DE GRUYTER BE ). Theor. Econ. 2016; 16(1): 389-410

Research Article

Giorgos Stamatopoulos*
The Core of Aggregative Cooperative Games
with Externalities

DOI 10.1515/bejte-2014-0054
Published online July 29, 2015

Abstract: This paper analyzes cooperative games with externalities generated by
aggregative normal form games. We construct the characteristic function of a
coalition S for various coalition formation rules and we examine the corresponding
cores. We first show that the y-core is non-empty provided each player’s payoff
decreases in the sum of all players’ strategies. We generalize this result by showing
that if S believes that the outside players form at least I(s) =n — s — (s — 1) coali-
tions, then S has no incentive to deviate from the grand coalition and the corre-
sponding core is non-empty (where n is the number of players in the game and s the
number of members of S). We finally consider the class of linear aggregative games
(Martimort and Stole 2010). In this case, if S believes that the outsiders form at least
7(5) = 2 —1 coalitions [where 7(5) < I(s)] a core non-emptiness result holds again.
Keywords: aggregative game, cooperative game, externalities, core

JEL Classification: C71

1 Introduction

The core is the most widely used solution concept in cooperative game theory. It
is the set of all allocations of the worth of the grand coalition that prevent any
other coalition from forming and standing alone. To compute or even define the
core, one needs to first define the characteristic function of a coalition. The
characteristic function specifies the worth a group of players can attain if they
act on their own, i.e., without cooperating with the players outside the coalition.
For a cooperative game with externalities, namely a game where the worth of a
coalition depends on the actions of the outsiders, the specification of the
characteristic function requires a prediction about the behavior of the non-
members, in particular their coalition structure.
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The literature has offered various such predictions or conjectures, each
leading to a specific notion of core. The o and p-cores (Aumann 1967) are
based on the assumption that the outsiders will try to minimize the payoff of a
coalition that deviates from the society of all players. The y-core (Chander and
Tulkens 1997) is based on the premise that the outsiders will play individual best
replies to the deviant coalition (i.e., the outsiders form singleton coalitions); the
same approach can be followed under the additional assumption that the
deviant coalition acts as a Stackelberg leader (Currarini and Marini 2003). The
recursive core (Huang and Sjostrom 2003; Koczy 2007) is constructed under the
assumption that the members of a coalition compute their value by looking
recursively on the cores of the sub-games played among the outsiders.

Behind a cooperative game with externalities lies a normal form game where
players can transfer utilities among themselves and sign binding agreements. The
current paper focuses on cooperative games generated by aggregative normal form
games, i.e., games where the payoff of a player depends only on his own strategy
and the aggregate value of all players’ strategies. Many economic models have an
aggregative structure, such as common pool resource games, oligopoly models, cost
sharing games, rent seeking games, etc.! We utilize the structure of these games in
order to define and analyze various notions of core, each depending on the con-
jectures a deviant coalition has about the partition of the outsiders. Our goal and
motivation is to provide the largest possible set of coalitional beliefs that allow the
non-emptiness of the (appropriately defined) core. The paper develops gradually,
starting with the case of singe-valued conjectures (i.e., conjectures that focus on one
partition of the outsiders) and then moving on to set-valued conjectures.

We begin with the case of y-beliefs (Chander and Tulkens 1997), as they are
often encountered in applications:* a coalition believes that should it deviate
from the grand coalition its opponents will stay separate. Given these beliefs, we
examine the incentive for deviation within an aggregative environment. We then
generalize the analysis by determining for each coalition a set of partitions of the
outsiders under which there is no incentive for deviation.

The paper focuses on environments with symmetric players. The results can
be summarized as follows:

1. if the payoff function of a player is decreasing in the aggregate value of all
players’ strategies and his marginal payoff is decreasing in own strategy

then the y-core of the game is non-empty; i.e., n-player games where a

1 The literature on aggregative games is large and expanding. See, for example, Martimort and
Stole (2010) or Acemoglu and Jensen (2013) for extensive lists of references.
2 We refer the reader to the literature review that follows.
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coalition with s members believes that the outsiders form n — s singleton
coalitions have non-empty core.

2 we introduce the additional assumption that the marginal effect of a player on
another player’s payoff is decreasing in the latter’s own strategy; we show that
the cores of games where a coalition with s members believes that the out-
siders form at least I(s) = max{n —s — (s — 1), 1} coalitions are non-empty.

3. we consider the class of linear aggregative normal form games (Martimort and

Stole 2010); we show that the cores of games where a coalition with s members

believes that the outsiders form at least I(s) = max{} — 1,1} coalitions are
non-empty, where® I(s) < I(s).

