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Abstract: State space, a key element of the Subjective Expected Utility (SEU)
theory, is not observable. This implies that, in order to test the SEU theory, it is
necessary to assume some state space. Consequently, if the SEU theory is rejected,
then it is appropriate to conduct a robustness check; that is, to search for a
different state space and a probability over that state space which together do
not lead to the rejection of the SEU theory. To find such state space and prob-
ability means to SEU-rationalize the agent’s behavior. I show how to conduct the
process of SEU-rationalization and determine when an SEU-rationalization is
possible.
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1 Introduction

Like the majority of theories in the literature on uncertainty/ambiguity, the
Subjective Expected Utility (SEU) theory developed by Savage (1972) begins
with a state space Q with a generic element w, and a set of consequences X
with a generic element x. Then, there is a set of acts (functions from Q to X) F
with a generic element f. A binary order = is defined over F, and the axioms
imposed on - guarantee the existence of an SEU representation of . To test the
SEU theory means to verify whether = satisfies the Savage axioms.
Unfortunately, as it has been noted in the literature,' the state space is not
observable and, consequently, is not part of the researcher’s (hereafter, referred
to as “he”) data. This implies that the researcher is unable to test the SEU theory

1 See Billot and Vergopoulos (2014), Blume, Easley, and Halpern (2006), Blume, Easley, and
Halpern (2009), Epstein (2010), Gilboa (2009), Gilboa and Schmeidler (2004), Grant et al. (2015),
Karni (2008), and Machina (2003).
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because with no state space there is no set of acts, and with no set of acts there
is no binary order to be tested.

If the researcher assumes a specific choice theory, then he might be able to
derive the state space from the agent’s (hereafter, referred to as “Ann” or “she”)
observable choices. For example, Proposition 3 in Schipper (2013) might help to
conduct such an exercise under the assumption that the agent satisfies the SEU
theory. But assuming a theory to derive the agent’s state space, and then using
that state space to test the very theory that has just been assumed is, obviously,
an inappropriate approach.

In what I call the standard approach to testing the SEU theory, the
researcher implicitly assumes some state space Q. But what state space should
he assume? Economic theory provides no answer to this question, a problem
Savage already noticed sixty years ago: “I am unable to formulate criteria for
selecting these small worlds and indeed believe that their selection may be a
matter of judgment and experience about which it is impossible to enunciate
complete and sharply defined general principles” (Savage (1972), 16).

If the researcher follows the standard approach and rejects the SEU theory,
then his conclusion is not unconditionally valid. Rather, his conclusion depends
on the state space Q that he assumed at the start, and it would be more
appropriate to say that the SEU theory is rejected conditional on the state
space being Q. It is possible that there exist a different state space Q and a
probability measure A over Q which together do not lead to the rejection of the
SEU theory.

For example, consider the two-urn Ellsberg experiment. With a typically
assumed state space, this experiment rejects the SEU theory. However, Kadane
(1992) shows that the experiment fits within the SEU framework as long as the
agent assigns an arbitrarily small probability to the experimenter being malevo-
lent. It does not seem unreasonable to assume that, from the agent’s perspective,
the experimenter is malevolent. After all, there is nothing in this experiment’s
design that prevents the agent from having such a belief. Hence, with a different
state space, the two-urn Ellsberg experiment does not reject the SEU theory.

Since the state space Q is assumed rather than derived (from data or theory),
it is only appropriate to conduct a robustness check. That is, the researcher
should verify whether it is possible to construct a new state space Q and a
probability A over Q in such a way that the agent’s choices appear to be in
accordance with the SEU theory. If the researcher constructs such Q and A, then I
say that he is able to SEU-rationalize the agent’s behavior. The standard
approach does not include any robustness check. In this paper, I fill the gap
by showing how to conduct the process of SEU-rationalization and determining
when an SEU-rationalization is possible.
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In Section 2, I present and analyze the process of SEU-rationalization. In
Section 3, I apply my procedure to the classical three-color Ellsberg experiment,
which is the most popular example of a violation of the SEU theory. I show how
to SEU-rationalize the behavior observed in this experiment. Section 4 discusses
the relevant literature. Section 5 concludes.

2 SEU-Rationalization

I consider the researcher who follows the standard approach to testing the SEU
theory, rejects the SEU theory, and would like to conduct a robustness check.
The quadruple (Q, X, F, 7)— a state space Q, a set of consequences X, a set of
acts F, and a binary order - over F — is taken as given and constitutes the
researcher’s benchmark data set.

