, fg. We have
Lða,RiÞ � Lða,R′i Þ for i= f1, 2, 2g, but a ∉ ðSPI ∩ IÞðR′Þ, hence the (SPI ∩ I) corre-
spondence violates Maskin monotonicity.

Now, we consider the same general of economies used in Doğan (2015) and
we show in Example 2 that the (SPI ∩NE) correspondence does not satisfy
Maskin monotonicity.

R′: R′1 R′2 R′3

a a a
b,c,e,f b,c,e,f b,c,e,f
d d d

R: R1 R2 R3

a,b,e,f c c
d a,b,e,f a,b,e,f
c d d
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Example 3: Let N = f1, 2, 3g and X = fx, y, z,wg with x = ðx1, x2, x3Þ, y = ðy1, y2, y3Þ,
z = ðz1, z2, z3Þ and w= ðw1,w2,w3Þ. Let Y = fy, z,wg � X and <= fR,R′g such that:

From the definition of (SPI ∩NE), we have ðSPI ∩NEÞðRÞ= fx, y, z,wg and
ðSPI ∩NEÞðR′Þ= fy, z,wg. In this example, we have x 2 ðSPI ∩NEÞðRÞ, and for
i= f1, 2, 3g, Lðxi,RiÞ � Lðxi,R′i Þ, but x ∉ ðSPI ∩NEÞðR′Þ.

Finally, the (P ∩ SPI) correspondence that we consider does not satisfy
Maskin monotonicity in unrestricted domains as long as the Pareto correspon-
dence violates this property in these general domains.

In Proposition 4 that follows, we show that the correspondences of SPI,
SPI ∩ Ied, SPI ∩NE, and SPI ∩P satisfy the property of Maskin Monotonicity on
the <IA

DR domains, and hence they are Nash implementable by Theorem 2.

Proposition 4: In the private goods economies under domain restrictions
with indifferent allocations <IA

DR, the correspondence of strong Pareto indifferent
and its intersections with the individually rational correspondence from
equal division, with the no-envy correspondence, and with the Pareto
correspondence do satisfy Maskin monotonicity, and thus they are Nash imple-
mentable by Theorem 2.

Proof: Let R 2 <st, x 2 X, and x 2 SPIðRÞ. Assume that for a preference profile
R′ 2 <st we have Lðxi,RiÞ � Lðxi,R′i Þ for all i 2 N (1). The assumption x 2 SPIðRÞ
means that for R 2 <st, there is Y � X with Y ≠ ; and Ynfxg≠ fyg such that for
all i 2 N, xi⁓yi for all y 2 Y (2). From the definition of the <st preference profile
class and (2), we must have xi 2 ½xi, xi� � ½0,Ω� such that xi⁓yi for all
yi 2 ½xi, xi�g � Y . By (1) we obtain xi 2 ½xi, xi� � ½x′i, x′i�, and hence x 2 SPIðR′Þ.
We follow the same statement for the intersections of SPI with Ied, NE, and P. We
proceed in the same way for the preference domains of <wia

sp ,<wia
spl , and <bia

st . By
Theorem 2 we complete the proof as required.10 Q.E.D

R′: R′1 R′2 R′3

x1 x2, y2, z2,w2 x3, y3, z3,w3

y1, z1,w1 x3, y3, z1 x2, y1, z1
x2, y3, z2,w2 x1, y1, z3 x1, y2, z2
x3, y2, z3,w3 w1,w3 w1,w2

R: R1 R2 R3

x1, y1, z1,w1 x2, y2, z2,w2 x3, y3, z3,w3

x2, y3, z1 x1, y3, z1 x1, y2, z2
x3, y2, z3 x3, y1, z3 x2, y1, z1
w2,w3 w1,w3 w1,w2

10 For the case of the <wia
spl domain, we require that the plateau ½xi, xi�≠ fxig, i. e., we can not

combine the two domains of <wia
sp and <wia

spl to prove the case of the latter. We assume the same
requirement for the intervals of best indifferent allocations of <bia

st domain.
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4.4.3 Examples of Nonmonotonic SCCs under Domain Restrictions when the
Preferences are Single-peaked/single-plateaued with Worst Indifferent
Allocations (<wia

sp , <wia
spl )