Our work is related to the literature on the y-core of cooperative games. This notion
of core was defined by Chander and Tulkens (1997) in the framework of a coalitional
economy with environmental externalities. The authors defined the y-characteristic
function of a coalition (i.e., its payoff when the outsiders play individual best
strategies) and showed that the corresponding core is non-empty under specific
assumptions on the utility functions. Their result was strengthened by Helm (2001)
which showed the non-emptiness of the core by proving that the induced coopera-
tive game is balanced. The concept of y-core has also been examined in oligopolistic
markets with quantity competition. Chander (2010) proved that the cooperative
oligopoly game defined by the y-scenario is balanced and hence the corresponding
core in non-empty. Non-emptiness results are obtained also in Lardon (2001) for
oligopolies where firms operate under capacity constraints. The core existence
results can fail though when the deviant coalition presumes for itself the role of
Stackelberg leader: under this scenario, the y-core is empty or not depending on the
nature of competition among firms in the market, as shown in Currarini and Marini
(2003). A similar conclusion holds for the case of economies with environmental
externalities: Marini (2013) shows that in an economy with Cobb-Douglas utilities
the non-emptiness of the (sequential) core depends on the relative preferences over
the environmental quality and the private good.

The papers most closely related to ours are Currarini and Marini (2003) and
Lekeas (2013). The first result of our paper, i.e., result (i), is connected to the work
of Currarini and Marini (2003) which analyzed the non-emptiness of the y-core for
general cooperative games with externalities. Their work showed that the y-core is
non-empty under two main assumptions: (a) the underlying normal form game
exhibits strategic complementarities and (b) the deviant coalition assumes for
itself the role of Stackelberg leader. Interestingly, their assumptions, although

3 Note that since S has s members, the number of coalitions of the outsiders cannot exceed the

number n — s (and cannot be less than 1). For this range, the inequality I(s) < I(s) holds.
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different than ours, produce a similar result. Finally, the two other results of the
current paper, i.e., results (ii)—(iii), are connected to the work of Lekeas (2013).
This paper analyzed a linear oligopoly market where firms compete in quantities.
For each coalition of firms a set of partitions of the outsiders is found that prevent
the coalition from deviating from the rest of the firms. Our work thus generalizes
this analysis by considering more general cooperative games.

The paper is organized as follows. Section 2 introduces the main setting and
discusses the case of y-beliefs and the corresponding core. Section 3 analyzes
more general coalitional beliefs: we first present the analysis in terms of general
symmetric aggregative normal form games; we then focus on the sub-class of
linear aggregative games. Section 4 offers concluding remarks.

2 Aggregative Games and y-Beliefs

We consider a normal form game I' = {N, (X;, U;),.y} where N = {1,2,...,n} is
the set of players; X; C R is player i’s strategy set; and U; : X — R is i’s payoff
function, where X is the cartesian product of the individual strategy sets. We
make the standard assumptions that X; is compact and Uj(xy, X2, ...,Xx,) is
concave in argument x; and continuous in all arguments jointly. An aggregative
normal form game arises when the payoff of a player can be expressed as a
function of two elements only: his own strategy and an aggregate of the
strategies of all players. We take this aggregate to be simply the sum. Thus T
is an aggregative game if for each player i there is a function u; : X; x Y — R

such that U;(xy, x2, ... ,Xn) = U (Xi, > Xk), where Y C R.
keN

We will focus on symmetric aggregative games. Hence, throughout the
paper the following condition holds:*

A0 X; = Xj; and u; (Xiy Zn) =u; <Xiv ZM) if x; = x;, for anyi,j.
keN keN

We consider situations where players can form coalitions and sign binding

contracts. A partition of set N into disjoint subsets (coalitions) is given by

7 ={S1,5,...,5}. The strategy set of coalition S; € = is given by the set

Xies, Xi; and its payoff function by

Us, (X1, X2, . .., Xn) = Zui <Xi’ ZX">

ieS; keN

4 Since AO holds throughout the paper, we shall not refer to it when stating our results.
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We denote by’ I, the normal form game that arises under partition 7. The
equilibrium outcome of T, is denoted by® (XF, x5, ..., x5).

We are interested in the formation of the grand coalition. Denote the result-
ing partition by z* = {N}. The objective function of the grand coalition is

uy (X1, X2, ..., Xp) = Zui (Xiv § :Xk)
ieN keN

Denote by (X7 ,x5 ,...,x% ) the strategy profile the maximizes the above sum.
Then the worth of the grand coalition is

vN) = (X ZX?)
icN keN

The formation of the grand coalition is potentially blocked by the formation of
smaller coalitions. Let S C N be such a coalition, with |S| = s members. Denote
by N\S the set of all non-members of S. The payoff of S depends on how the
n — s outsiders partition off into coalitions. Let IT_g be the set of all partitions
that the outsiders can form. In this section we focus on a specific member of
IT_g, namely the partition that corresponds to the y-scenario: S believes that, if it
deviates from the grand coalition, the outside players will stay separate. The
y-scenario was introduced by Chander and Tulkens (1997) for economies with
environmental externalities. Under the y-approach, if S deviates from the grand
coalition, the normal form game Iy is to be played, where’ 7 = {S,7’ 5} and
n’_s is the set of singleton coalitions of all players outside S.