The objective of SEU-rationalization is to translate the original (Q, X, F, 27)
into a new (Q, X, 7, =) and construct a probability measure A over Q such that =
has an SEU representation with respect to A. This new (f),f(, 7, %) is a re-
interpretation of the original (Q,X,F,). Obviously, allowing for any
(Q,X, F, ) turns the procedure of SEU-rationalization into a trivial and unin-
teresting exercise. I allow to change only the state space. This implies that
several conditions must be satisfied.

First, I require to keep the same set of consequences (condition 1 in
Definition 2.1). Second, F and -, must be consistently translated into F and i,
respectively (conditions 2 and 3 in Definition 2.1).

Consistency between F and F means that the perception of acts does not
change. Since there is a new state space Q, there is a new set of acts F with a
generic element f :Q — X. Take f that is translated into f. I require that fandf
are perceived in the same way. Observe that f and f are defined on different
domains. Hence, in order to compare f and f it is necessary to look at their
common codomain X. Let Xf, a subset of the range of f, be the collection of all
possible consequences associated with act f. If x € Xf, then the agent perceives
that such a consequence can be obtained if she chooses f. I assume that the
researcher’s data set includes one X; for each f € F. Note that f and A generate
the probability measure }le on X. The support of that measure is the collection of
all possible consequences associated with act f. I say that f is consistently
translated into f if the support of if is precisely X;.

Condition 3 in Definition 2.1 requires that i be consistent with =; that is,
f = g if and only if f = g. This implies that the ranking of acts does not
change.
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Let > and ~ denote the strict and indifference part of /-, respectively. Let f
be a constant act that generates x (i. e., f(w) =x for each w). Let finaxs denote the
constant act that yields the best possible consequence associated with f.
Formally, maxf € Xy and foaxs 2= fx for each x € X;. Let fyiny be defined in a
similar way.

Definition 2.1: SEU-rationalization.

Fix a quadruple (Q, X, F, ). For each f € F, fix a set X;. To SEU-rationalize a

binary order = means to construct a quadruple (Q,X,F,~) and a probability

measure A over Q such that:

1. X=X.

2. Aand f generate a probability measure on X such that its support is Xr.

3. fzgifandonlyiff zg.

4 % has an SEU representation with respect to A. That is, there exists u:X — R
such that = is represented by V:F — R, defined as V(f):=3

~

u(f (@)A(@).

wel

Below, I present the assumptions imposed on the triple (X, F, ) which
allow to SEU-rationalize a given binary order -. There are no restrictions on Q
because it is the state space that is to be changed.

Assumption 1:

1. X and F are finite.

2. 7 is a complete and transitive binary order over F.
3. Foreach x € X, there is f, € F.

Assumption 2: For each f € F, if fmaxs > fminf> then fumaxs > f > fainf-

Assumption 1.1 is a rather natural assumption given that data sets are finite.
Nevertheless, in the appendix, I replicate my result allowing for infinite sets of
consequences and acts. Assumption 1.2, combined with Assumption 1.1, guar-
antees the existence of utility representation of -, V. The purpose of having
constant acts (Assumption 1.3) is, obviously, to construct a utility function u on
the set of consequences; u(x) : = V(fy). Note that Assumption 2 can be seen as an
extension of the Simple Dominance Axiom introduced by Barbera (1977), which
holds that {x} = {y} implies {x} > {x,y} > {y}.
The following proposition is the main result of this paper.

Proposition 1: Fix a quadruple (Q,X,F,7). For each f € F, fix a set X;. If
Assumptions 1 and 2 hold, then an SEU-rationalization of - is possible.
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I prove Proposition 1 by construction. I develop a two-stage procedure of
SEU-rationalization and show that a given binary order - can be SEU-rationa-
lized if Assumptions 1 and 2 are satisfied.

First stage (from acts to options): In the first stage, transform the set of acts F
into the set of options, denoted by F. An option f is defined as a pair (f, X),
where f is the act (the option’s name) and X; is the collection of consequences
associated with act f.

To understand why f is transformed into (f,X;) rather than X; alone,
consider a bet on the next winner of the U.S. presidential elections. There
are two acts: a Democrat, denoted by fp, and a Republican, denoted by fz.
Suppose that picking the winner yields $100, while picking the loser costs the
agent $50. Each act is associated with the same set of consequences, that is,
Xr, = X5, = {$100, - $50}. If the acts were to be represented only by the asso-
ciated sets of consequences, then fp and fz would be perceived as the same
object, or it would be necessary to assume that the agent is indifferent between
two acts whenever their associated sets of consequences are the same. As the
betting example suggests, this is generally not a correct approach; hence, a
name is included in the definition of an option.