The next proposition shows that the Pareto correspondence and its intersec-
tions with the no-envy correspondence, and with the individually rational
correspondence from equal division do not satisfy Maskin monotonicity.
Therefore, they are not Nash implementable in private goods economies when
the preferences are single-peaked/single-plateaued with worst indifferent
allocations.11

Proposition 5: In private goods economies, when preferences are single-peaked/
single-plateaued with worst indifferent allocations, the Pareto correspondence and
its intersections with the no-envy correspondence, and with the individually
rational correspondence from equal division do not satisfy Maskin monotonicity,
and thus they are not Nash implementable.

Proof: Let R,R′ 2 <wia
sp , x = ð4, 8, 0Þ, y = ð4.5, 7.5, 0Þ 2 X and

P3
i= 1 xi =P3

i= 1 yi =Ω = 12. Let R1 =R′1, R3 =R′3, and pðRÞ= pðR′Þ = ð5, 11, 0Þ. Figure 1 illus-
trates such representations.

Figure 1: The P, (P ∩NE), and (P ∩ Ied) correspondences do not satisfy Maskin monotonicity.

11 We note that the Pareto correspondence satisfies Maskin monotonicity and no-veto power in
single-peaked domain without worst indifferent allocations. Hence, it is Nash implementable in
this domain by Maskin’s original result. For further details, see Thomson (1990, 2010) and
Doghmi and Ziad (2008b).
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Note that x 2 PðRÞ and for all i 2 N, Lðxi,RiÞ � Lðxi,R′i Þ. However, for profile
R′, we have yi= 2, 3⁓′i= 2, 3xi= 2, 3 and y1P′1x1. Therefore, x ∉PðR′Þ. We have
x 2 ðP ∩NEÞðRÞ and for all i 2 N, Lðxi,RiÞ � Lðxi,R′i Þ. However, for profile R′,
we have x ∉ ðP ∩NEÞðR′Þ. We have x 2 ðP ∩ IedÞðRÞ and for all i 2 N,
Lðxi,RiÞ � Lðxi,R′i Þ. However, in profile R′, we have yi= 2, 3⁓′i= 2, 3xi= 2, 3 and
y1P′1x1. Therefore, x ∉ PðR′Þ and so x ∉ ðP ∩ IedÞðR′Þ. Therefore, P, P ∩NE, and
P ∩ Ied violate Maskin monotonicity. From Theorem 2 of Maskin (1999), they
are not Nash implementable in <wia

sp , and in <wia
spl given that the <wia

sp domain is
a sub-domain of <wia

spl . Q.E.D.

4.4.4 Examples of nonmonotonic SCCs under domain restrictions when the
preferences are single-troughed/single-troughed with best indifferent
allocations (<st , <bia

st )

It follows from Proposition 5 of Doghmi and Ziad (2013a) that the Pareto
correspondence does not satisfy Maskin monotonicity when we allow multiple
worst indifferent allocations. In the following, we show that in contrast
to Doghmi’s result (2013a), the intersections of the Pareto correspondence with
the no-envy correspondence fail to satisfy Maskin monotonicity when we allow
multiple best indifferent allocations, as proved in the following proposition.

Proposition 6: In private goods economies, when preferences are single-troughed/
single-troughed with best indifferent allocations, the Pareto correspondence and its
intersections with the no-envy correspondence, and with the individually rational
correspondence from equal division do not satisfy Maskin monotonicity, and thus
they are not Nash implementable.

Figure 2: The P, (P ∩NE), and (P ∩ Ied) correspondences do not satisfy Maskin monotonicity.

790 A. Doghmi



Proof: Let R,R′ 2 <st, x = ð6, 4, 2Þ, y = ð6.5, 3, 2.5Þ 2 X and
P3

i= 1 xi =
P3

i= 1 yi =
Ω= 12. Let R1 =R′1, R2 =R3,R′2 =R′3, tðRÞ= ð½2, 6�, ½3, 4.5�, ½3, 4.5�Þ, and tðR′Þ =
ð½2, 6�, ½2, 5.5�, ½2, 5.5�Þ. Figure 2 illustrates such representations.