Denote by (xfls,x;g,...,xﬁg ) the equilibrium choices in T,,. The worth of
coalition S then is
Vy(S) = Zui (Xisv Zxks)
icS keN

The resulting cooperative game is denoted by (N, v,). An allocation is a vector

(W1, Wa, ..., wy) satisfying > wy = v(N). The y-core is the set of all allocations
keN

that no coalition S can block given the y-scenario.
We will determine conditions for non-emptiness of the y-core under the aggre-
gative normal form structure. In some parts of the paper we will use the following:

5 The normal form game T corresponds to the case where = = {{1},{2},...,{n}}.

6 We express this outcome in terms of individual players’ strategies in order to economize on
the notation.

7 We use subscript S to keep track of the fact that we analyze the game form the viewpoint of
deviant coalition S.
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Aluy; (xi,Zxk> is continuously differentiable in x; and in Zxk.
keN keN

A2u; (szxk) is decreasing in Zxk.

keN keN

Numerous economic models satisfy condition A2, such as rent seeking games,
oligopoly games, common pool resource games, cost or surplus sharing games,
etc. Consider, for example, a market where firms compete in quantities. The set
of firms is N. The firms produce a homogeneous product. Firm i produces

quantity g;. The market price is given by the price function p(l;z Clk), where
eN

4 (Z Qk) < 0. The cost of firm i is C(g;). Its payoff is

keN
U; <Qi: ZQk) = p<z Qk) gi — C(qi)

keN keN
Condition A2 holds since the price function is decreasing.

Consider now a cost-sharing game. There is a set N of agents which produce
an output of magnitude Y. The total cost of producing Y units is given by the
increasing function C(Y). The payoff v of an agent is increasing in his consump-
tion of output and decreasing in his cost contribution. Agent i consumes y; units.

Consumption by all agents exhausts total output, i.e., Y yx = Y. Assuming that
keN

agent i’s share of the cost is o;, the utility of i is written as

U; ()’i, I(EZN)/k) = v(y,-, 0; - C<I(EZNYI())

Given that the cost function is increasing, condition A2 holds.

Finally, let us look on a game with multilateral environmental externalities.
Consider a set N of agents whose production activities generate negative extern-
alities affecting one another. Agent i produces a private good at quantity x; using
the quantity e; of an input. The production process is described by x; = f(e;),
where f(e;) is an increasing production function. The utility function of agent i is

(e er) ~fle) —d( e
keN keN
where d(-) is the damage function, which describes the loss of utility caused by
the aggregate use of the input. If we assume that the damage function is increas-
ing in the aggregate value of the externality then A2 is satisfied once more.
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Let us now return to our general framework. In addition to our previous
assumptions we shall also assume that the optimal strategies of the players in
1 always are in the interior of the corresponding strategy sets.

A3 x;rg € intX;, for alli € N, where int denotes the interior of a set.

We begin with two preliminary results (Lemmas 1 and 2) which hold for any
deviant coalition S.

Lemma 1 Assume A1-A3 hold and that du; (X“ k%] X") /dx; is decreasing in the first
argument x;. Let i € S and j ¢ S. Then x;[,s > X7 5.

Proof Given A3 x;* and x;* satisfy respectively

. 7,
ou; (XﬂkZNst) <X, :kZNXk )
S S

I -0 1
BXi ; 8)(1' [ }

r#i

8u,- (X;[Sv kZ;V XIZS)

S

an [ }

Assumption A2 implies that each term in the sum of the derivatives in eq. [1] is
negative. Hence by eq. [1] we have that

(S
N~ = 750 3
ox; El
By assumption, the function du; (X“ )Y X") /0x; is decreasing in the first argu-

ment x;, for any fixed > x;. Hence if x; s >X; s then by eq. [3] we would have

keN
( 7[5 Z )
keN >0

8xi
and hence by symmetry
8u,~ (X;'Tsv E X;:s)
keN
- = 72 >0
an
which violates eq. [2]. We conclude that X;-HS > x;[,S. [ |

Let us_ identify a well-known environment where the condition that
ou; (X“ kz X") /0x; decreases in the first argument is met. Consider the n-firm
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market described in page 5. For simplicity let " gx = Q. Then the profit of
firm i is keN
ui(g;, Q) = p(Q)gi — C(q:)
and thus
oui(gi, Q)

—oq ~PQ+P(Qa-Cla)

The condition that du;(g;, Q)/dq; decreases in the first argument g; is met if
P’ (Q) — C"(gi) <0, which is the condition that results into a quasi-competitive
oligopoly market, i.e., a market where industry output (price) increases
(decreases) in the number of firms (see Amir and Lambson 2000).

