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Abstract: State space, a key element of the Subjective Expected Utility (SEU)
theory, is not observable. This implies that, in order to test the SEU theory, it is
necessary to assume some state space. Consequently, if the SEU theory is rejected,
then it is appropriate to conduct a robustness check; that is, to search for a
different state space and a probability over that state space which together do
not lead to the rejection of the SEU theory. To find such state space and prob-
ability means to SEU-rationalize the agent’s behavior. I show how to conduct the
process of SEU-rationalization and determine when an SEU-rationalization is
possible.
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1 Introduction

Like the majority of theories in the literature on uncertainty/ambiguity, the
Subjective Expected Utility (SEU) theory developed by Savage (1972) begins
with a state space Ω with a generic element ω, and a set of consequences X
with a generic element x. Then, there is a set of acts (functions from Ω to X) F
with a generic element f . A binary order % is defined over F , and the axioms
imposed on % guarantee the existence of an SEU representation of % . To test the
SEU theory means to verify whether % satisfies the Savage axioms.

Unfortunately, as it has been noted in the literature,1 the state space is not
observable and, consequently, is not part of the researcher’s (hereafter, referred
to as “he”) data. This implies that the researcher is unable to test the SEU theory
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because with no state space there is no set of acts, and with no set of acts there
is no binary order to be tested.

If the researcher assumes a specific choice theory, then he might be able to
derive the state space from the agent’s (hereafter, referred to as “Ann” or “she”)
observable choices. For example, Proposition 3 in Schipper (2013) might help to
conduct such an exercise under the assumption that the agent satisfies the SEU
theory. But assuming a theory to derive the agent’s state space, and then using
that state space to test the very theory that has just been assumed is, obviously,
an inappropriate approach.

In what I call the standard approach to testing the SEU theory, the
researcher implicitly assumes some state space Ω. But what state space should
he assume? Economic theory provides no answer to this question, a problem
Savage already noticed sixty years ago: “I am unable to formulate criteria for
selecting these small worlds and indeed believe that their selection may be a
matter of judgment and experience about which it is impossible to enunciate
complete and sharply defined general principles” (Savage (1972), 16).

If the researcher follows the standard approach and rejects the SEU theory,
then his conclusion is not unconditionally valid. Rather, his conclusion depends
on the state space Ω that he assumed at the start, and it would be more
appropriate to say that the SEU theory is rejected conditional on the state
space being Ω. It is possible that there exist a different state space ~Ω and a
probability measure ~λ over ~Ω which together do not lead to the rejection of the
SEU theory.

For example, consider the two-urn Ellsberg experiment. With a typically
assumed state space, this experiment rejects the SEU theory. However, Kadane
(1992) shows that the experiment fits within the SEU framework as long as the
agent assigns an arbitrarily small probability to the experimenter being malevo-
lent. It does not seem unreasonable to assume that, from the agent’s perspective,
the experimenter is malevolent. After all, there is nothing in this experiment’s
design that prevents the agent from having such a belief. Hence, with a different
state space, the two-urn Ellsberg experiment does not reject the SEU theory.

Since the state space Ω is assumed rather than derived (from data or theory),
it is only appropriate to conduct a robustness check. That is, the researcher
should verify whether it is possible to construct a new state space ~Ω and a
probability ~λ over ~Ω in such a way that the agent’s choices appear to be in
accordance with the SEU theory. If the researcher constructs such ~Ω and ~λ, then I
say that he is able to SEU-rationalize the agent’s behavior. The standard
approach does not include any robustness check. In this paper, I fill the gap
by showing how to conduct the process of SEU-rationalization and determining
when an SEU-rationalization is possible.
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In Section 2, I present and analyze the process of SEU-rationalization. In
Section 3, I apply my procedure to the classical three-color Ellsberg experiment,
which is the most popular example of a violation of the SEU theory. I show how
to SEU-rationalize the behavior observed in this experiment. Section 4 discusses
the relevant literature. Section 5 concludes.

2 SEU-Rationalization

I consider the researcher who follows the standard approach to testing the SEU
theory, rejects the SEU theory, and would like to conduct a robustness check.
The quadruple ðΩ,X, F , % Þ— a state space Ω, a set of consequences X, a set of
acts F , and a binary order % over F — is taken as given and constitutes the
researcher’s benchmark data set.

The objective of SEU-rationalization is to translate the original ðΩ,X, F , % Þ
into a new ð~Ω, ~X, ~F , ~% Þ and construct a probability measure ~λ over ~Ω such that ~%
has an SEU representation with respect to ~λ. This new ð~Ω, ~X, ~F , ~% Þ is a re-
interpretation of the original ðΩ,X, F , % Þ. Obviously, allowing for any
ð~Ω, ~X, ~F , ~% Þ turns the procedure of SEU-rationalization into a trivial and unin-
teresting exercise. I allow to change only the state space. This implies that
several conditions must be satisfied.