Next, construct the binary order i on F in a consistent way from - f % gif
and only if f = g. Let = and ~ denote the strict and indifference part of ﬁ,
respectively. Let f« be an option generated by a constant act f,.

Note that constructing (X, F, ,%) from (X, F, =) is always possible; that is,
the assumptions presented above are irrelevant to accomplish the first stage of
SEU-rationalization. However, they are important in the second stage.

Second stage (from options to acts): The second stage begins with the triple
(X, F, &) as derived in the first stage. First, construct a utility function V defined
over F, which exists because of Assumption 1. This assumption also makes it
possible to uniquely define a utility function u over X as u(x): = V(f,).

For each option f , construct a probability measure flf defined over X such
that (i) the support of flf is Xr, and (ii) V can be reconstructed as
V()= erxf u(x)flf(x). The construction of )Alfs is based on the repetitive use
of the Intermediate Value Theorem. Take f such that Xf = {xi, ..., xx }. Without
loss kof generality, assume that fxl PO fo. Assumption 2 indicates that
fxl e f > fo. However, because of Assumption 1, it is known how the agent
ranks f in comparison with each fxn for n=1, ..., K. Next, without loss of generality,
assume thatf,, > f  f,,. Hence, itis true that f,, > f  f,, foreachn=2,..,K. The
Intermediate Value Theorem says that, for each n=2, .., K, there is an a, € (0, 1)
such that V(f)=u(x1)a,,+u(x,,)(1—a,,). Now, take f,,...,B¢ € (0,1) such that
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Bo+...+Bx=1, and observe that SB,[u(xi)as+u(x)(1-ay)]+...+Bxulx)ax +
u(xi)(1- a)] = V(f). This gives V(f) = 3,cx u(x) Ar(x), where Ar(x1) = Byt + ... +

Bxax and, for n=2,..K, flf(xn) =p,(1-a,). Each element of the set
flf={flf(x1),...,;lf(xK)} is a number in (0,1), and their sum is one. That is, /if
denotes a desired probability.

The state space Q is defined as a product of Xrs. That is, Q=x rerXs.
Defining a state space in this way implies that a state is a function from the
set of acts to the set of consequences (see Gilboa (2009), Karni and Schmeidler
(1991), Karni and Vierg (2013), and Schmeidler and Wakker (1987)). The prob-
ability measure A over Q is built as a product measure of the probability
measures Ars. The set of new acts F is derived from the set of options F by
defining f :Q — X as a projection function. The binary order % on F is con-
structed in a consistent way from =: f = g if and only if f = g. Finally,
define V:F — Ras V(f):= Y, u(f(@)A(@).

Since A is a product measure and f is a projection function, they induce a
probability measure on X that is the same as ﬁf (condition 2 in Definition 2.1). Note
that = is constructed in a consistent way from = (condition 3 in Definition 2.1). By
construction of A and £, it follows that V(f) = V(f). This implies that =~ has an SEU
representation (condition 4 in Definition 2.1). This ends the proof of Proposition 1.

2.1 Analysis of Assumption 2

It is crucial that Assumption 2 be formulated in terms of -, instead of =. Take f
with Xy = {x,y} where f, > f,.If f ~ f,, then the agent must assign probability 1
to y. However, this would violate the fact that the agent considers both x and y
to be possible when she chooses f.

In order to better understand the limits imposed by Assumption 2, consider
the following two possible violations. First, suppose that the agent prefers fyinf
to f. She does not want to try to improve her well-being, even though there are
no costs involved in attempting this. After all, if she chooses f, the worst
possible result is minf. Next, consider the agent who prefers f to fraxs.
Instead of choosing the best possible consequence that f can generate, which
is max f, the agent picks f.

