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Abstract: This paper analyzes cooperative games with externalities generated by
aggregative normal form games. We construct the characteristic function of a
coalition S for various coalition formation rules and we examine the corresponding
cores. We first show that the γ-core is non-empty provided each player’s payoff
decreases in the sum of all players’ strategies. We generalize this result by showing
that if S believes that the outside players form at least lðsÞ ¼ n� s� ðs� 1Þ coali-
tions, then S has no incentive to deviate from the grand coalition and the corre-
sponding core is non-empty (where n is the number of players in the game and s the
number of members of S). We finally consider the class of linear aggregative games
(Martimort and Stole 2010). In this case, if S believes that the outsiders form at leastblðsÞ ¼ n

s � 1 coalitions [whereblðsÞ � lðsÞ] a core non-emptiness result holds again.

Keywords: aggregative game, cooperative game, externalities, core
JEL Classification: C71

1 Introduction

The core is the most widely used solution concept in cooperative game theory. It
is the set of all allocations of the worth of the grand coalition that prevent any
other coalition from forming and standing alone. To compute or even define the
core, one needs to first define the characteristic function of a coalition. The
characteristic function specifies the worth a group of players can attain if they
act on their own, i.e., without cooperating with the players outside the coalition.
For a cooperative game with externalities, namely a game where the worth of a
coalition depends on the actions of the outsiders, the specification of the
characteristic function requires a prediction about the behavior of the non-
members, in particular their coalition structure.
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The literature has offered various such predictions or conjectures, each
leading to a specific notion of core. The α and β-cores (Aumann 1967) are
based on the assumption that the outsiders will try to minimize the payoff of a
coalition that deviates from the society of all players. The γ-core (Chander and
Tulkens 1997) is based on the premise that the outsiders will play individual best
replies to the deviant coalition (i.e., the outsiders form singleton coalitions); the
same approach can be followed under the additional assumption that the
deviant coalition acts as a Stackelberg leader (Currarini and Marini 2003). The
recursive core (Huang and Sjostrom 2003; Koczy 2007) is constructed under the
assumption that the members of a coalition compute their value by looking
recursively on the cores of the sub-games played among the outsiders.

Behind a cooperative game with externalities lies a normal form game where
players can transfer utilities among themselves and sign binding agreements. The
current paper focuses on cooperative games generated by aggregative normal form
games, i.e., games where the payoff of a player depends only on his own strategy
and the aggregate value of all players’ strategies. Many economic models have an
aggregative structure, such as commonpool resource games, oligopolymodels, cost
sharing games, rent seeking games, etc.1 We utilize the structure of these games in
order to define and analyze various notions of core, each depending on the con-
jectures a deviant coalition has about the partition of the outsiders. Our goal and
motivation is to provide the largest possible set of coalitional beliefs that allow the
non-emptiness of the (appropriately defined) core. The paper develops gradually,
starting with the case of singe-valued conjectures (i.e., conjectures that focus on one
partition of the outsiders) and then moving on to set-valued conjectures.

We begin with the case of γ-beliefs (Chander and Tulkens 1997), as they are
often encountered in applications:2 a coalition believes that should it deviate
from the grand coalition its opponents will stay separate. Given these beliefs, we
examine the incentive for deviation within an aggregative environment. We then
generalize the analysis by determining for each coalition a set of partitions of the
outsiders under which there is no incentive for deviation.

The paper focuses on environments with symmetric players. The results can
be summarized as follows:
1. if the payoff function of a player is decreasing in the aggregate value of all

players’ strategies and his marginal payoff is decreasing in own strategy
then the γ-core of the game is non-empty; i.e., n-player games where a

1 The literature on aggregative games is large and expanding. See, for example, Martimort and
Stole (2010) or Acemoglu and Jensen (2013) for extensive lists of references.
2 We refer the reader to the literature review that follows.
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coalition with s members believes that the outsiders form n� s singleton
coalitions have non-empty core.

2 we introduce the additional assumption that the marginal effect of a player on
another player’s payoff is decreasing in the latter’s own strategy; we show that
the cores of games where a coalition with s members believes that the out-
siders form at least lðsÞ ¼ maxfn� s� ðs� 1Þ; 1g coalitions are non-empty.

3. we consider the class of linear aggregative normal form games (Martimort and
Stole 2010); we show that the cores of games where a coalition with smembers
believes that the outsiders form at least blðsÞ ¼ maxfns � 1; 1g coalitions are
non-empty, where3 blðsÞ � lðsÞ:

Our work is related to the literature on the γ-core of cooperative games. This notion
of core was defined by Chander and Tulkens (1997) in the framework of a coalitional
economy with environmental externalities. The authors defined the γ-characteristic
function of a coalition (i.e., its payoff when the outsiders play individual best
strategies) and showed that the corresponding core is non-empty under specific
assumptions on the utility functions. Their result was strengthened by Helm (2001)
which showed the non-emptiness of the core by proving that the induced coopera-
tive game is balanced. The concept of γ-core has also been examined in oligopolistic
markets with quantity competition. Chander (2010) proved that the cooperative
oligopoly game defined by the γ-scenario is balanced and hence the corresponding
core in non-empty. Non-emptiness results are obtained also in Lardon (2001) for
oligopolies where firms operate under capacity constraints. The core existence
results can fail though when the deviant coalition presumes for itself the role of
Stackelberg leader: under this scenario, the γ-core is empty or not depending on the
nature of competition among firms in the market, as shown in Currarini and Marini
(2003). A similar conclusion holds for the case of economies with environmental
externalities: Marini (2013) shows that in an economy with Cobb-Douglas utilities
the non-emptiness of the (sequential) core depends on the relative preferences over
the environmental quality and the private good.