First, I require to keep the same set of consequences (condition 1 in
Definition 2.1). Second, F and % must be consistently translated into ~F and ~% ,
respectively (conditions 2 and 3 in Definition 2.1).

Consistency between ~F and F means that the perception of acts does not
change. Since there is a new state space ~Ω, there is a new set of acts ~F with a
generic element ~f :~Ω ! X. Take f that is translated into ~f . I require that ~f and f
are perceived in the same way. Observe that f and ~f are defined on different
domains. Hence, in order to compare f and ~f it is necessary to look at their
common codomain X. Let Xf , a subset of the range of f , be the collection of all
possible consequences associated with act f . If x 2 Xf , then the agent perceives
that such a consequence can be obtained if she chooses f . I assume that the
researcher’s data set includes one Xf for each f 2 F . Note that ~f and ~λ generate
the probability measure ~λf on X. The support of that measure is the collection of
all possible consequences associated with act ~f . I say that f is consistently
translated into ~f if the support of ~λf is precisely Xf .

Condition 3 in Definition 2.1 requires that ~% be consistent with % ; that is,
~f ~% ~g if and only if f % g. This implies that the ranking of acts does not
change.
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Let � and ⁓ denote the strict and indifference part of % , respectively. Let fx
be a constant act that generates x (i. e., f ðωÞ= x for each ω). Let fmax f denote the
constant act that yields the best possible consequence associated with f .
Formally, max f 2 Xf and fmax f % fx for each x 2 Xf . Let fmin f be defined in a
similar way.

Definition 2.1: SEU-rationalization.

Fix a quadruple ðΩ,X, F , % Þ. For each f 2 F , fix a set Xf . To SEU-rationalize a
binary order % means to construct a quadruple ð~Ω, ~X, ~F , ~% Þ and a probability
measure ~λ over ~Ω such that:
1. ~X =X.
2. ~λ and ~f generate a probability measure on X such that its support is Xf .
3. ~f ~% ~g if and only if f % g.
4. ~% has an SEU representation with respect to ~λ. That is, there exists u :X ! R

such that ~% is represented by ~V : ~F ! R , defined as ~Vð~f Þ : = P
~ω2~Ω

uð~f ð~ωÞÞ~λð~ωÞ.

Below, I present the assumptions imposed on the triple ðX, F , % Þ which
allow to SEU-rationalize a given binary order % . There are no restrictions on Ω
because it is the state space that is to be changed.

Assumption 1:
1. X and F are finite.
2. % is a complete and transitive binary order over F .
3. For each x 2 X, there is fx 2 F .

Assumption 2: For each f 2 F , if fmax f � fmin f , then fmax f � f � fmin f .

Assumption 1.1 is a rather natural assumption given that data sets are finite.
Nevertheless, in the appendix, I replicate my result allowing for infinite sets of
consequences and acts. Assumption 1.2, combined with Assumption 1.1, guar-
antees the existence of utility representation of % , V . The purpose of having
constant acts (Assumption 1.3) is, obviously, to construct a utility function u on
the set of consequences; uðxÞ : =VðfxÞ. Note that Assumption 2 can be seen as an
extension of the Simple Dominance Axiom introduced by Barberà (1977), which
holds that fxg � fyg implies fxg � fx, yg � fyg.

The following proposition is the main result of this paper.

Proposition 1: Fix a quadruple ðΩ,X, F , % Þ. For each f 2 F , fix a set Xf . If
Assumptions 1 and 2 hold, then an SEU-rationalization of % is possible.
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I prove Proposition 1 by construction. I develop a two-stage procedure of
SEU-rationalization and show that a given binary order % can be SEU-rationa-
lized if Assumptions 1 and 2 are satisfied.

First stage (from acts to options): In the first stage, transform the set of acts F
into the set of options, denoted by F̂ . An option f̂ is defined as a pair ðf ,Xf Þ,
where f is the act (the option’s name) and Xf is the collection of consequences
associated with act f .

To understand why f is transformed into ðf ,Xf Þ rather than Xf alone,
consider a bet on the next winner of the U.S. presidential elections. There
are two acts: a Democrat, denoted by fD, and a Republican, denoted by fR.
Suppose that picking the winner yields $100, while picking the loser costs the
agent $50. Each act is associated with the same set of consequences, that is,
XfD =XfR = f$100, − $50g. If the acts were to be represented only by the asso-
ciated sets of consequences, then fD and fR would be perceived as the same
object, or it would be necessary to assume that the agent is indifferent between
two acts whenever their associated sets of consequences are the same. As the
betting example suggests, this is generally not a correct approach; hence, a
name is included in the definition of an option.

Next, construct the binary order %̂ on F̂ in a consistent way from % : f̂ %̂ ĝ if
and only if f % g. Let �̂ and ⁓̂ denote the strict and indifference part of %̂ ,
respectively. Let f̂x be an option generated by a constant act fx.