Lemma 2 Assume the conditions of Lemma 1 hold. Let i € S and j¢S. Then

7’:/ 7’:/ ﬂ/ ﬂ/
s s s s
uj(x,- 7](21:\])(]( ) > ui<Xi s Zxk >
<

keN

Proof We have that

7! b s TS | TS s Ts ) TS
” Xj37§ st =y X]. 7Z:Xk +Xj Zuj X; ,ZXk + X;
keN keN keN

k#j k+#j

T . .
[because x;* optimal for j]
s TS 0TS 43S
S X;°, Z X+ X7+ X
keN
k#jk#i

XS X5 4 xS 4 xS T
> %5 > X+ i | [because of A2 and x;*> x;°]
keN
k#jk#i

s TS | TS | TS
— | %5 D XX+ [because of A0]

keN
k#jk+#i
s s
=y X 7zxk
keN
So the result is proved. [ |

Proposition 1 Assume the conditions of Lemmas 1-2 hold. Then the core of (N , vy)
is non-empty.

Proof Given symmetry, the y-core is non-empty if for each S

) S “
n s
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where s is the number of players in S. By symmetry all members of S select the
same strategy; likewise, all players outside S select the same strategy too. Hence
we can write

S (x;f’s,zxz’s) - (x;f’s,zxz’s) 5

ieS keN keN

Sy ( zx’;s) ~ - (x;f'azxz's) 6

JEN\S keN keN

We then have

. * ! /
Z Uur (X;r ) Z XZ ) Z Ur <X:[sv Z XZS)

V(N) _1eN keN S 1eN keN
n n - n
J J /
Su; (xfs, > x;:s> + (n—9s)y; (X}rs, > XZS)
keN keN

n
[by egs[5]and [6], wherei € S, j¢ §]

s s
(s+n—sux° > x
keN
n

e 5)
) v

S S

So eq. [4] holds. [ |

>

[by Lemma 2]

If S deviates from the grand coalition then each member of S selects a lower
strategy than each non-member, as Lemma 1 shows. This is driven (to a large
extend) by assumption A2: acting in cooperative way, a member of S selects his
strategy by internalizing the negative impact of his choice on the other members.
As a result, the per-member payoff in S is relatively low (as a matter of fact, it is
lower than the payoff of a non-member), which prevents S from deviating.

Notice also that assumption A2 means there are positive externalities from
coalition formation. The merging of, say, S with Sy = {k} would induce each
member of the new coalition SUS; to select a strategy by internalizing his
negative impact on more players. Hence compared to the pre-merging situation,
each member of the new coalition would select a lower strategy. Then, this
would benefit the players outside SU Sy (by A2 again).
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3 Aggregative Games and Set-Valued Beliefs

We generalize the analysis of the previous section by allowing a deviant coali-
tion to have set-valued beliefs over the coalitional behavior of the outsiders. In
particular, for each coalition S we will determine a collection 7 _s C IT_g with
the property that if S believes that a partition 7_gs € 7 _g will form, then it has no
incentive to break-off from the grand coalition.

As in the previous section, consider a candidate deviant coalition S with s
members. Define the following number

n
1, ifigsgnfl

I(s) = [7]

n—-s—(s—1), if1§s<g

Remark 1 Given coalition S, consider a partition of the outsiders with [ coalitions,
n_s ={81,S5,---,Si}. Assume | > I(s). Then there is no S; € =_g with |Sj| >s.

Proof Clearly for s > n/2 the above holds immediately. Let next s<n/2. To
show the validity of the Remark for this case, it suffices to consider the case
where [ — 1 members of 7_g have one player each and one member of z_s has
s*>s players and show that such a partition cannot occur.

Indeed, the total number of players in the suggested partition is [ — 1+ s*.
Since l > I(s) and s* >s, we have that [ —1+s*>(n—s) — (s—1) —1+s=n—s,
i.e., the number of players in the suggested partition exceeds the number of
outsiders. |

Given S, let 1" s be the set of all partitions of the outsiders that have at least !
coalitions, where [ € {1,2,...,n —s}. Le,,

My={rsecls:|zs >}
Consider a partition z_g € Hl_(ss), where I(s) is defined in eq. [7], and let
7s = {S,m_s}. Denote by I, the corresponding normal form game; and denote
by (X7°,x5°,...,x7s) the equilibrium choices in I,.

Lemma 3 below extends Lemma 1 in the following sense: it shows that the
equilibrium strategy of a player in S under I';, is not higher than the equilibrium
strategy of any player not in S, irrespective of where this other player belongs to.
To show this, we need an assumption analogue of A3.