The papers most closely related to ours are Currarini and Marini (2003) and
Lekeas (2013). The first result of our paper, i.e., result (i), is connected to the work
of Currarini and Marini (2003) which analyzed the non-emptiness of the γ-core for
general cooperative games with externalities. Their work showed that the γ-core is
non-empty under two main assumptions: (a) the underlying normal form game
exhibits strategic complementarities and (b) the deviant coalition assumes for
itself the role of Stackelberg leader. Interestingly, their assumptions, although

3 Note that since S has s members, the number of coalitions of the outsiders cannot exceed the
number n� s (and cannot be less than 1). For this range, the inequality blðsÞ � lðsÞ holds.
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different than ours, produce a similar result. Finally, the two other results of the
current paper, i.e., results (ii)–(iii), are connected to the work of Lekeas (2013).
This paper analyzed a linear oligopoly market where firms compete in quantities.
For each coalition of firms a set of partitions of the outsiders is found that prevent
the coalition from deviating from the rest of the firms. Our work thus generalizes
this analysis by considering more general cooperative games.

The paper is organized as follows. Section 2 introduces the main setting and
discusses the case of γ-beliefs and the corresponding core. Section 3 analyzes
more general coalitional beliefs: we first present the analysis in terms of general
symmetric aggregative normal form games; we then focus on the sub-class of
linear aggregative games. Section 4 offers concluding remarks.

2 Aggregative Games and γ-Beliefs

We consider a normal form game Γ ¼ fN; ðXi;UiÞi2Ng where N ¼ f1; 2; . . . ; ng is
the set of players; Xi � R is player i’s strategy set; and Ui : X ! R is i’s payoff
function, where X is the cartesian product of the individual strategy sets. We
make the standard assumptions that Xi is compact and Uiðx1; x2; . . . ; xnÞ is
concave in argument xi and continuous in all arguments jointly. An aggregative
normal form game arises when the payoff of a player can be expressed as a
function of two elements only: his own strategy and an aggregate of the
strategies of all players. We take this aggregate to be simply the sum. Thus Γ
is an aggregative game if for each player i there is a function ui : Xi � Y ! R

such that Uiðx1; x2; . . . ; xnÞ ¼ ui xi;
P
k2N

xk

� �
, where Y � R .

We will focus on symmetric aggregative games. Hence, throughout the
paper the following condition holds:4

A0 Xi ¼ Xj; and ui xi;
X
k2N

xk
� �

¼ uj xj;
X
k2N

xk
� �

if xi ¼ xj; for any i; j:

We consider situations where players can form coalitions and sign binding
contracts. A partition of set N into disjoint subsets (coalitions) is given by
π ¼ fS1; S2; . . . ; Slg. The strategy set of coalition Si 2 π is given by the set
�i2Si Xi; and its payoff function by

uSiðx1; x2; . . . ; xnÞ ¼
X
i2Si

ui xi;
X
k2N

xk
� �

4 Since A0 holds throughout the paper, we shall not refer to it when stating our results.
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We denote by5 Γπ the normal form game that arises under partition π: The
equilibrium outcome of Γπ is denoted by6 ðxπ1 ; xπ2 ; . . . ; xπnÞ:

We are interested in the formation of the grand coalition. Denote the result-
ing partition by π� ¼ fNg: The objective function of the grand coalition is

uNðx1; x2; :::; xnÞ ¼
X
i2N

ui xi;
X
k2N

xk
� �

Denote by ðxπ�1 ; xπ
�

2 ; . . . ; xπ
�

n Þ the strategy profile the maximizes the above sum.
Then the worth of the grand coalition is

vðNÞ ¼
X
i2N

ui xπ
�

i ;
X
k2N

xπ
�

k

� �
The formation of the grand coalition is potentially blocked by the formation of
smaller coalitions. Let S � N be such a coalition, with jSj ¼ s members. Denote
by NnS the set of all non-members of S. The payoff of S depends on how the
n� s outsiders partition off into coalitions. Let ��S be the set of all partitions
that the outsiders can form. In this section we focus on a specific member of
��S, namely the partition that corresponds to the γ-scenario: S believes that, if it
deviates from the grand coalition, the outside players will stay separate. The
γ-scenario was introduced by Chander and Tulkens (1997) for economies with
environmental externalities. Under the γ-approach, if S deviates from the grand
coalition, the normal form game Γπ0S is to be played, where7 π0S ¼ fS; π0�Sg and
π0�S is the set of singleton coalitions of all players outside S.