Note that constructing ðX, F̂ , %̂ Þ from ðX, F , % Þ is always possible; that is,
the assumptions presented above are irrelevant to accomplish the first stage of
SEU-rationalization. However, they are important in the second stage.

Second stage (from options to acts): The second stage begins with the triple
ðX, F̂ , %̂ Þ as derived in the first stage. First, construct a utility function V̂ defined
over F̂ , which exists because of Assumption 1. This assumption also makes it
possible to uniquely define a utility function u over X as uðxÞ : = V̂ðf̂xÞ.

For each option f̂ , construct a probability measure λ̂f defined over X such
that (i) the support of λ̂f is Xf , and (ii) V̂ can be reconstructed as
V̂ðf̂ Þ= P

x2Xf
uðxÞλ̂f ðxÞ. The construction of λ̂f s is based on the repetitive use

of the Intermediate Value Theorem. Take f̂ such that Xf = fx1, ..., xKg. Without
loss kof generality, assume that f̂x1 �̂ ... �̂ f̂xK . Assumption 2 indicates that
f̂x1 �̂ f̂ �̂ f̂xK . However, because of Assumption 1, it is known how the agent
ranks f̂ in comparison with each f̂xn for n= 1, ...,K. Next, without loss of generality,
assume that f̂x1 �̂ f̂ �̂ f̂x2 . Hence, it is true that f̂x1 �̂ f̂ �̂ f̂xn for each n= 2, ..,K. The
Intermediate Value Theorem says that, for each n= 2, ..,K, there is an αn 2 ð0, 1Þ
such that V̂ðf̂ Þ= uðx1Þαn + uðxnÞð1− αnÞ. Now, take β2, ..., βK 2 ð0, 1Þ such that
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β2 + ... + βK = 1, and observe that β2½uðx1Þα2 + uðx2Þð1− α2Þ�+ ... + βK ½uðx1ÞαK +
uðxKÞð1− αKÞ�= V̂ðf̂ Þ. This gives V̂ðf̂ Þ=

P
x2Xf

uðxÞ λ̂f ðxÞ, where λ̂f ðx1Þ= β2α2 + ... +
βKαK and, for n= 2, ...,K, λ̂f ðxnÞ= βnð1− αnÞ. Each element of the set
λ̂f = fλ̂f ðx1Þ, ..., λ̂f ðxKÞg is a number in ð0, 1Þ, and their sum is one. That is, λ̂f
denotes a desired probability.

The state space ~Ω is defined as a product of Xf s. That is, ~Ω= × f2F Xf .
Defining a state space in this way implies that a state is a function from the
set of acts to the set of consequences (see Gilboa (2009), Karni and Schmeidler
(1991), Karni and Vierø (2013), and Schmeidler and Wakker (1987)). The prob-
ability measure ~λ over ~Ω is built as a product measure of the probability
measures λ̂f s. The set of new acts ~F is derived from the set of options F̂ by
defining ~f :~Ω ! X as a projection function. The binary order ~% on ~F is con-
structed in a consistent way from %̂ : ~f ~% ~g if and only if f̂ %̂ ĝ. Finally,
define ~V : ~F ! R as ~Vð~f Þ : = P

~ω2~Ω uð~f ð~ωÞÞ~λð~ωÞ.
Since ~λ is a product measure and ~f is a projection function, they induce a

probability measure on X that is the same as λ̂f (condition 2 in Definition 2.1). Note
that ~% is constructed in a consistent way from % (condition 3 in Definition 2.1). By
construction of ~λ and ~f , it follows that ~Vð~f Þ = V̂ðf̂ Þ. This implies that ~% has an SEU
representation (condition 4 in Definition 2.1). This ends the proof of Proposition 1.

2.1 Analysis of Assumption 2

It is crucial that Assumption 2 be formulated in terms of �, instead of % . Take f
with Xf = fx, yg where fx � fy. If f ⁓ fy, then the agent must assign probability 1
to y. However, this would violate the fact that the agent considers both x and y
to be possible when she chooses f .

In order to better understand the limits imposed by Assumption 2, consider
the following two possible violations. First, suppose that the agent prefers fmin f

to f . She does not want to try to improve her well-being, even though there are
no costs involved in attempting this. After all, if she chooses f , the worst
possible result is min f . Next, consider the agent who prefers f to fmax f .
Instead of choosing the best possible consequence that f can generate, which
is max f , the agent picks f .