Although Assumption 2 may appear to be an obvious and harmless
requirement, I argue that reasonable violations of Assumption 2 are possible.
Consider the agent’s problem concerning her choice of destination for her next
summer vacation. The consequences represent different levels of satisfaction
derived from a summer trip: x; (good) and x, (bad). The acts are destinations:
g (Georgia), h (Hawaii), and i (Idaho), with Xg = {x1}, X = {x1, %2}, and X; = {x,}.
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I consider two agents, Ann and Bob. Deciding between Hawaii and Georgia,
Ann chooses to go to Hawaii which she has never visited. Since Ann strictly
prefers Hawaii over Georgia, her behavior violates Assumption 2. This choice
may appear to be puzzling. However, visiting Hawaii means not only having a
vacation but also learning what a vacation in Hawaii means. Ann evaluates her
acts by their weighted sum, V(f) =EU(f) + B|X¢|, where EU(f) is the expected
utility derived from f and |Xf| is a cardinality of X;. (In this context, cardinality
can be interpreted as a measure of how well the agent knows f.) A parameter 8
measures the importance of learning. Ann likes to learn, and her f is strictly
bigger than zero. Alternatively, consider Bob, who prefers Idaho over Hawaii.
For Bob, going to Hawaii will guarantee an expected value that is at least the
same as a trip to Idaho. However, Bob’s f is negative because he dislikes
learning and prefers to stick to what he already knows best. In consequence,
he, like Ann, violates Assumption 2.

3 SEU-Rationalization of the Three-Color Ellsberg
Experiment

Consider the three-color Ellsberg experiment. In the urn, there are three balls,
and only one of them is red. Each of the remaining two can be either green or
blue. However, the number of green balls in the urn is unknown. One ball will
be drawn from the urn. The typically assumed state space is Q = {R, G, B}, where
the letter indicates which ball will be drawn, and the set of consequences X
consists of two elements, S(uccess) and F(ailure). The agent has two decisions to
make: choose between a bet on a red ball f, and a bet on a green ball f; (the
agent picks f;), and choose between a bet on a red or blue ball f,;, and a bet on a
green or blue ball fg;, (the agent picks fg).

fr>‘fg and fgb = frb [1]

Assuming that the state space is Q={R,G,B} implies that the binary order
depicted in eq. [1] is inconsistent with the SEU theory (Table 1).

Table 1: Ellsberg experiment.

fr fa fob frp probability
R s F F s _
G F S S F -
B F F s s _
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The procedure of SEU-rationalization requires, first, to take Table 1 and
translate it into the set of options. This yields fr, fg, fgb, and f,b such that
Xy =Xg =X =Xg = {S, F}. Define V and u in the way that agrees with eq. [1]:
V() =3, V(fg) 1, V(fgb) =4, V(fp)=2, u(S)=5, and u(F)=0. Define the prob-
Zilbllltles associated with each option: flf, (S)=0.6, /ifg (S)=0.2, ﬂfgb (5)=0.8, and
Ag, (S)=0.4.

Next, construct the state space Q={S, F} x{S, F} x {S, F} x{S, F}. Each state
consists of four coordinates. Also, construct the probability A over Q as the
product measure of A, flfg, /if ., and Ay,. Finally, transform the set of options
into the set of new acts by defmlng the new acts as pr0]ect10n functions. For
example, option f, becomes act f, : Q — X, defined as fr( ) =S if and only if the
first coordinate of w is S. This yields Table 2.

Table 2: SEU rationalization of Ellsberg experiment.

fr fq fob frv probability fr fq fob frv probability
W1 S S S S 0.0384 Wy F S S S 0.0256
W, S S S F 0.0576 W10 F S S F 0.0384
w3 S S F S 0.0096 W11 F S F S 0.0064
Wy S S F F 0.0144 W1y F S F F 0.0096
Ws S F S S 0.1536 W13 F F S S 0.1024
We S F S F 0.2304 W1y F F S F 0.1536
W7 S F F S 0.0384 W15 F F F S 0.0256
Wg S F F F 0.0576 W16 F F F F 0.0384

Table 2 has sixteen rows, with each denoting a state. Columns f,, fg, fgb, and f,,
show the realizations of bets at a given state. For example, at w; all bets yield S.
The probability column depicts the probability that a given state will occur.

However, Table 2 allows for states which are not reasonable. For example,
it is not reasonable that a ball is simultaneously red and green (state @;). In the
suggested SEU-rationalization, there are 13 unreasonable states and 3 reason-
able states. The three reasonable states are w; (i. e., red ball is drawn), @
(i. e., green ball is drawn), and w3 (i. e., blue ball is drawn). These are the
states R, G, and B, respectively, from the state space Q (see Table 1). The total
mass assigned to these three states is only 0.1792. For this reason, this SEU-
rationalization is not satisfactory. Therefore, the obvious question to ask is:
What is the smallest probability assigned to the unreasonable states that
would still allow for the SEU-rationalization of the Ellsberg experiment? The
answer is: As small as desired. Let £<0.3 be the total mass assigned to
unreasonable states.
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In Table 3, there is only one unreasonable state Z. It is easy to verify that this
SEU-rationalization captures the choices in eq. [1]: Vi) =g+%e>V(fy) =3 - 3¢
and V(fy) =2 +3e>V(fp) = 3 - Ye.