Denote by ðxπ
0
S

1 ; x
π0S
2 ; . . . ; x

π0S
n Þ the equilibrium choices in Γπ0S . The worth of

coalition S then is

vγðSÞ ¼
X
i2S

ui x
π0S
i ;
X
k2N

x
π0S
k

� �
The resulting cooperative game is denoted by ðN; vγÞ. An allocation is a vector
ðw1;w2; :::;wnÞ satisfying

P
k2N

wk ¼ vðNÞ. The γ-core is the set of all allocations

that no coalition S can block given the γ-scenario.
We will determine conditions for non-emptiness of the γ-core under the aggre-

gative normal form structure. In some parts of the paper we will use the following:

5 The normal form game Γ corresponds to the case where π ¼ ff1g; f2g; . . . ; fngg.
6 We express this outcome in terms of individual players’ strategies in order to economize on
the notation.
7 We use subscript S to keep track of the fact that we analyze the game form the viewpoint of
deviant coalition S.
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A1 ui xi;
X
k2N

xk
� �

is continuously differentiable in xi and in
X
k2N

xk:

A2 ui xi;
X
k2N

xk
� �

is decreasing in
X
k2N

xk:

Numerous economic models satisfy condition A2, such as rent seeking games,
oligopoly games, common pool resource games, cost or surplus sharing games,
etc. Consider, for example, a market where firms compete in quantities. The set
of firms is N. The firms produce a homogeneous product. Firm i produces

quantity qi. The market price is given by the price function p
P
k2N

qk
� �

, where

p0
�P

k2N
qk

�
<0: The cost of firm i is C qið Þ. Its payoff is

ui qi;
X
k2N

qk
� �

¼ p
X
k2N

qk
� �

qi � C qið Þ

Condition A2 holds since the price function is decreasing.

Consider now a cost-sharing game. There is a set N of agents which produce
an output of magnitude Y. The total cost of producing Y units is given by the
increasing function C Yð Þ. The payoff v of an agent is increasing in his consump-
tion of output and decreasing in his cost contribution. Agent i consumes yi units.
Consumption by all agents exhausts total output, i.e.,

P
k2N

yk ¼ Y . Assuming that

agent i’s share of the cost is δi, the utility of i is written as

ui yi;
X
k2N

yk
� �

¼ v yi; δi � C
X
k2N

yk
� �� �

Given that the cost function is increasing, condition A2 holds.
Finally, let us look on a game with multilateral environmental externalities.

Consider a set N of agents whose production activities generate negative extern-
alities affecting one another. Agent i produces a private good at quantity xi using
the quantity ei of an input. The production process is described by xi ¼ f eið Þ,
where f eið Þ is an increasing production function. The utility function of agent i is

ui ei;
X
k2N

ek
� �

¼ f eið Þ � d
X
k2N

ek
� �

where d �ð Þ is the damage function, which describes the loss of utility caused by
the aggregate use of the input. If we assume that the damage function is increas-
ing in the aggregate value of the externality then A2 is satisfied once more.
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Let us now return to our general framework. In addition to our previous
assumptions we shall also assume that the optimal strategies of the players in
Γπ0S always are in the interior of the corresponding strategy sets.

A3 x
π0S
i 2 int Xi; for all i 2 N; where int denotes the interior of a set:

We begin with two preliminary results (Lemmas 1 and 2) which hold for any
deviant coalition S.

Lemma 1 Assume A1-A3 hold and that @ui
xi;
P
k2N

xk
� �

=@xi is decreasing in the first

argument xi: Let i 2 S and j‚ S. Then x
π0S
j � x

π0S
i .

Proof Given A3 x
π0S
i and x

π0S
j satisfy respectively

@ui x
π0S
i ;
P
k2N

x
π0S
k

� �
@xi

þ
X
r2S
r� i

@ur x
π0S
r ;
P
k2N

x
π0S
k

� �
@xi

¼ 0 ½1	

@uj x
π0S
j ;
P
k2N

x
π0S
k

� �
@xj

¼ 0 ½2	

Assumption A2 implies that each term in the sum of the derivatives in eq. [1] is
negative. Hence by eq. [1] we have that

@ui x
π0S
i ;
P
k2N

x
π0S
k

� �
@xi

>0 ½3	

By assumption, the function @ui
xi;
P
k2N

xk
� �

=@xi is decreasing in the first argu-

ment xi, for any fixed
P
k2N

xk. Hence if x
π0S
i > x

π0S
j then by eq. [3] we would have

@ui x
π0S
j ;
P
k2N

x
π0S
k

� �
@xi

>0

and hence by symmetry

@uj x
π0S
j ;
P
k2N

x
π0S
k

� �
@xj

>0

which violates eq. [2]. We conclude that x
π0S
j � x

π0S
i : ■

Let us identify a well-known environment where the condition that
@ui xi;

P
k2N

xk
� �

=@xi decreases in the first argument is met. Consider the n-firm
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market described in page 5. For simplicity let
P
k2N

qk ¼ Q. Then the profit of
firm i is

ui qi;Qð Þ ¼ p Qð Þqi � C qið Þ
and thus

@ui qi;Qð Þ
@qi

¼ p Qð Þ þ p0 Qð Þqi � C0 qið Þ

The condition that @ui qi;Qð Þ=@qi decreases in the first argument qi is met if
p0 Qð Þ � C00 qið Þ � 0, which is the condition that results into a quasi-competitive
oligopoly market, i.e., a market where industry output (price) increases
(decreases) in the number of firms (see Amir and Lambson 2000).

Lemma 2 Assume the conditions of Lemma 1 hold. Let i 2 S and j‚S: Then

uj x
π0S
j ;
P
k2N

x
π0S
k

� �
� ui x

π0S
i ;
P
k2N

x
π0S
k

� �
.