Although Assumption 2 may appear to be an obvious and harmless
requirement, I argue that reasonable violations of Assumption 2 are possible.
Consider the agent’s problem concerning her choice of destination for her next
summer vacation. The consequences represent different levels of satisfaction
derived from a summer trip: x1 (good) and x2 (bad). The acts are destinations:
g (Georgia), h (Hawaii), and i (Idaho), with Xg = fx1g, Xh = fx1, x2g, and Xi = fx2g.
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I consider two agents, Ann and Bob. Deciding between Hawaii and Georgia,
Ann chooses to go to Hawaii which she has never visited. Since Ann strictly
prefers Hawaii over Georgia, her behavior violates Assumption 2. This choice
may appear to be puzzling. However, visiting Hawaii means not only having a
vacation but also learning what a vacation in Hawaii means. Ann evaluates her
acts by their weighted sum, Vðf Þ= EUðf Þ+ βjXf j, where EUðf Þ is the expected
utility derived from f and jXf j is a cardinality of Xf . (In this context, cardinality
can be interpreted as a measure of how well the agent knows f .) A parameter β
measures the importance of learning. Ann likes to learn, and her β is strictly
bigger than zero. Alternatively, consider Bob, who prefers Idaho over Hawaii.
For Bob, going to Hawaii will guarantee an expected value that is at least the
same as a trip to Idaho. However, Bob’s β is negative because he dislikes
learning and prefers to stick to what he already knows best. In consequence,
he, like Ann, violates Assumption 2.

3 SEU-Rationalization of the Three-Color Ellsberg
Experiment

Consider the three-color Ellsberg experiment. In the urn, there are three balls,
and only one of them is red. Each of the remaining two can be either green or
blue. However, the number of green balls in the urn is unknown. One ball will
be drawn from the urn. The typically assumed state space is Ω= fR,G,Bg, where
the letter indicates which ball will be drawn, and the set of consequences X
consists of two elements, S(uccess) and F(ailure). The agent has two decisions to
make: choose between a bet on a red ball fr and a bet on a green ball fg (the
agent picks fr), and choose between a bet on a red or blue ball frb and a bet on a
green or blue ball fgb (the agent picks fgb).

fr � fg and fgb � frb [1]

Assuming that the state space is Ω= fR,G,Bg implies that the binary order
depicted in eq. [1] is inconsistent with the SEU theory (Table 1).

Table 1: Ellsberg experiment.

fr fg fgb frb probability

R S F F S –
G F S S F –
B F F S S –
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The procedure of SEU-rationalization requires, first, to take Table 1 and
translate it into the set of options. This yields f̂r, f̂g, f̂gb, and f̂rb such that
Xr =Xg =Xrb =Xgb = fS, Fg. Define V̂ and u in the way that agrees with eq. [1]:
V̂ðf̂rÞ= 3, V̂ðf̂gÞ= 1, V̂ðf̂gbÞ=4, V̂ðf̂rbÞ= 2, uðSÞ= 5, and uðFÞ=0. Define the prob-
abilities associated with each option: λ̂fr ðSÞ=0.6, λ̂fg ðSÞ=0.2, λ̂fgbðSÞ =0.8, and
λ̂frbðSÞ=0.4.

Next, construct the state space ~Ω= fS, Fg × fS, Fg × fS, Fg × fS, Fg. Each state
consists of four coordinates. Also, construct the probability ~λ over ~Ω as the
product measure of λ̂fr , λ̂fg , λ̂fgb , and λ̂frb . Finally, transform the set of options
into the set of new acts by defining the new acts as projection functions. For
example, option f̂r becomes act ~fr : ~Ω ! X, defined as ~frð~ωÞ= S if and only if the
first coordinate of ~ω is S. This yields Table 2.

Table 2 has sixteen rows, with each denoting a state. Columns ~fr, ~fg, ~fgb, and ~frb
show the realizations of bets at a given state. For example, at ~ω1 all bets yield S.
The probability column depicts the probability that a given state will occur.

However, Table 2 allows for states which are not reasonable. For example,
it is not reasonable that a ball is simultaneously red and green (state ~ω1). In the
suggested SEU-rationalization, there are 13 unreasonable states and 3 reason-
able states. The three reasonable states are ~ω7 (i. e., red ball is drawn), ~ω10

(i. e., green ball is drawn), and ~ω13 (i. e., blue ball is drawn). These are the
states R, G, and B, respectively, from the state space Ω (see Table 1). The total
mass assigned to these three states is only 0.1792. For this reason, this SEU-
rationalization is not satisfactory. Therefore, the obvious question to ask is:
What is the smallest probability assigned to the unreasonable states that
would still allow for the SEU-rationalization of the Ellsberg experiment? The
answer is: As small as desired. Let ε < 0.3 be the total mass assigned to
unreasonable states.

Table 2: SEU rationalization of Ellsberg experiment.

~fr ~fg ~fgb ~frb probability ~fr ~fg ~fgb ~frb probability

~ω1 S S S S 0.0384 ~ω9 F S S S 0.0256
~ω2 S S S F 0.0576 ~ω10 F S S F 0.0384
~ω3 S S F S 0.0096 ~ω11 F S F S 0.0064
~ω4 S S F F 0.0144 ~ω12 F S F F 0.0096
~ω5 S F S S 0.1536 ~ω13 F F S S 0.1024
~ω6 S F S F 0.2304 ~ω14 F F S F 0.1536
~ω7 S F F S 0.0384 ~ω15 F F F S 0.0256
~ω8 S F F F 0.0576 ~ω16 F F F F 0.0384
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In Table 3 , there is only one unreasonable state Z. It is easy to verify that this
SEU-rationalization captures the choices in eq. [1]: ~Vð~frÞ= 5

10 + 10
3 ε > ~Vð~fgÞ= 5

10 − 5
3 ε;

and ~Vð~fgbÞ= 45
10 + 5

3 ε > ~Vð~frbÞ= 45
10 − 10

3 ε.