Note that x 2 ðP ∩NEÞðRÞ and for all i 2 N, Lðxi,RiÞ � Lðxi,R′i Þ. However, for
profile R′, we have yi= 2, 3⁓′i= 2, 3xi= 2, 3 and y1P′1x1. Therefore, x ∉PðR′Þ and so
x ∉ ðP ∩NEÞðR′Þ. Also, we have x 2 PðRÞ and xiRi

Ω
3 for i= 1, 2, 3 and so

x 2 ðP ∩ IedÞðRÞ. We have for all i 2 N, Lðxi,RiÞ � Lðxi,R′i Þ. However, for profile
R′, we have yi= 2, 3⁓′i= 2, 3xi= 2, 3 and y1P′1x1. Therefore, x ∉PðR′Þ and so
x ∉ ðP ∩ IedÞðR′Þ. Therefore, P, P ∩NE, and P ∩ Ied violate Maskin monotonicity
in <st domain. From Theorem 2 of Maskin (1999), these solutions are not Nash
implementable. Since <st is a sub-domain of <bia

st , we complete the proof as
required. Q.E.D.

5 Conclusion

In this study, we provided a full characterization of Nash implementation in
many restrictive domains by allowing different types of indifference between
allocations. First, we extended our characterization from a single-peaked domain
to Cantala’s domain (2004) by allowing multiple worst indifferent allocations,
where we also implemented some well-known correspondences. Second, in an
inverse configuration, we enlarged Doghmi’s characterization (2013a) from a
single-dipped domain to a single-troughed domain by providing some examples
that support this result. Finally, we generalized our characterization by allowing
multiple best and worst indifferent allocations at the same time. These results
can be exploited to examine the connection between strategy-proofness and the
implementation literature as in Diss et al.(Diss, Doghmi, and Tlidi 2015).

Appendix

Proof. Let Γ= ðS, gÞ be a mechanism which is defined as follows: For each i 2 N,
let Si =< ×A ×N, where N consists of the nonnegative integers. The generic
element of strategic space Si is denoted by: si = ðRi, ai,miÞ. Each agent
announces a preference profile, an optimal alternative for this profile and
nonnegative integer. The function g is defined as follows:

Rule 1: If for each i 2 N, si = ðR, a,mÞ and a 2 FðRÞ, then gðsÞ= a.
Rule 2: If for some i, sj = ðR, a,mÞ for all j≠ i, a 2 FðRÞ and si = ðRi, ai,miÞ

≠ ðR, a,mÞ, then:
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gðsÞ =
ai if for allR′ 2 <, ai 2 LSða,RiÞ∪ Iða, o,RiÞ− argminðR′i ,AÞ≠ ;

8<
: for some o 2 LIða,RiÞnfag,

a otherwise:

Rule 3: In any other situation, gðsÞ = ai* , where i* is the index of the player of
which the number mi* is largest. If there are several individuals who check this
condition, the smallest index i will be chosen.

Let us show that FðRÞ= gðNðS, g,RÞÞ. The proof contains two steps:
Step 1. For all R 2 <, FðRÞ � gðNðS, g,RÞÞ.
Let R 2 < and a 2 FðRÞ. For each i 2 N, let si = ðR, a,mÞ. Then, by rule 1,

gðsÞ= a. We want to show that s 2 NðS, g,RÞÞ. Let us choose any individual i
and any strategy esi 2 Si such that esi = ðeR, ai, emÞ. For all R′ 2 <, if
ai 2 LSða,RiÞ∪ Iða, o,RiÞ− argminðR′i ,AÞ for some o 2 LIða,RiÞnfag, then by
rule 2, gðesi, s− iÞ= ai. But, since LSða,RiÞ∪ Iða, o,RiÞ − argminðR′i ,AÞ � Lða,RiÞ,
then gðsÞRigðesi, s− iÞ, thus s 2 NðS, g,RÞ. Otherwise, gðsÞ= gðesi, s− iÞ, thus
s 2 NðS, g,RÞ.