Proof We have that

uj x
π0S
j ;
X
k2N

x
π0S
k

� �
¼ uj x

π0S
j ;
X
k2N
k� j

x
π0S
k þ x

π0S
j

0@ 1A � uj x
π0S
i ;
X
k2N
k� j

x
π0S
k þ x

π0S
i

0@ 1A
½because x

π0S
j optimal for j	

¼ uj
x
π0S
i ;

X
k2N

k� j;k� i

x
π0S
k þ x

π0S
i þ x

π0S
i

0@ 1A
� uj x

π0S
i ;

X
k2N

k� j;k� i

x
π0S
k þ x

π0S
j þ x

π0S
i

0@ 1A ½because of A2 and x
π0S
j � x

π0S
i 	

¼ ui x
π0S
i ;

X
k2N

k� j;k� i

x
π0S
k þ x

π0S
j þ x

π0S
i

0@ 1A ½because of A0	

¼ ui
x
π0S
i ;
X
k2N

x
π0S
k

� �
So the result is proved. ■

Proposition 1 Assume the conditions of Lemmas 1–2 hold. Then the core of N; vγ
� �

is non-empty.

Proof Given symmetry, the γ-core is non-empty if for each S
vðNÞ
n

� vγðSÞ
s

½4	
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where s is the number of players in S. By symmetry all members of S select the
same strategy; likewise, all players outside S select the same strategy too. Hence
we can write

X
i2S

ui x
π0S
i ;
X
k2N

x
π0S
k

 !
¼ sui x

π0S
i ;
X
k2N

x
π0S
k

 !
½5	

X
j2NnS

uj x
π0S
j ;
X
k2N

x
π0S
k

 !
¼ n� sð Þuj x

π0S
j ;
X
k2N

x
π0S
k

 !
½6	

We then have

v Nð Þ
n

¼

P
r2N

ur xπ
�

r ;
P
k2N

xπ
�

k

� �
n

�

P
r2N

ur x
π0S
r ;
P
k2N

x
π0S
k

� �
n

¼
sui x

π0S
i ;
P
k2N

x
π0S
k

 !
þ n� sð Þuj x

π0S
j ;
P
k2N

x
π0S
k

� �
n

½by eqs½5	 and ½6	; where i 2 S; j‚ S	

�
sþ n� sð Þui x

π0S
i ;
P
k2N

x
π0S
k

� �
n

½by Lemma 2	

¼
sui x

π0S
i ;
P
k2N

x
π0S
k

� �
s

¼ vγ Sð Þ
s

So eq. [4] holds. ■

If S deviates from the grand coalition then each member of S selects a lower
strategy than each non-member, as Lemma 1 shows. This is driven (to a large
extend) by assumption A2: acting in cooperative way, a member of S selects his
strategy by internalizing the negative impact of his choice on the other members.
As a result, the per-member payoff in S is relatively low (as a matter of fact, it is
lower than the payoff of a non-member), which prevents S from deviating.

Notice also that assumption A2 means there are positive externalities from
coalition formation. The merging of, say, S with Sk ¼ fkg would induce each
member of the new coalition S¨ Sk to select a strategy by internalizing his
negative impact on more players. Hence compared to the pre-merging situation,
each member of the new coalition would select a lower strategy. Then, this
would benefit the players outside S¨ Sk (by A2 again).
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3 Aggregative Games and Set-Valued Beliefs

We generalize the analysis of the previous section by allowing a deviant coali-
tion to have set-valued beliefs over the coalitional behavior of the outsiders. In
particular, for each coalition S we will determine a collection T �S 
 ��S with
the property that if S believes that a partition π�S 2 T �S will form, then it has no
incentive to break-off from the grand coalition.

As in the previous section, consider a candidate deviant coalition S with s
members. Define the following number

l sð Þ ¼
1; if

n
2
� s � n� 1

n� s� s� 1ð Þ; if 1 � s<
n
2

8><>: ½7	

Remark 1 Given coalition S, consider a partition of the outsiders with l coalitions,
π�S ¼ fS1; S2; � � � ; Slg. Assume l � lðsÞ: Then there is no Sj 2 π�S with jSjj> s:

Proof Clearly for s � n=2 the above holds immediately. Let next s< n=2. To
show the validity of the Remark for this case, it suffices to consider the case
where l� 1 members of π�S have one player each and one member of π�S has
s� > s players and show that such a partition cannot occur.

Indeed, the total number of players in the suggested partition is l� 1þ s�.
Since l � lðsÞ and s� > s, we have that l� 1þ s� > ðn� sÞ � ðs� 1Þ � 1þ s ¼ n� s,
i.e., the number of players in the suggested partition exceeds the number of
outsiders. ■

Given S, let �l
�S be the set of all partitions of the outsiders that have at least l

coalitions, where l 2 f1; 2; . . . ; n� sg. I.e.,

�l
�S ¼ fπ�S 2 ��S : jπ�Sj � lg

Consider a partition π�S 2 �
lðsÞ
�S , where lðsÞ is defined in eq. [7], and let

πS ¼ fS; π�Sg. Denote by ΓπS the corresponding normal form game; and denote
by ðxπS1 ; xπS2 ; . . . ; xπSn Þ the equilibrium choices in ΓπS .