The existence of state Z in Table 3 could be due to the agent’s being unaccus-
tomed to decision problems expressed in terms of an urn and some balls. As
Gilboa (2009) writes, “David Schmeidler often says, ‘Real life is not about balls
and urns.’ Indeed, important decisions involve war and peace, recessions and
booms, diseases and cures.” An ε-small probability assigned to Z can be inter-
preted as a manifestation of the agent’s misunderstanding the problem or
miscalculating the probability.

If the experiment’s subjects are college students, which is often the case in
economics experiments, then the analysis conducted by psychologists suggests
that such a misunderstanding or miscalculation is not unlikely. For example,
Standing (2006) finds that only 33 % of undergraduate students at one liberal
arts college achieved a perfect score in a test that focused on very elementary
skills: the hardest task was to compute 92 × 32 (and students were permitted to
use unlimited time and write a draft work). In Standing, Sproule, and Leung
(2006), a similar test was applied to undergraduate students majoring in busi-
ness and economics. The hardest question was to compute ð36 × 7Þ + ð33 × 7Þ, and
only 40 % of subjects answered all questions correctly. From LeFevre et al.
(2014), we learn that basic arithmetic skills among college students have been
declining from 1993 to 2005. If the students struggle with adding or multiplying
natural numbers, it only seems natural to expect that they make mistakes in
computing subjective probabilities.

A typical explanation of the three-color Ellsberg experiment allows only
for the reasonable states (i. e., Ω= fR,G,Bg) but assumes that the agent
behaves as if following a mathematically sophisticated theory (at least,
more sophisticated than the SEU theory). Here, I suggest an alternative
explanation: the agent behaves as if following the SEU theory but she assigns
an arbitrarily small probability to an unreasonable state (Table 3). Which

Table 3: SEU rationalization of Ellsberg experiment.

~fr ~fg ~fgb ~frb probability

R S F F S 1
10 − 1

3 ε
G F S S F 1

10 − 1
3 ε

B F F S S 8
10 − 1

3 ε
Z S F S F ε > 0
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explanation of the agent’s behavior is “better”? Unfortunately, there is no
clear answer. Gilboa and Samuelson (2012) observe that in situations like this,
“people typically bring subjective criteria to bear in making this choice (i. e.,
choosing among theories), tending to select theories that seem a priori reason-
able, intuitive, simple, elegant, familiar, or that satisfy a variety of other
considerations.” Consequently, in the case of the three-color Ellsberg experi-
ment, the reader is left to use subjective criteria to decide which explanation
seems “better.”

However, I need to stress that from the empirical perspective – that is, from
a perspective that bases conclusions only on observable data – the Ellsberg
experiment does not reject the SEU theory. Although it is possible to test
whether or not Z is a Savage-null event (and if it is, then the agent does not
assign even an ε-small probability to Z), such a test does not contradict my
claim. Note that when I use the phrase the Ellsberg experiment, I am referring to
an experiment consisting of the four alternatives and two choices described
above in eq. [1]. For clarity, I call this the original Ellsberg experiment. Testing
whether or not Z is Savage-null requires that the researcher expand the experi-
ment by adding new alternatives and observing more than two choices. This
would not be the original Ellsberg experiment (which my claim is about) but
rather the extended Ellsberg experiment.

Suppose that the extended Ellsberg experiment shows that not only Z but
also all the remaining unreasonable states are Savage-null. This would indicate
that the procedure of SEU-rationalization proposed in this paper cannot defend
the SEU theory against the evidence provided by the original Ellsberg experi-
ment. This also indicates how to design a robust experiment to test the SEU
theory: in order to survive the procedure of SEU-rationalization, an experiment
that is to reject the SEU theory must be nested in a bigger experiment which
rules out all states that can be used by SEU-rationalization.

4 Related Literature

What differentiates my paper from the literature on choice theory under uncer-
tainty/ambiguity is that my ambition is not to introduce a new theory, but rather
to develop a procedure which allows the researcher to not reject the SEU theory.
One of the main objectives of the theories is to have the unique representation of
the agent’s belief (additive probability, non-additive probability, set of probabil-
ities). In contrast, neither the state space ~Ω nor the probability ~λ constructed to
SEU-rationalize the agent’s behavior is unique. There could be another state space
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Ω′ and another probability λ′ that would also do the job. In fact, even for a given
~Ω, the probability ~λ is not unique because there could be a distinct ~λ* such that ~Ω
and ~λ* also lead to an SEU-rationalization. The non-uniqueness is a result of
constructing both a state space and a probability rather than only a probability.
However, the lack of uniqueness is not a concern in this paper. This is because the
main goal is to find some state space with some probability such that the agent
appears to be following the SEU theory. In order to emphasize that I am not
constructing a new theory, I have been employing the term assumption, rather
than the term axiom.