Table 3: SEU rationalization of Ellsberg experiment.

fr f_;; fgb f,b probability
R S F F S % - %g
G F S S F ? - §5
B F F s 5 8 _1g
V4 S F S F >0

The existence of state Z in Table 3 could be due to the agent’s being unaccus-
tomed to decision problems expressed in terms of an urn and some balls. As
Gilboa (2009) writes, “David Schmeidler often says, ‘Real life is not about balls
and urns.’ Indeed, important decisions involve war and peace, recessions and
booms, diseases and cures.” An e-small probability assigned to Z can be inter-
preted as a manifestation of the agent’s misunderstanding the problem or
miscalculating the probability.

If the experiment’s subjects are college students, which is often the case in
economics experiments, then the analysis conducted by psychologists suggests
that such a misunderstanding or miscalculation is not unlikely. For example,
Standing (2006) finds that only 33 % of undergraduate students at one liberal
arts college achieved a perfect score in a test that focused on very elementary
skills: the hardest task was to compute 92x 32 (and students were permitted to
use unlimited time and write a draft work). In Standing, Sproule, and Leung
(2006), a similar test was applied to undergraduate students majoring in busi-
ness and economics. The hardest question was to compute (36 x7) +(33x7), and
only 40 % of subjects answered all questions correctly. From LeFevre etal.
(2014), we learn that basic arithmetic skills among college students have been
declining from 1993 to 2005. If the students struggle with adding or multiplying
natural numbers, it only seems natural to expect that they make mistakes in
computing subjective probabilities.

A typical explanation of the three-color Ellsberg experiment allows only
for the reasonable states (i.e., Q={R,G,B}) but assumes that the agent
behaves as if following a mathematically sophisticated theory (at least,
more sophisticated than the SEU theory). Here, I suggest an alternative
explanation: the agent behaves as if following the SEU theory but she assigns
an arbitrarily small probability to an unreasonable state (Table 3). Which
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explanation of the agent’s behavior is “better”? Unfortunately, there is no
clear answer. Gilboa and Samuelson (2012) observe that in situations like this,
“people typically bring subjective criteria to bear in making this choice (i. e.,
choosing among theories), tending to select theories that seem a priori reason-
able, intuitive, simple, elegant, familiar, or that satisfy a variety of other
considerations.” Consequently, in the case of the three-color Ellsberg experi-
ment, the reader is left to use subjective criteria to decide which explanation
seems “better.”

However, I need to stress that from the empirical perspective — that is, from
a perspective that bases conclusions only on observable data — the Ellsberg
experiment does not reject the SEU theory. Although it is possible to test
whether or not Z is a Savage-null event (and if it is, then the agent does not
assign even an e-small probability to Z), such a test does not contradict my
claim. Note that when I use the phrase the Ellsherg experiment, I am referring to
an experiment consisting of the four alternatives and two choices described
above in eq. [1]. For clarity, I call this the original Ellsberg experiment. Testing
whether or not Z is Savage-null requires that the researcher expand the experi-
ment by adding new alternatives and observing more than two choices. This
would not be the original Ellsberg experiment (which my claim is about) but
rather the extended Elisberg experiment.

Suppose that the extended Ellsberg experiment shows that not only Z but
also all the remaining unreasonable states are Savage-null. This would indicate
that the procedure of SEU-rationalization proposed in this paper cannot defend
the SEU theory against the evidence provided by the original Ellsberg experi-
ment. This also indicates how to design a robust experiment to test the SEU
theory: in order to survive the procedure of SEU-rationalization, an experiment
that is to reject the SEU theory must be nested in a bigger experiment which
rules out all states that can be used by SEU-rationalization.

4 Related Literature

What differentiates my paper from the literature on choice theory under uncer-
tainty/ambiguity is that my ambition is not to introduce a new theory, but rather
to develop a procedure which allows the researcher to not reject the SEU theory.
One of the main objectives of the theories is to have the unique representation of
the agent’s belief (additive probability, non-additive probability, set of probabil-
ities). In contrast, neither the state space Q nor the probability A constructed to
SEU-rationalize the agent’s behavior is unique. There could be another state space
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Q" and another probability A" that would also do the job. In fact, even for a given
Q, the probability A is not unique because there could be a distinct A~ such that Q
and A" also lead to an SEU-rationalization. The non-uniqueness is a result of
constructing both a state space and a probability rather than only a probability.
However, the lack of uniqueness is not a concern in this paper. This is because the
main goal is to find some state space with some probability such that the agent
appears to be following the SEU theory. In order to emphasize that I am not
constructing a new theory, I have been employing the term assumption, rather
than the term axiom.