Lemma 3 below extends Lemma 1 in the following sense: it shows that the
equilibrium strategy of a player in S under ΓπS is not higher than the equilibrium
strategy of any player not in S, irrespective of where this other player belongs to.
To show this, we need an assumption analogue of A3.

A4 xπSi 2 int Xi, for all i 2 N:
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Lemma 3 Assume A1–A2 and A4 hold and that
(I) @uiðxi;

P
k2N

xkÞ=@xi is decreasing in the first argument xi

(II) @uiðxi;
P
k2N

xkÞ=@xr is decreasing in the first argument xi, for any r� i

Consider a partition π�S 2 �
lðsÞ
�S and take any Sj 2 π�S. Let i 2 S and j 2 Sj. Then

xπSj � xπSi .

Proof Take a coalition Sj 2 π�S. Let jSjj ¼ sj. Since π�S 2 �
lðsÞ
�S , we have s � sj.

Let Sj be a subset of S with sj members (given symmetry we do not need to fully
specify who these members are).

Note that for i 2 S, xπSi satisfies8

@ui xπSi ;
P
k2N

xπSk

� �
@xi

þ
X
r2Sj
r� i

@ur xπSr ;
P
k2N

xπSk

� �
@xi

þ
X
r2SnSj

@ur xπSr ;
P
k2N

xπSk

� �
@xi

¼ 0 ½8	

On the other hand, for j 2 Sj, x
πS
j satisfies

@uj xπSj ;
P
k2N

xπSk

� �
@xj

þ
X
m2Sj
m� j

@um xπSm ;
P
k2N

xπSk

� �
@xj

¼ 0 ½9	

Assumption A2 implies that each term in the second sum of the derivatives in
eq. [8] is negative. Hence the sum of the first two parts in eq. [8] is positive, i.e.,

@ui xπSi ;
P
k2N

xπSk

� �
@xi

þ
X
r2Sj
r� i

@ur xπSr ;
P
k2N

xπSk

� �
@xi

>0 ½10	

Note that xπSi ¼ xπSr for r 2 S and xπSj ¼ xπSm for m 2 Sj: If x
πS
i > xπSj then conditions

(I) and (II) of the current Lemma and eq. [10] would imply that

@ui xπSj ;
P
k2N

xπSk

� �
@xi

þ
X
r2Sj
r� i

@ur xπSj ;
P
k2N

xπSk

� �
@xi

>0 ½11	

Using symmetry, the above is equivalent to

8 W.l.o.g. assume i 2 Sj.

The Core of Aggregative Cooperative Games 399



@ui xπSj ;
P
k2N

xπSk

� �
@xi

þ sj � 1
� � @ur xπSj ;

P
k2N

xπSk

� �
@xi

>0 ½12	

By symmetry again, we can use eq. [12] and write

@uj xπSj ;
P
k2N

xπSk

 !
@xj

þ sj � 1
� � @um xπSm ;

P
k2N

xπSk

 !
@xj

>0 ½13	

which violates eq. [9]. We conclude that xπSj � xπSi . Since Sj is an arbitrary
member of π�S, a similar inequality holds when we compare the strategy of a
player in S and the strategy of a player in any St 2 π�S. ■

To give an example that satisfies condition (II) of Lemma 3, we return to the
market described after Lemma 1. We have @uiðqi;QÞ=@qr ¼ p0ðQÞqi, for any r� i:
This function is decreasing in the argument qi, for any Q, since p0ðQÞ<0:

Lemma 4 Assume the conditions of Lemma 3 hold. Consider a partition π�S 2 �
lðsÞ
�S

and take any Sj 2 π�S. Let i 2 S and j 2 Sj. Then uj xπSj ;
P
k2N

xπSk

� �
� ui xπSi ;

P
k2N

xπSk

� �
:

Proof Take a coalition Sj 2 π�S. Let jSjj ¼ sj. Notice that

X
j2Sj

uj xπSj ;
X
k2N

xπSk

� �
¼
X
j2Sj

uj
xπSj ; sjx

πS
j þ

X
k2N
k‚Sj

xπSk

0@ 1A �
X
j2Sj

uj
xπSi ; sjx

πS
i þ

X
k2N
k‚Sj

xπSk

0@ 1A
where the above is due to symmetry and to the fact that the payoff of coalition Sj
is maximized when its (symmetric) members select xπSj . Symmetry, Lemma 3 and
A2 then imply that

uj
xπSj ; sjx

πS
j þ

X
k2N
k‚Sj

xπSk

0@ 1A � uj
xπSi ; sjx

πS
i þ

X
k2N
k‚Sj

xπSk

0@ 1A � uj
xπSi ; sjx

πS
j þ

X
k2N
k‚Sj

xπSk

0@ 1A
¼ ui xπSi ; sjx

πS
j þ

X
k2N
k‚Sj

xπSk

0@ 1A
as claimed. Since Sj is chosen arbitrarily from π�S we can derive a similar
conclusion regarding the comparison between S and any other St 2 π�S.