Two papers which are closely related to this paper are Gilboa and
Schmeidler (1994) and Lipman (1999). Gilboa and Schmeidler (1994) considers
an agent represented by the Choquet Expected Utility (Schmeidler (1989)) and
shows that “the non-additivity of the “probability” υ may be explained by
“omitted” states of the world. If those were introduced into the model explicitly,
the non-additivity would disappear.”. The first difference between my paper and
Gilboa and Schmeidler (1994) is that my key requirement (Assumption 2) is
weaker than assuming the Choquet Expected Utility theory. In addition, the
state space ~Ω in my paper is constructed from the subsets of the set of con-
sequences, while in Gilboa and Schmeidler (1994) the state space is an extension
of a pre-assumed state space. Lipman (1999) considers a construction of state
space that begins with the set of pieces of information (“propositions in logic,
statements in English or another language, or mathematical formulas”) denoted
by Φ. A state is defined as a subset of Φ. Lipman (1999) relaxes the assumption
of the agent being logically omniscient, and determines conditions under which
the agent’s behavior fits within the SEU theory. My paper differs from Lipman
(1999) since, in general, my procedure need not depend on the violation of
logical omniscience. Moreover, in contrast to my paper, Lipman (1999) assumes
that the researcher knows the set Φ which implies that the researcher knows
how the agent constructs her state space.

Although it does not develop a new theory, this paper associates alterna-
tives with subsets of the set of consequences X and, consequently, is related to
the literature concerned with an agent who ranks sets of objects. (See Barberà,
Bossert, and Pattanaik (2004) for the most complete review of this literature.)
The models in this literature consist of two stages. In the first stage, the agent
chooses a subset of X. What happens at the second stage divides these models
into the following two groups. Group A consists of models in which, at the
second stage, Nature picks the final consequence (see Section 3 in Barberà,
Bossert, and Pattanaik (2004)). Group B consists of models in which, at the
second stage, the agent picks the final consequence (see Section 4 in Barberà,
Bossert, and Pattanaik (2004)).
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The models in both of these groups share one feature, which separates them
from the setup I propose. They all consider the agent’s binary order to be defined
over the subset of the power set of X, a construction that implicitly assumes that
two alternatives with the same set of consequences should be perceived as the
same object or, at least, that the agent should be indifferent between them.
However, as noted in Section 2, this approach is not appropriate for this paper.
Thus, in this paper, the agent ranks options, rather than subsets of X.

The models in Group A are concerned with “complete uncertainty” which,
according to Barberà, Bossert, and Pattanaik (2004), “refers to a situation where
the agent knows the set of possible consequences of an action but cannot
assign probabilities to those outcomes.” For this reason, these models are not
related to this paper. However, one important set of models on complete
uncertainty can be interpreted as if they were considering an agent who
constructs probabilities over the subsets of X. These are the models which
build on the concept of Hurwicz’s α-criterion (see Arrow and Hurwicz 1972;
Hurwicz 1951) and develop the idea of evaluating sets by taking only their best
and worst consequences into consideration.2 A subset Y of X is evaluated by
VαðYÞ= αðYÞ � uðmaxYÞ+ ð1− αðYÞÞ � uðminYÞ, where α is a function from the set
of subsets of X to ð0, 1Þ, and where maxY denotes the best element of Y, and
minY the worst. The function α can be interpreted as a probability on Y . This
functional representation resembles the result obtained by Ghirardato (2001). In
his model, the state space Ω is fixed, and the agent perceives acts as set-valued
functions. In fact, Vα can be considered to be an extreme version of Ghirardato
(2001), in which the agent perceives no state space. However, such a represen-
tation is not appropriate for the purpose of this paper, since it does not capture
the agent’s perception of alternatives. Since Y represents all consequences
deemed possible, I focus on the probability measures with support Y . In Vα,
however, the support of α is not Y but rather fmaxY, min Yg.

For Group B, the relevant research is in the literature on “preference for
flexibility” that begins with Kreps (1979) and examines the agent who is not
sure about her future preferences. This uncertainty is captured by a state space
S in which a state s represents a possible future binary order over set X. My paper
implicitly assumes that the agent does not face uncertainty regarding her future
self. Consequently, the construction of the state space here differs from the
construction proposed in Kreps (1979), in which the agent evaluates a subset Y

2 See, for instance, Barberà, Barrett, and Pattanaik (1984), Barberà and Pattanaik (1984), Ben
Larbi, Konieczny, and Marquis (2010), Bossert (1989), Bossert, Pattanaik, and Xu (1994),
Bossert, Pattanaik, and Xu (2000), Dutta and Sen (1996), Kannai and Peleg (1984), Nehring
and Puppe (1996), Olszewski (2007), Pattanaik and Xu (1998), and Pattanaik and Xu (2000).
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of X by VðYÞ= P
s2S maxy2Y uðs, yÞ, where uðs, yÞ is an ex-post, state-dependent

utility function. In contrast, in my paper a menu is evaluated by its subjective
expected utility, and the utility over X is state-independent. Kreps (1992) reinter-
prets the original “preference for flexibility” model as representing the agent who
faces unforeseen contingencies – that is, the agent who is unable to account for
all possible future uncertainties. In contrast, my paper does not represent the
agent who lacks a complete picture of uncertainty, but rather the researcher who
does not know which uncertainties the agent has taken into account.