A4 X cint X, forallie N.
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Lemma 3 Assume A1-A2 and A4 hold and that
(D) Oui(xi, > xx)/Ox; is decreasing in the first argument x;
keN
(I  Oui(xi, >_ xx)/0x, is decreasing in the first argument x;, for any r # i
keN
Consider a partition w_g € H and take any S; € n_s. Let i € S and j € S;. Then
XS > X',
] ="

Proof Take a coalition S; € 7_s. Let |S;| = s;. Since 7_s € H'fss), we have s > s;.
Let S; be a subset of S with s; members (given symmetry we do not need to fully
specify who these members are).

Note that for i € S, x* satisfies®

aui(xf”’k%x’?>+z . %vx)+z o k%vx>_o 8

5)(1' — Bxi < aXi N
YES] I‘ES\S,'
r#i

On the other hand, for j € §;, X;-TS satisfies

ou (x;fs, ) x;:s) Ot (xm > x?)
=0
O0X; + Z O0X; 1o
7 meS,- ]
m#j

Assumption A2 implies that each term in the second sum of the derivatives in
eq. [8] is negative. Hence the sum of the first two parts in eq. [8] is positive, i.e.,

8“1’( X5, 3 ”) 6ur(xi’sv sz'fs>
keN keN
+y e >0 [10]
reS,
r#i

s

Note that x;* = x7* for r € S and x;* = x for m € ;. If x{* >x* then conditions
(I) and (II) of the current Lemma and eq. [10] would imply that

<”S%IVX>+Z <nskg"x>>o 1]

Ox; 0x;

r€§;
r#i

Using symmetry, the above is equivalent to

8 W.lo.g. assume i € S;.



400 —— G. Stamatopoulos DE GRUYTER

o (x;'s, 5 x';s) ou, (x;fs, > x;zs)
) keN >0

keN
si—1 2
6x,- + ( ) 6x1- [ ]
By symmetry again, we can use eq. [12] and write
ou; (x}’s, > xf) O (xgs, > xf)
keN keN
(5 1) >0 [13]

0x j ox j

which violates eq. [9]. We conclude that x}?’s > x;*. Since §; is an arbitrary
member of z_g, a similar inequality holds when we compare the strategy of a
player in S and the strategy of a player in any S; € 7_s. |

To give an example that satisfies condition (II) of Lemma 3, we return to the
market described after Lemma 1. We have du;(g;, Q)/9q, = p'(Q)q;, for any r # i.
This function is decreasing in the argument g;, for any Q, since p’(Q)<O0.

Lemma 4 Assume the conditions of Lemma 3 hold. Consider a partition =_s € Hlfg)

and take any Sj € n_s. Leti € S andj € S;. Then u; (X,I-[Sa > X;’?) >y (st> > XZS).
keN keN
Proof Take a coalition S; € 7_s. Let |S;| = s;. Notice that

s

7S s s 7S TS
S (7 ) = S T2 | 5 5y (X 2
ey keN Py keN ey keN
jes; jes; keS; jes; k&S
where the above is due to symmetry and to the fact that the payoff of coalition S;
is maximized when its (symmetric) members select xl’fs. Symmetry, Lemma 3 and

A2 then imply that

TS o.v7TS TS5 TS < .7S TS TS .y 7S TS
w | 5% —|—§ L IS R —|—§ S IO R —s—E Xy

keN keN keN
keS; k¢S; keS;
TS 7S s
=y Xi s S]X]- + E Xk
keN
keS,-

as claimed. Since §; is chosen arbitrarily from z_s we can derive a similar
conclusion regarding the comparison between S and any other S; € 7_g.

Denote by v, (S) the worth of S when the outsiders form partition z_g and
thus ng = {S, 72,',5}.
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Lemma 5 Assume the conditions of Lemmas 3 and 4 hold. Then Lf:’) > V”ss(s> , for all
s = {S, ﬁ,s} S.t.m_g € HK?.

Proof Let zg = {S,7_s}, for r_s € HIESS) We then have

u XIL'* ZX;;;‘ u an ans
v(N)iEV ’(”kew e ) R X e

>
n n - n
Su; XFS? Z X Si|u; Xj'rs7 Z X
B l(l keNk +5,.€Z,LS‘J|} ! keNk
N n
(s+n—su <st, kZ Xl?)
N [by Lemma 4 and Z ISj| =n—s]

>

n s,'Eﬂ' S

sui (X 20 X
( e ) va(S)

S S

Notice by eq. [7] that if a candidate deviant coalition S has at least n/2 members
then Hlfss) = II_g. Given this observation, define

O, f5<|Sf=s<n-1
Ts=1 | [14]
'y, if1< IS =s<1
Denote by (N,v,(S)) a cooperative game where the payoff of coalition S is
computed under a certain partition zs = {S, 7_s}. Define the set of games

UT = {(N,vy(S)): foreachSC N, zs={S,ms} with 7 s€T s}

The above analysis implies the following result.

Proposition 2 Assume the conditions of Lemmas 3 and 4 hold. Then each game in
UT has non-empty core.