Step 2. For all R 2 <, gðNðS, g,RÞÞ � FðRÞ.
Let s 2 Nðg,R, SÞ. Let us show that gðsÞ 2 FðRÞ. We study the various possi-

bilities of writing the profile of strategies s= ðs1, s2, ..., snÞ.
Case a: s= ðs1, s2, ..., snÞ. Suppose there exists ðR′, a,mÞ 2 < ×A ×N, with

a 2 FðR′Þ, such that s is defined by si = ðR′, a,mÞ for any i 2 N. Then, by rule 1,
gðsÞ= a.

Let i 2 N, for all R 2 <, we choose any b 2 ½LSða,R′i Þ∪ Iða, o,R′i Þ−
argminðRi,AÞ�∪ fag for some o 2 LIða,R′i Þnfag. Let esi = ðR′, b,m′Þ. Then, by the
rule 2, gðesi, s− iÞ= b. Since s 2 Nðg,R, SÞ, a= gðsÞRigðesi, s− iÞ= b. Therefore,
½LSða,R′i Þ∪ Iða, o,R′i Þ− argminðRi,AÞ�∪ fag � Lða,RiÞ for some o 2 LIða,R′i Þn
fag. By I*-monotonicity, a 2 FðRÞ.

Case b: s= ðs1, s2, ..., snÞ. Assume there is i 2 N, R′ 2 < and a 2 A such that
a 2 FðR′Þ. For all j≠ i, sj = ðR′, a,mÞ and si = ðR′i, ai,miÞ≠ sj, in this case,

gðsÞ=
ai if for allR 2 <, ai 2 LSða,R′i Þ∪ Iða, o,R′i Þ− argminðRi,AÞ≠ ;

8<
: for some o 2 LIða,R′i Þnfag,

a otherwise:

There are two subcases:
Subcase b1: If gðsÞ= ai,
By definition, for all R 2 <, ai 2 LSða,R′i Þ∪ Iða, o,R′i Þ− argminðRi,AÞ≠ ; for

some o 2 LIða,R′i Þnfag. For all R 2 <, take any b 2 LSða,R′i Þ∪ Iða, o,R′i Þ −
argminðRi,AÞ≠ ; and let esi be a deviation by agent i such that esi = ðeR, b, emÞ.
Then, by rule 2, gðesi, s− iÞ= b. But, since s 2 Nðg,R, SÞ, b 2 Lðai,RiÞ. Hence, we
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have for all R 2 <, ai 2 LSða,R′i Þ∪ Iða, o,R′i Þ− argminðRi,AÞ � Lðai,RiÞ for some
o 2 LIða,R′i Þnfag. (1)

Next, for any other deviation j≠ i and any b 2 A, let esj = ðeR, b, emÞ a deviation,
em is the unique greatest integer in the profile ðesj, s− jÞ. By rule 3, gðesj, s− jÞ= b.
Since s 2 Nðg,R, SÞ, we have ai = gðsÞRigðesj, s− jÞ= b. Therefore, for all j≠ i,
A � Lðai,RjÞ (2). From (1), (2) and by I*-weak no-veto power, we have ai 2 FðRÞ.

Subcase b2: If gðsÞ = a,
By the same reasoning used in case a, we obtain by I*-monotonicity that

a 2 FðRÞ.
Case c: s= ðs1, s2, ..., snÞ: ∀i 2 N, si = ðR′, a,mÞ with a ∉ FðR′Þ, gðsÞ= a.
Let b 2 A, esi = ðR′, b,m′Þ, where m′ >m, then, gðesi, s− iÞ= b. As s 2 NðS, g,RÞ,

then, a= gðsÞRigðesi, s− iÞ= b. Therefore, A � Lða,RiÞ for all i 2 N. By unanimity,
a 2 FðRÞ.

Case d: s= ðs1, s2, ..., snÞ: 9k1, k2, k3 where sk1 ≠ sk2 , sk1 ≠ sk3 , sk2 ≠ sk3 , gðsÞ = al:
ml is the maximum of the integers m. Let b 2 A, and esi = ðR′, b,ml + 1Þ a devia-
tion. Therefore, gðesi, s− iÞ= b. As s 2 NðS, g,RÞ, then, gðsÞRigðesi, s− iÞ= b. Thus,
A � LðgðsÞ,RiÞ for all i 2 N. By unanimity, gðsÞ 2 FðRÞ. Q.E.D.
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