5 Conclusions

If the researcher, who tests the SEU theory, assumes some state space Ω and
rejects the SEU theory, then his conclusion is not unconditionally valid. There
may exist an alternative state space ~Ω and a probability measure ~λ over ~Ω which
together do not lead to the rejection of the SEU theory. If such ~Ω and ~λ exist,
then the agent’s behavior is SEU-rationalizable. This paper shows how to SEU-
rationalize the agent’s behavior and when an SEU-rationalization is possible.

I believe that the assumptions which allow to SEU-rationalize the agent’s
behavior are not demanding. It is difficult to consider violations of Assumption
1 – incompleteness and intransitivity – as valid reasons to reject the SEU theory.
I leave it for the reader to decide whether possible violations of Assumption 2
constitute convincing or interesting arguments against the SEU theory.

I would like to stress that if the agent’s behavior can be SEU-rationalized,
then this does not mean that the SEU theory has been accepted and non-SEU
theories3 rejected. Rather, the correct conclusion would be that the SEU theory
has not been rejected and that other theories may also be able to explain the
agent’s behavior by relying on the assumption of a distinct state space.
Consequently, instead of saying that my procedure allows the researcher to
accept the SEU theory, I say – more precisely – that it allows him to not reject
it. For this reason, this paper should not be interpreted as a critique of non-SEU
theories. Rather, it is a critique of motivating such theories by only indicating
the evidence which rejects the SEU theory.
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Appendix

I extend my result to infinite sets of acts and consequences. Fix ðΩ,X, F , % Þ with
% violating the SEU theory. I impose the following assumptions.

Assumption 3:
1. X is a separable metric space.
2. If Xf is uncountable, then Xf is a closed subset of X.
3. F is a separable metric space.
4. For each x 2 X, there is fx 2 F .
5. % is a complete, transitive, and continuous binary order over F .

Assumption 4:
1. For each f 2 F , there exist fmax f and fmin f .
2. For each f 2 F , if fmax f � fmin f , then fmax f � f � fmin f .

Remark: Instead of assuming the existence of fmax f and fmin f , one can require
that X be a compact metric space. In that case, Xf , a closed subset of X, is also
compact, and since u is a continuous function, the Weierstrass Theorem dictates
that both fmax f and fmin f exist.

Proposition 2: Fix a quadruple ðΩ,X, F , % Þ. For each f 2 F , fix a set Xf . Assume
the Axiom of Choice. If Assumptions 3 and 4 hold, then an SEU-rationalization of %
is possible.

In the first stage of SEU-rationalization, it is necessary to generate the set of
options F̂ and the binary order %̂ on F̂ . Recall that an option f̂ is defined as a pair
ðf ,Xf Þ where Xf is a subset of X interpreted as the collection of all possible
consequences associated with act f (i. e., Xf = f ðΩÞ). Let λ̂f be a probability
measure associated with option f̂ . It is important that this probability measure
captures the agent’s perception of f̂ . In the case of a countable Xf , if x is
considered to be possible when f is chosen, then λ̂f clearly assigns a nonzero
weight to x. However, with uncountable Xf , it is not possible to require that
λ̂f ðxÞ > 0 for each x 2 Xf . This implies that there is no straightforward definition
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of the “possible consequences” for uncountable Xf s. Suppose that X = ½0, 1� and
Xf = ½0, 0.5�. If λ̂f ð0Þ=0, then it is not clear whether Xf should be defined as
½0, 0.5� or ð0, 0.5�. I solve this problem by implicitly assuming that the agent is
indifferent between Xf and the closure of Xf . Thus, in Assumption 3, I focus only
on those uncountable Xf s that are closed in X. Consequently, λ̂f is said to capture
the agent’s perception about an act whenever the support of λ̂f is Xf . (Note that if λ
is a probability measure defined on a metric space X, then the support of λ is
defined as the smallest closed subset C of X such that λðCÞ= 1.) However, without
additional requirements, it is not necessarily true that, for a given Xf , there exists
a probability measure with support Xf . This issue is also resolved by adopting
Assumption 3, which requires that an uncountable X is a separable metric space.
This guarantees that, for a given closed subset of X, Xf , there is a probability
measure on X with support Xf (see Exercise 4 in Chapter 7.1 in Dudley (2002)).