Denote by vπSðSÞ the worth of S when the outsiders form partition π�S and
thus πS ¼ fS; π�Sg.
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Lemma 5 Assume the conditions of Lemmas 3 and 4 hold. Then vðNÞ
n � vπS ðSÞ

s , for all
πS ¼ fS; π�Sg s.t. π�S 2 �

lðsÞ
�S :

Proof Let πS ¼ fS; π�Sg, for π�S 2 �
lðsÞ
�S : We then have

v Nð Þ
n

¼

P
r2N

ur xπ
�

r ;
P
k2N

xπ
�

k

� �
n

�

P
r2N

ur xπSr ;
P
k2N

xπSk

� �
n

¼
sui xπSi ;

P
k2N

xπSk

� �
þ
P

Sj2π�S

jSjjuj xπSj ;
P
k2N

xπSk

� �
n

�
sþ n� sð Þui xπSi ;

P
k2N

xπSk

� �
n

½by Lemma 4 and
X
Sj2π�S

jSjj ¼ n� s	

¼
sui xπSi ;

P
k2N

xπSk

� �
s

¼ vπS Sð Þ
s

Notice by eq. [7] that if a candidate deviant coalition S has at least n=2 members
then �

lðsÞ
�S ¼ ��S. Given this observation, define

T �S ¼
��S; if n

2 � jSj ¼ s � n� 1

�
lðsÞ
�S ; if 1 � jSj ¼ s< n

2

8<: ½14	

Denote by ðN; vπSðSÞÞ a cooperative game where the payoff of coalition S is
computed under a certain partition πS ¼ fS; π�Sg. Define the set of games

UT ¼ fðN; vπSðSÞÞ : for each S � N; πS ¼ fS; π�Sg with π�S 2 T �Sg

The above analysis implies the following result.

Proposition 2 Assume the conditions of Lemmas 3 and 4 hold. Then each game in
UT has non-empty core.

Recall that under the γ-scenario a coalition with s members believes the oppo-
nents will form n� s coalitions. For singleton coalitions, lð1Þ ¼ n� 1, i.e., as in
the γ-core scenario. For s> 1, we have that n� s> lðsÞ. Hence for s> 1, a coalition
does not deviate from the grand coalition not only when the outsiders form n� s
singleton coalitions, but also when they form fewer coalitions.

In conclusion, we can informally re-state Proposition 2 as follows:
Cooperative games that satisfy the conditions of Lemmas 3–4 and in which
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(i) singleton coalitions believe outsiders form n� 1 coalitions
(ii) coalitions with size s 2 f2; :::; n2 � 1g believe outsiders form at least lðsÞ

coalitions, have non-empty core, irrespective of the beliefs of coalitions
with size s � n=2.

The results in this section are an extension of the previous section’s results and so
is their explanation. As long as the players outside S form at least lðsÞ coalitions
then each of these coalitions has fewer members than S. This implies that the
internalization of the negative intra-coalitional externalities is more intense in S
than in any coalition of the outsiders (as in the case of γ-scenario studied in the
previous section). As a result, the strategy and the payoff per member of S are
relatively low (as Lemmas 3 and 4 show) making its deviation undesirable.

Note, finally, that in the particular cases where S has at least n=2 members,
it becomes the largest coalition irrespective of the partition of the outsiders.
Hence, in these cases the above implications (intense internalization of extern-
alities and thus low strategy and low payoff per member of S) hold no matter
how the outsiders split into coalitions. Hence S never deviates.

3.1 An Oligopoly Example

To illustrate the above via an example, consider an oligopoly market where firms
compete in quantities and produce a homogeneous product. The set of firms is
N ¼ f1; 2; . . . ; ng. The cost function of firm i is CðqiÞ ¼ cqi þ q2i =2, where qi is the
quantity of firm i and c >0. The inverse demand function is p ¼ a� Q, where p is
the price, Q ¼

P
k2N

qk and a> c: The payoff function of individual firm i is

uiðqi;QÞ ¼ ða� Q� cÞqi � q2i =2

Consider a candidate deviant coalition S and a partition πS ¼ fS; π�Sg, where
π�S ¼ fS1; S2; . . . ; Slg. Assume jSj ¼ s and jSjj ¼ sj, for Sj 2 π�S. The objective
function of S in the resulting game ΓπS is

uSjðq1; q2; . . . ; qnÞ ¼
X
i2S

ðða� Q� cÞqj � q2j =2Þ ½15	

The objective function of coalition Sj 2 π�S is

uSjðq1; q2; . . . ; qnÞ ¼
X
j2Sj

ðða� Q� cÞqj � q2j =2Þ

The maximization problems are

max
fðqiÞi2Sg

uSðq1; q2; . . . ; qnÞ
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and

max
fðqjÞj2Sjg

uSjðq1; q2; . . . ; qnÞ; for Sj 2 π�S

In Appendix A we calculate the solution of these problems and we show that the
worth of S is

vπSðSÞ
s

¼ ða� cÞ2 ð2sþ 1Þ
2Δ2ð1þ sÞ2

½16	

where Δ ¼ 1þ s
1þs þ

Pl
j¼1

sj
1þsj

:

Finally, the objective function of the grand coalition is

uNðq1; q2; . . . ; qnÞ ¼
X
r2N

ðða� Q� cÞqr � q2r=2Þ

The maximization problem the grand coalition faces is

max
fðqrÞr2Ng

uNðq1; q2; . . . ; qnÞ

By straightforward calculations we get

vðNÞ
n

¼ ða� cÞ2

2ð2nþ 1Þ

Define the function

Δ�Sðs1; s2; . . . ; slÞ;
Xl
j¼1

sj
1þ sj

where sj is defined above. Given that the players outside S form l coalitions, the
payoff of S is maximized when Δ is minimum, i.e., when Δ�Sðs1; s2; . . . ; slÞ is
minimum.