Recall that under the y-scenario a coalition with s members believes the oppo-
nents will form n — s coalitions. For singleton coalitions, /(1) =n —1, i.e., as in
the y-core scenario. For s>1, we have that n — s>(s). Hence for s>1, a coalition
does not deviate from the grand coalition not only when the outsiders form n — s
singleton coalitions, but also when they form fewer coalitions.

In conclusion, we can informally re-state Proposition 2 as follows:
Cooperative games that satisfy the conditions of Lemmas 3-4 and in which
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(i) singleton coalitions believe outsiders form n — 1 coalitions

(ii) coalitions with size s € {2,...,5 —1} believe outsiders form at least I(s)
coalitions, have non-empty core, irrespective of the beliefs of coalitions
with size s > n/2.

The results in this section are an extension of the previous section’s results and so
is their explanation. As long as the players outside S form at least I(s) coalitions
then each of these coalitions has fewer members than S. This implies that the
internalization of the negative intra-coalitional externalities is more intense in S
than in any coalition of the outsiders (as in the case of y-scenario studied in the
previous section). As a result, the strategy and the payoff per member of S are
relatively low (as Lemmas 3 and 4 show) making its deviation undesirable.

Note, finally, that in the particular cases where S has at least n/2 members,
it becomes the largest coalition irrespective of the partition of the outsiders.
Hence, in these cases the above implications (intense internalization of extern-
alities and thus low strategy and low payoff per member of S) hold no matter
how the outsiders split into coalitions. Hence S never deviates.

3.1 An Oligopoly Example

To illustrate the above via an example, consider an oligopoly market where firms
compete in quantities and produce a homogeneous product. The set of firms is
N = {1,2,...,n}. The cost function of firm i is C(g;) = cq; + q7/2, where g; is the
quantity of firm i and ¢>0. The inverse demand function is p = a — Q, where p is
the price, Q = > gx and a>c. The payoff function of individual firm i is

ke ui(q:,Q) = (@ — Q- O)qi — ¢*/2

Consider a candidate deviant coalition S and a partition zs = {S,7_s}, where
n_s ={5,S,,...,Si}. Assume |S| =s and |S;| =s;, for S; € 7_s. The objective
function of S in the resulting game T, is

us (41,92, - - Gn) = Z((a —-Q-0c)g—q;/2) [15]

ieS

The objective function of coalition S; € 7_g is

us (g1, G2, -, qn) = »_((a—Q—c)gj— q7/2)

JES;
The maximization problems are

max us(qi,qs, . . -,
(max us(gs, gz, -+ dn)
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and

max uS}' (qh CIZy oo :Qn)7 for S] S T_s
{(@)jes;
In Appendix A we calculate the solution of these problems and we show that the
worth of S is
' 1
() e 541

POy [16]
s 20%(1 +s)

!
where A =1+ 3%+ 3%
=t

Finally, the objective function of the grand coalition is

un(q1, 42, - - -, 4n) = Z((a -Q-¢c)a—q;/2)

reN

The maximization problem the grand coalition faces is

max u N7 ST
 max, N (g1, 92 an)

By straightforward calculations we get

v(N) _ (a—c)’

n 2(2n+1)

Define the function
!

S:
A_s(s,8,...,5)=> —1—
s(51,82 1) ;1 s
where s; is defined above. Given that the players outside S form [ coalitions, the
payoff of S is maximized when A is minimum, i.e., when A_g(s,S,,...,s;) is
minimum.

Recall that > s; = n — s (there are n — s outside players). Then the function
=1
A_s(s1,S2,...,51) is minimized over {s,s,,...,s;} if s; =1 for all j but one; say

S;=S=...=s1=1and s; =n—s— (l—1). Thus given that the players out-
side S form [ coalitions, the payoff of S is maximized when | — 1 coalitions have
one member each and one coalition includes all the remaining players. Denote
the resulting partition of the outsiders by 7_s and let 7s = {S,7_s}. Then the
value of A_g(sy,S,...,s;) computed at (s1,S,...,5) =(1,1,...,.n—s— (I —1)) is
-1 n—s—(1-1)

As(1,1,...,n—s—(1-1)) = 2 n-s—(-1)+1

Denote the corresponding value of A by Apn, i.e.,
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S
Apin=1+—+A_s(1,1,....n—5s—(1—-1
min +1+S+ 5(77 ) ( ))

1425 1-1 n—s—(1-1)

s 2 n—-s—(I-1)+1

Hence if the players outside S form [ coalitions, the payoff of S is maximized if
the partition 75 forms and

Vzs (S)

T:(a—c)z (254 1)

2A3nin (1 + S)z [17]

To continue, and in accordance to our previous analysis, we can discriminate
between two cases: s > n/2 and s<n/2.