Assumption 3 guarantees the existence of V̂ (see Debreu 1954, 1964), with u
defined as uðxÞ : = V̂ðf̂xÞ. It remains to be proven that (a) for each option there
exists a probability measure λ̂f with support Xf , and (b) that V̂ðf̂ Þ= R

X uðxÞdλ̂f .
Let PðXÞ denote the collection of probability measures on X that are Borel for

uncountable X. Fix f̂ and let Pf ðXÞ be a subset of PðXÞ that consists of probability
measures on X with support Xf . For countable Xf , the nonemptiness of Pf ðXÞ is
obvious. For uncountable Xf , the fact that Xf is a closed subset of a metric
separable space (Assumption 3) guarantees the nonemptiness of Pf ðXÞ. Let
Ψ : PðXÞ ! R be the integral function ΨðλÞ : = R

X udλ. The remaining part of
proof shows that, for a given f̂ , there exists λ̂f 2 Pf ðXÞ such that Ψðλ̂f Þ= V̂ðf̂ Þ.

Consider an option f̂ such that f̂max f �̂ f̂min f . The idea of the proof is to
find two probability measures, λ1 and λ2, that both belong to Pf ðXÞ such that
c1 =Ψðλ1Þ < V̂ðf̂ Þ <Ψðλ1Þ= c2. With c1 and c2 in hand, it is possible to find the
unique α such that αc1 + ð1− αÞc2 = V̂ðf̂ Þ. With this α, the desired λ̂f is defined as
λ̂f = αλ1 + ð1− αÞλ2.

It remains to be proven that, for a given f̂ , such probability measures, λ1 and
λ2, indeed exist. Note that due to Assumption 4, Ψðδmin f Þ < V̂ðf̂ Þ <Ψðδmax f Þ,
where δx is a degenerate probability measure with mass 1 at x. One way to
show that there always is a λ1 such that Ψðλ1Þ < V̂ðf̂ Þ involves proving that there
is a sequence of probability measures fλn1g such that each λn1 2 Pf ðXÞ and
Ψðλn1 Þ ! Ψðδmin f Þ. The existence of such a sequence guarantees that there is
some N such that Ψðδmin f Þ <ΨðλN1 Þ < V̂ðf̂ Þ. Such a λN1 then becomes the desired λ1.
Since the existence of λ2 is proven in the same way, I focus on λ1.

Consider a countable Xf . I construct fλn1g in the following way. Let
λn1 ðmin f Þ= 1− 1

n and let
P

x2Xf nfmin fg λ
n
1 ðxÞ= 1

n. If Xf is finite, with cardinality K,
then let λn1 ðxÞ= 1

ðK − 1Þn for x 2 Xfnfmin fg. If Xf is infinite, then let
Xf = fx, x0, x1, ...g, where x = min f . For xm, define λn1 ðxmÞ= 1

2n � 1
2m. Note that
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P∞
m= 0 λ

n
1 ðxmÞ is a convergent geometric series such that

P∞
m= 0

1
2n � 1

2m = 1
n. With

fλn1g determined, it is then possible to compute Ψðλn1 Þ=
P

x2Xf
uðxÞλn1 ðxÞ; observe

that the sum converges, as desired, to Ψðδmin f Þ as n goes to infinity. Finally,
consider an uncountable Xf . As already noted, the fact that X is separable and Xf

is a closed subset of X implies the existence of probability measure λ̂f on X, with
the support Xf . Let λn1 be a weighted measure that assigns 1

n to λ̂f and 1− 1
n to

δmin f . Each λn1 then has support Xf , and Ψðλn1 Þ ! Ψðδmin f Þ when n ! ∞.
By the Axiom of Choice, for an arbitrary F̂ , there exists ~Ω defined as

~Ω : = × f2F Xf . Let τ be a finite nonempty subset of F . Let ~Ωτ : = × f2τXf . Let ~λτ be
the probability measure on ~Ωτ, constructed as a product of the probability mea-
sures λ̂f s. By Proposition V.1.2 in Neveu (1965), there exists the unique probability
measure ~λ on ~Ω, which agrees with each ~λτ on cylinders. An option f̂ is trans-
formed into act ~f by defining ~f :~Ω ! X as a projection function. Consequently,
function ~f is measurable. The binary order ~% over ~F is as ~f ~% ~g if and only if
f̂ ~% ~x ĝ. Finally, define ~V : ~F ! R as ~Vð~f Þ : = R

~Ω uð~f ð~ωÞÞd~λ.
Since ~λ is a product measure and ~f is a projection function, they induce a

probability measure on X that is the same as λ̂f (condition 2 in Definition 2.1).
Note that ~% is constructed in a consistent way from % (condition 3 in Definition
2.1). By the construction of ~λ and ~f , it follows that ~Vð~f Þ = V̂ðf̂ Þ. This implies that
~% has an SEU representation (condition 4 in Definition 2.1). This ends the proof
of Proposition 2.
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