Recall that
Pl
j¼1

sj ¼ n� s (there are n� s outside players). Then the function

Δ�Sðs1; s2; . . . ; slÞ is minimized over fs1; s2; . . . ; slg if sj ¼ 1 for all j but one; say
s1 ¼ s2 ¼ . . . ¼ sl�1 ¼ 1 and sl ¼ n� s� ðl� 1Þ: Thus given that the players out-
side S form l coalitions, the payoff of S is maximized when l� 1 coalitions have
one member each and one coalition includes all the remaining players. Denote
the resulting partition of the outsiders by π�S and let πS ¼ fS; π�Sg. Then the
value of Δ�Sðs1; s2; . . . ; slÞ computed at ðs1; s2; . . . ; slÞ ¼ ð1; 1; . . . ; n� s� ðl� 1ÞÞ is

Δ�Sð1; 1; . . . ; n� s� ðl� 1ÞÞ ¼ l� 1
2

þ n� s� ðl� 1Þ
n� s� ðl� 1Þ þ 1

Denote the corresponding value of Δ by Δmin, i.e.,
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Δmin ¼ 1þ s
1þ s

þ Δ�Sð1; 1; . . . ; n� s� ðl� 1ÞÞ

¼ 1þ 2s
s

þ l� 1
2

þ n� s� ðl� 1Þ
n� s� ðl� 1Þ þ 1

Hence if the players outside S form l coalitions, the payoff of S is maximized if
the partition πS forms and

vπSðSÞ
s

¼ ða� cÞ2 ð2sþ 1Þ
2Δ2

minð1þ sÞ2
½17	

To continue, and in accordance to our previous analysis, we can discriminate
between two cases: s � n=2 and s< n=2.

Case A: s � n=2. Recall by Proposition 2 that in this case coalition S does not
deviate irrespective of the partition of the outsiders. Indeed, notice that Δmin is
increasing in l and hence vπSðSÞ is decreasing in l. Hence the worth of S is
maximized when l ¼ 1. Plugging l ¼ 1 in eq. [17] gives

vπSðSÞ
s

¼ ða� cÞ2 ð2sþ 1Þðn� sþ 1Þ2

2ðð1þ sÞðn� sÞ þ ð1þ 2sÞðn� sþ 1ÞÞ2
½18	

Using eq. [18] it is straightforward to show that

vðNÞ
n

� vπSðSÞ
s

, ζ ðn; sÞ � 0 ½19	

where ζ ðn; sÞ ¼ �2ð2sþ 1Þn2 þ ð13s2 þ 4s� 1Þn� 9s3 þ 2s2 þ 3s. Recall we are in
the case where s � n=2 (and also s< n). In this range the function ζ ðn; sÞ is positive,
as it can be easily checked. Since the worth of S is maximized at eq. [18] [for l ¼ 1]
and for this value S does not deviate, we conclude that S never deviates.

Case B: s< n=2. In this case Proposition 2 predicts that S does not deviate if the
outsiders form at least lðsÞ coalitions, where lðsÞ ¼ n� s� ðs� 1Þ. As in Case A,
Δmin is increasing in l and vπS is decreasing in l. Plugging the value l ¼ lðsÞ in
eq. [17] gives

vπSðSÞ
s

¼ ða� cÞ2 2ð2sþ 1Þ
ð2þ 4sþ nþ sn� 2s2Þ2

½20	

Using eq. [20] we have that

vðNÞ
n

� vπSðSÞ
s

, ηðn; sÞ � 0 ½21	
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where ηðn; sÞ ¼ ð1þ sÞ2n2 þ 4ð�1� sþ s2 � s3Þ þ 4sð2þ 2s� 4s2 þ s3Þ: But for
s< n=2, ηðn; sÞ � 0. Hence for all l � lðsÞ coalition S does not deviate.

3.2 Linear Aggregative Games

In this section we restrict attention to linear aggregative normal form games. This
class was introduced by Martimort and Stole (2010) and it involves aggregative
games were the payoff of player i satisfies some sort of linearity in own stategy xi
for any fixed sum of all players’ strategies. For this class of games we will identify
a new threshold on the minimum number of outside coalitions that support a non-
empty core. This new threshold is going to be (weakly) lower than9 lðsÞ.

We follow Martimort and Stole (2010) and we consider a bilinear form, i.e., a
mapping defined on two linear spaces which is linear in each argument sepa-
rately. More formally let V and W be two linear spaces. A bilinear form is a
mapping h�; �i : V �W ! R where for f ;~f 2 V, h; ~h 2 W and a scalar λ the
following hold:

h f þ ~f ; �i ¼ h f ; �i þ h~f ; �i; h�; hþ ~hi ¼ h�; hi þ h�; ~hi ½22	

hλf ; hi ¼ h f ; λhi ¼ λhf ; hi ½23	

A linear aggregative normal form game arises when the payoff of player i has the
form

ui xi;
X
k2N

xk
� �

¼ ai
X
k2N

xk
� �

þ xi; ~ui
X
k2N

xk
� �� 	

L1

where ai �ð Þ and ~ui �ð Þ are appropriately defined real-valued functions and h�; �i is
a bilinear mapping. An example satisfying L1 is a market where firms compete in
quantities under constant returns to scale. Assume the average cost in the
market is c. Then

ui qi;
Xn
k¼1

qk

 !
¼ qi p

Xn
k¼1

qk

 !
� c

 !
¼ qi~ui

Xn
k¼1

qk

 !
¼ qi; ~ui

Xn
k¼1

qk

 !* +

The next result discusses the non-emptiness of the core under a linear aggrega-
tive normal form structure. This result does not require assumption A2 (or A1). It

requires though to set ai
P
k2N

xk
� �

¼ 0, for all
P
k2N

xk.