Two papers which are closely related to this paper are Gilboa and
Schmeidler (1994) and Lipman (1999). Gilboa and Schmeidler (1994) considers
an agent represented by the Choquet Expected Utility (Schmeidler (1989)) and
shows that “the non-additivity of the “probability” v may be explained by
“omitted” states of the world. If those were introduced into the model explicitly,
the non-additivity would disappear.”. The first difference between my paper and
Gilboa and Schmeidler (1994) is that my key requirement (Assumption 2) is
weaker than assuming the Choquet Expected Utility theory. In addition, the
state space Q in my paper is constructed from the subsets of the set of con-
sequences, while in Gilboa and Schmeidler (1994) the state space is an extension
of a pre-assumed state space. Lipman (1999) considers a construction of state
space that begins with the set of pieces of information (“propositions in logic,
statements in English or another language, or mathematical formulas”) denoted
by ®@. A state is defined as a subset of ®. Lipman (1999) relaxes the assumption
of the agent being logically omniscient, and determines conditions under which
the agent’s behavior fits within the SEU theory. My paper differs from Lipman
(1999) since, in general, my procedure need not depend on the violation of
logical omniscience. Moreover, in contrast to my paper, Lipman (1999) assumes
that the researcher knows the set ® which implies that the researcher knows
how the agent constructs her state space.

Although it does not develop a new theory, this paper associates alterna-
tives with subsets of the set of consequences X and, consequently, is related to
the literature concerned with an agent who ranks sets of objects. (See Barbera,
Bossert, and Pattanaik (2004) for the most complete review of this literature.)
The models in this literature consist of two stages. In the first stage, the agent
chooses a subset of X. What happens at the second stage divides these models
into the following two groups. Group A consists of models in which, at the
second stage, Nature picks the final consequence (see Section 3 in Barbera,
Bossert, and Pattanaik (2004)). Group B consists of models in which, at the
second stage, the agent picks the final consequence (see Section 4 in Barbera,
Bossert, and Pattanaik (2004)).
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The models in both of these groups share one feature, which separates them
from the setup I propose. They all consider the agent’s binary order to be defined
over the subset of the power set of X, a construction that implicitly assumes that
two alternatives with the same set of consequences should be perceived as the
same object or, at least, that the agent should be indifferent between them.
However, as noted in Section 2, this approach is not appropriate for this paper.
Thus, in this paper, the agent ranks options, rather than subsets of X.

The models in Group A are concerned with “complete uncertainty” which,
according to Barbera, Bossert, and Pattanaik (2004), “refers to a situation where
the agent knows the set of possible consequences of an action but cannot
assign probabilities to those outcomes.” For this reason, these models are not
related to this paper. However, one important set of models on complete
uncertainty can be interpreted as if they were considering an agent who
constructs probabilities over the subsets of X. These are the models which
build on the concept of Hurwicz’s a-criterion (see Arrow and Hurwicz 1972;
Hurwicz 1951) and develop the idea of evaluating sets by taking only their best
and worst consequences into consideration.? A subset Y of X is evaluated by
Vo(Y)=a(Y) - u(maxY)+ (1-a(Y)) - u(minY), where a is a function from the set
of subsets of X to (0,1), and where max Y denotes the best element of Y, and
min Y the worst. The function a can be interpreted as a probability on Y. This
functional representation resembles the result obtained by Ghirardato (2001). In
his model, the state space Q is fixed, and the agent perceives acts as set-valued
functions. In fact, V, can be considered to be an extreme version of Ghirardato
(2001), in which the agent perceives no state space. However, such a represen-
tation is not appropriate for the purpose of this paper, since it does not capture
the agent’s perception of alternatives. Since Y represents all consequences
deemed possible, I focus on the probability measures with support Y. In V,,
however, the support of a is not Y but rather {maxY, minY}.