Case A: s > n/2. Recall by Proposition 2 that in this case coalition S does not
deviate irrespective of the partition of the outsiders. Indeed, notice that A;, is
increasing in I and hence vz (S) is decreasing in I. Hence the worth of S is
maximized when [ = 1. Plugging [ = 1 in eq. [17] gives

VESS(S) _ (a—c)22 (2s+1)(n—s+1) i 18]
(A+s)(n—s)+(1+2s)(n—s+1))
Using eq. [18] it is straightforward to show that
v(N) > vas(8) < {(n,s)>0 [19]
n S

where {(n,s) = —2(2s +1)n? + (13s? + 4s — 1)n — 9s> + 2s? + 3s. Recall we are in
the case where s > n/2 (and also s < n). In this range the function {'(n, s) is positive,
as it can be easily checked. Since the worth of S is maximized at eq. [18] [for [ = 1]
and for this value S does not deviate, we conclude that S never deviates.

Case B: s<n/2. In this case Proposition 2 predicts that S does not deviate if the
outsiders form at least I(s) coalitions, where I(s) =n —s — (s —1). As in Case A,
Amin is increasing in [ and vz, is decreasing in l. Plugging the value [ = I(s) in
eq. [17] gives

vz (S) _ @ o 2(2s +1) 20]
S (2+ 4s +n+sn—2s2)°
Using eq. [20] we have that
V(N) > Vﬁs(s) = I’](H,S) >0 [21]

n S
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where 5(n,s) = (1+5)°n2 + 4(—1—s+s> — %) + 4s(2+ 25 — 45 + s%). But for
s<n/2, n(n,s) > 0. Hence for all I > I(s) coalition S does not deviate.

3.2 Linear Aggregative Games

In this section we restrict attention to linear aggregative normal form games. This
class was introduced by Martimort and Stole (2010) and it involves aggregative
games were the payoff of player i satisfies some sort of linearity in own stategy x;
for any fixed sum of all players’ strategies. For this class of games we will identify
a new threshold on the minimum number of outside coalitions that support a non-
empty core. This new threshold is going to be (weakly) lower than® I(s).

We follow Martimort and Stole (2010) and we consider a bilinear form, i.e., a
mapping defined on two linear spaces which is linear in each argument sepa-
rately. More formally let V and W be two linear spaces. A bilinear form is a
mapping (-,-): V. x W — R where for f.feV, hbhe W and a scalar 4 the
following hold:

<f+f7'>:<f7'>+<f7'>v <'7h+h>:<'7h>+<'7}~l> [22}

(Af ) = (f,2h) = A(f . h) 23]

A linear aggregative normal form game arises when the payoff of player i has the

form
U; (Xi, Zxk) =aq; (Zxk) + <xi,ﬂi (Zxk)> I1
keN keN keN

where a;(-) and u;(-) are appropriately defined real-valued functions and (-, -) is
a bilinear mapping. An example satisfying L1 is a market where firms compete in
quantities under constant returns to scale. Assume the average cost in the
market is c. Then

(o) oblin) o) (ol

The next result discusses the non-emptiness of the core under a linear aggrega-
tive normal form structure. This result does not require assumption A2 (or Al). It
requires though to set a; (kZ Xk) =0, for all 3 x.

eN

keN
First, define the number

9 Recall that [(s) is given by eq. [7].
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[24]

Given coalition S recall that I’ 5 is the set of all partitions of the outsiders that
have at least [ coalitions.

Vzr

Lemma 6 Assume L1 holds with a;( > xi) = 0, for all > xi. Then YY) = for

-~ keN keN
all s = {S,7_s} s.t. 7_s € T

Proof We first compute the worth of the grand coalition using the fact that
player symmetry implies that #;( > xx) = i4;( > x¢), for any i,j. Hence using
keN keN

symmetry, L1 and eq. [22] the objective function of the grand coalition can be
written as

Un (X1, X, Xn) = > U <Xivzxk> = Z<xi,&l~ <ZXI<)>

ieN keN ieN keN

~(3ma(Z))

Le., the grand coalition simply selects the value of the sum }_ x;.
ieN
Consider next a deviant coalition S with s members. Take a partition
7_s=18,S3,...,5} of the outsiders and let zs = {S,7_s}. Using, again, sym-

metry, L1 and eq. [22] we can write the objective function of S as

Us(X1, X2, ..., Xp) = Zui (Xi, Zxk> = Z<xi,ﬂi (Zxk)>

icS keN icS keN

(X))

Therefore S selects simply the sum ), ¢ x;. For simplicity denote ) x; = xs. Notice
iceS
next that any other coalition S; € 7_s selects a similar sum }  x; = xs;. Therefore the
iESj
formation of the partition zs = {S,7_g} gives rise to an [ + 1 symmetric normal form
game. Since [ is the only parameter that matters for S (given condition L1), from now
we use the notation 7' ¢ to denote any partition of the outsiders into [ coalitions;

moreover we denote zs; = {S, 7! 5}. Let x5*' be the equilibrium choice of S under zs ;
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s

and xg" the equilibrium choice of S; € nl . By symmetry xg*' = x;[]_s'l, any S; € 7' .