For Group B, the relevant research is in the literature on “preference for
flexibility” that begins with Kreps (1979) and examines the agent who is not
sure about her future preferences. This uncertainty is captured by a state space
S in which a state s represents a possible future binary order over set X. My paper
implicitly assumes that the agent does not face uncertainty regarding her future
self. Consequently, the construction of the state space here differs from the
construction proposed in Kreps (1979), in which the agent evaluates a subset Y

2 See, for instance, Barbera, Barrett, and Pattanaik (1984), Barbera and Pattanaik (1984), Ben
Larbi, Konieczny, and Marquis (2010), Bossert (1989), Bossert, Pattanaik, and Xu (1994),
Bossert, Pattanaik, and Xu (2000), Dutta and Sen (1996), Kannai and Peleg (1984), Nehring
and Puppe (1996), Olszewski (2007), Pattanaik and Xu (1998), and Pattanaik and Xu (2000).
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of X by V(Y) =3 ¢max,cy u(s,y), where u(s,y) is an ex-post, state-dependent
utility function. In contrast, in my paper a menu is evaluated by its subjective
expected utility, and the utility over X is state-independent. Kreps (1992) reinter-
prets the original “preference for flexibility” model as representing the agent who
faces unforeseen contingencies — that is, the agent who is unable to account for
all possible future uncertainties. In contrast, my paper does not represent the
agent who lacks a complete picture of uncertainty, but rather the researcher who
does not know which uncertainties the agent has taken into account.

5 Conclusions

If the researcher, who tests the SEU theory, assumes some state space Q and
rejects the SEU theory, then his conclusion is not unconditionally valid. There
may exist an alternative state space Q and a probability measure A over Q which
together do not lead to the rejection of the SEU theory. If such Q and A exist,
then the agent’s behavior is SEU-rationalizable. This paper shows how to SEU-
rationalize the agent’s behavior and when an SEU-rationalization is possible.

I believe that the assumptions which allow to SEU-rationalize the agent’s
behavior are not demanding. It is difficult to consider violations of Assumption
1 — incompleteness and intransitivity — as valid reasons to reject the SEU theory.
I leave it for the reader to decide whether possible violations of Assumption 2
constitute convincing or interesting arguments against the SEU theory.

I would like to stress that if the agent’s behavior can be SEU-rationalized,
then this does not mean that the SEU theory has been accepted and non-SEU
theories® rejected. Rather, the correct conclusion would be that the SEU theory
has not been rejected and that other theories may also be able to explain the
agent’s behavior by relying on the assumption of a distinct state space.
Consequently, instead of saying that my procedure allows the researcher to
accept the SEU theory, I say — more precisely — that it allows him to not reject
it. For this reason, this paper should not be interpreted as a critique of non-SEU
theories. Rather, it is a critique of motivating such theories by only indicating
the evidence which rejects the SEU theory.
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3 See Amarante (2014), Eichberger and Kelsey (2009), Ghirardato (2010), Gilboa and Marinacci
(2011), and Siniscalchi (2008) for a review of the non-SEU literature.
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Appendix

I extend my result to infinite sets of acts and consequences. Fix (Q, X, F, =) with
7~ violating the SEU theory. I impose the following assumptions.

Assumption 3:

1. X is a separable metric space.

If X¢ is uncountable, then Xy is a closed subset of X.

F is a separable metric space.

For each x € X, there is f, € F.

7~ is a complete, transitive, and continuous binary order over F.

Vs W

Assumption 4:
1. For each f € F, there exist fmaxs and fminy.

2. For eachfef, iffmaxf - fminf: thenfmaxf >~ f - fminf°

Remark: Instead of assuming the existence of fraxs and fmins, One can require
that X be a compact metric space. In that case, X, a closed subset of X, is also
compact, and since u is a continuous function, the Weierstrass Theorem dictates
that both fiaxs and fins exist.

Proposition 2: Fix a quadruple (Q, X, F, 7). For each f € F, fix a set X;. Assume
the Axiom of Choice. If Assumptions 3 and 4 hold, then an SEU-rationalization of -
is possible.

In the first stage of SEU-rationalization, it is necessary to generate the set of
options 7 and the binary order = on . Recall that an option f is defined as a pair
(f, Xr) where X is a subset of X interpreted as the collection of all possible
consequences associated with act f (i.e., Xy=f(Q)). Let flf be a probability
measure associated with option f. It is important that this probability measure
captures the agent’s perception of f In the case of a countable X, if x is
considered to be possible when f is chosen, then ﬁf clearly assigns a nonzero
weight to x. However, with uncountable X, it is not possible to require that
A¢(x)>0 for each x € X;. This implies that there is no straightforward definition
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of the “possible consequences” for uncountable X¢s. Suppose that X =[0, 1] and
X;=[0,0.5]. If A;(0)=0, then it is not clear whether X; should be defined as
[0,0.5] or (0,0.5]. I solve this problem by implicitly assuming that the agent is
indifferent between X; and the closure of X;. Thus, in Assumption 3, I focus only
on those uncountable X;s that are closed in X. Consequently, A is said to capture
the agent’s perception about an act whenever the support of /if is X¢. (Note that if A
is a probability measure defined on a metric space X, then the support of A is
defined as the smallest closed subset C of X such that A(C) =1.) However, without
additional requirements, it is not necessarily true that, for a given Xy, there exists
a probability measure with support X;. This issue is also resolved by adopting
Assumption 3, which requires that an uncountable X is a separable metric space.
This guarantees that, for a given closed subset of X, Xf, there is a probability
measure on X with support Xy (see Exercise 4 in Chapter 7.1 in Dudley (2002)).

Assumption 3 guarantees the existence of V (see Debreu 1954, 1964), with u
defined as u(x): = V(f,). It remains to be proven that (a) for each option there
exists a probability measure A; with support X;, and (b) that V(f) = [ u(x)dAy.

Let P(X) denote the collection of probability measures on X that are Borel for
uncountable X. Fix f and let Pf¢(X) be a subset of P(X) that consists of probability
measures on X with support X. For countable X;, the nonemptiness of P¢(X) is
obvious. For uncountable Xy, the fact that X; is a closed subset of a metric
separable space (Assumption 3) guarantees the nonemptiness of Pr(X). Let
¥:P(X) — R be the 1ntegral function ‘P(/\ = [yudA. The remalmng part of
proof shows that, for a given f, there exists )lf € Pf( ) such that ‘P(/\f) V().

Consider an option f such that fmx For fmm 7. The idea of the proof is to
find two probability measures, A; and A,, that both belong to Pf(X) such that

=W¥(A)< V(f) <W¥(A;) =cy. With ¢; and ¢, in hand, it is possible to find the

unique a such that ac; + (1-a)c, = f/(f ). With this a, the desired ﬂf is defined as
Ar=ad; + (1-a)A,.

It remains to be proven that, for a given f , such probability measures, A; and
Ay, indeed exist. Note that due to Assumption 4, ‘I’(6minf)<l7(f)<\}’(6maxf),
where §, is a degenerate probability measure with mass 1 at x. One way to
show that there always is a A; such that W(A;) < V(f) involves proving that there
is a sequence of probability measures {A{} such that each A} € P;(X) and
W(A]) — ¥(8mins). The existence of such a sequence guarantees that there is
some N such that W(8pminf) < yA) < V(f). Such a AY then becomes the desired ;.
Since the existence of A, is proven in the same way, I focus on A;.

Consider a countable X;. I construct {A7} in the following way. Let
Af(minf)=1- 7 and let 37, v\ (mins A (X) = 7. I Xy is finite, with cardinality X,
then let Af(x)=gty; for xe€X/\{minf}. If X; is infinite, then let

X ={x,X0,X1, ...}, where x=minf. For x, define Aj(xn)= 5 -5 Note that



452 — K. Grabiszewski DE GRUYTER

> m—oA(Xn) is a convergent geometric series such that > 7 .- 5 =1 With
{A} determined, it is then possible to compute ¥(A]) = erx, u(x)A} (x ), observe
that the sum converges, as desired, to ¥(6mins) as n goes to infinity. Finally,
consider an uncountable X;. As already noted, the fact that X is separable and Xy
is a closed subset of X implies the existence of probability measure flf on X, with
the support X;. Let A be a weighted measure that assigns 1 to Af and 1- 1to
Omins. Each A7 then has support Xy, and W(A) — ¥(6mins) when n — oo.

By the Axiom of Choice, for an arbitrary F, there exists Q defined as
Q:= x;c7X;. Let T be a finite nonempty subset of 7. Let QO : = x s X;. Let A, be
the probability measure on Q,, constructed as a product of the probability mea-
sures Afs By Propos1t10n V.1.2 in Neveu (1965), there exists the unique probablhty
measure A on Q, which agrees with each A, on cylinders. An option f is trans-
formed into act f by defining f:Q — X as a projection function. Consequently,
function f is measurable. The binary order = over F is as f = g if and only if
fri & Finally, define V:F - Ras V(f = [y u(f(@))dA.

Since A is a product measure and f is a pr01ect10n function, they induce a
probability measure on X that is the same as Af (condition 2 in Definition 2.1).
Note that = is constructed in a consistent way from = (condition 3 in Definition
2.1). By the construction of A and f, it follows that V(f) = V(f ). This implies that
i has an SEU representation (condition 4 in Definition 2.1). This ends the proof
of Proposition 2.
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