Denote by v, (S) the corresponding worth of S. Then

Vas, (S) = (6™ (14 1)x5™))

We thus have

vy T ey gy

n n n

I+ D)™ m((+D)x™)) (L4 1)veg (S)
n N n

where the inequality is due to the fact that ) x{ maximizes the bilinear
keN

mapping <kZka, U (keZN Xk) >; and the second equality is due to eq. [23].
€

Finally notice that &1 > 1if [ >1— 1=I(s). Hence for I > I(s) the inequality
N YN > Yrsi?) V”“ holds This completes the proof. |
To better comprehend the above result, consider the equal split allocation of the
value of the grand coalition. This allocation gives the members of S the fraction £
of v(N). By deviating from N, the members of S obtain the fraction ;5 of
((T+D)xg w((1+ 1)x5™)), where v(N) > ((1+ Dxg™, (I + 1)x5™")) as explained
above. Hence for S not to deviate it suffices that £ > lil orl>%—1as Lemma 6
showed.

To continue notice by eq. [24] that if s > n/2 then 1T s> = II_gs. So define

To={ - 25

O, if3<|Sf=s<n-1
{Hl_(ss), f1<|8|=s<?%
Consider the set of games

UT={(N,vs(S)) : foreachSc N, zs={S,z_s} with zse T(S)}
The discussion of this section implies the following.

Proposition 3 Assume L1 holds. Then each game in L{?has non-empty core.

Let us finally compare the two thresholds 7(5) and (s). Note that for s > n/2 we
have I(s) =1(s) =1; and for s<n/2 we have I(s)<I(s). Hence, in general, a
larger set of beliefs supports non-empty core when we impose L1.
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4 Conclusions

The notion of y-core is widely used in cooperative games with externalities. There
are good reasons for this. First, the scenario behind the y-core is more plausible than
the scenarios behind other concepts used in the literature, such as the & and j-cores.
The latter notions require an excessive or even unrealistic degree of pessimism: the
members of the deviant coalition believe that the outsiders will necessarily punish
their deviation, even if this is not in the best interest of the outsiders. Clearly, there
are many economic environments where this pessimism cannot be justified. On the
other hand, the y-core does not have the consistency of the recursive core: under the
latter framework, the characteristic function of a coalition is defined by computing
recursively the cores of all reduced games. Nonetheless, the y-core is easier to define
and compute in applications. Finally, the y-core scenario is dictated in some cases
by institutional arrangements which allow for the formation of one coalition only
(we refer the reader to the relevant discussion in Currarini and Marini (2003)).

The current paper analyzed various versions of the y-core for cooperative
games generated by aggregative normal form games. The latter games are often
encountered in economic applications. The contribution of the paper was two-
fold. First, it derived a result on the existence of the y-core per se. This result
relies on the assumption that the payoff of a player in the underlying normal
form game decreases in the aggregate value of all players’ strategies. In spite of
its merits, the y-core still relies on a specific conjecture of the deviant coalition.
So, in the second part of the paper we allowed a multitude of beliefs over the
reactions of the outsiders and we derived bounds on the beliefs which are
compatible with core non-emptiness.

The biggest shortcoming of our analysis is that it focuses on symmetric
players only. The extension to the non-symmetric case is not straightforward
and cannot rely on the approach used in the current paper. A more fruitful
approach might be to find conditions under which the Shapley-Bondareva
theorem is applicable, i.e., find conditions under which the cooperative game
at hand is balanced. This we leave as a future research task.

Appendix

Derivation of characteristic function [16]

In this part we provide the details of the computation of the characteristic
function of coalition S in the oligopoly market example (pages 14-16).
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Consider the objective function of S given by eq. [15]. The first-order condition
for the optimal quantity of firm i € S is

6“5(417 Q,- . 7%)

—a-c-Q-2q— ~0
9o a-c-Q-25-) ¢

res,
r#i

which by symmetry reduces to
(14+s)g=a—c—Q

Deriving similar conditions for all coalitions in 7#_s and re-arranging terms gives
us the system of equations

a—c—Q
i = S 26
qi 1+s , 1€ [ }
a—c—Q
= i 27
] 1+S] 7}681 [ }
a—c—Q
=—— 1€8§ 28
q 1ts SV 28]

Adding the left parts of all equations and doing the same for their right parts gives

a—c—Q a—c—Q
g-s2=td e d
1+s : i

from which we get
A—-1
A

1
where A =1+ 35+ > lfr—’sj Using eq. [29], the quantities in eq. [26]—[28] become
=1

Q= (a0

[29]

a-c s a—c ge—a-¢
arsn ¥ Tarsi 0 T As,a

s __
q;" =

Plugging the above quantities in eq. [15] gives us the function in eq. [16]. O
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