First, define the number

9 Recall that lðsÞ is given by eq. [7].
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blðsÞ ¼ 1; if
n
2
� s � n� 1

n
s � 1; if 1 � s<

n
2

8><>: ½24	

Given coalition S recall that �l
�S is the set of all partitions of the outsiders that

have at least l coalitions.

Lemma 6 Assume L1 holds with aið
P
k2N

xkÞ ¼ 0, for all
P
k2N

xk. Then
vðNÞ
n � vπS ðSÞ

s , for

all πS ¼ fS; π�Sg s.t. π�S 2 �
blðsÞ
�S :

Proof We first compute the worth of the grand coalition using the fact that
player symmetry implies that ~uið

P
k2N

xkÞ ¼ ~ujð
P
k2N

xkÞ, for any i; j. Hence using

symmetry, L1 and eq. [22] the objective function of the grand coalition can be
written as

uN x1; x2; . . . ; xnð Þ ¼
X
i2N

ui xi;
X
k2N

xk
� �

¼
X
i2N

xi; ~ui
X
k2N

xk
� �� 	

¼
X
i2N

xi; ~ui
X
k2N

xk
� �* +

I.e., the grand coalition simply selects the value of the sum
P
i2N

xi.

Consider next a deviant coalition S with s members. Take a partition
π�S ¼ fS1; S2; . . . ; Slg of the outsiders and let πS ¼ fS; π�Sg. Using, again, sym-
metry, L1 and eq. [22] we can write the objective function of S as

uS x1; x2; . . . ; xnð Þ ¼
X
i2S

ui xi;
X
k2N

xk
� �

¼
X
i2S

xi; ~ui
X
k2N

xk
� �� 	

¼
X
i2S

xi; ~ui
X
k2N

xk
� �* +

Therefore S selects simply the sum
P

i2S xi. For simplicity denote
P
i2S

xi ¼ xS: Notice

next that any other coalition Sj 2 π�S selects a similar sum
P
i2Sj

xj ¼ xSj . Therefore the

formation of the partition πS ¼ fS; π�Sg gives rise to an lþ 1 symmetric normal form
game. Since l is the only parameter that matters for S (given condition L1), from now

we use the notation πl�S to denote any partition of the outsiders into l coalitions;

moreoverwe denote πS;l ¼ fS; πl�Sg. Let x
πS;l
S be the equilibrium choice of Sunder πS;l;
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and xπS;lSj
the equilibrium choice of Sj 2 πl�S. By symmetry xπS;lS ¼ xπS;lSj

, any Sj 2 πl�S.

Denote by vπS;lðSÞ the corresponding worth of S. Then

vπS;lðSÞ ¼ hxπS;lS ; ~uiððlþ 1ÞxπS;lS Þi

We thus have

vðNÞ
n

¼
h
P
i2N

xπ
�

i ; ~uið
P
k2N

xπ
�

k Þi

n
� hðlþ 1ÞxπS;lS ; ~uiððlþ 1ÞxπS;lS Þi

n

¼ ðlþ 1ÞhxπS;lS ; ~uiððlþ 1ÞxπS;lS Þi
n

¼
ðlþ 1ÞvπS;lðSÞ

n

where the inequality is due to the fact that
P
k2N

xπ
�

k maximizes the bilinear

mapping
D P

k2N
xk; ~ui

P
k2N

xk
� �E

; and the second equality is due to eq. [23].

Finally notice that lþ1
n � 1

s if l � n
s � 1;blðsÞ. Hence for l �blðsÞ the inequality

vðNÞ
n � vπS;l ðSÞ

s holds. This completes the proof. ■

To better comprehend the above result, consider the equal split allocation of the
value of the grand coalition. This allocation gives the members of S the fraction s

n

of vðNÞ. By deviating from N, the members of S obtain the fraction 1
lþ1 of

hðlþ 1ÞxπS;lS ; ~uiððlþ 1ÞxπS;lS Þi, where vðNÞ � hðlþ 1ÞxπS;lS ; ~uiððlþ 1ÞxπS;lS Þi as explained
above. Hence for S not to deviate it suffices that s

n � 1
lþ1 or l � n

s � 1 as Lemma 6
showed.

To continue notice by eq. [24] that if s � n=2 then �
blðsÞ
�S ¼ ��S. So define

bT�S ¼
��S; if n

2 � jSj ¼ s � n� 1

�
blðsÞ
�S ; if 1 � jSj ¼ s< n

2

8<: ½25	

Consider the set of games

UTb¼ fðN; vπSðSÞÞ : for each S � N ; πS ¼ fS; π�Sg with π�S 2 bT ðSÞg

The discussion of this section implies the following.

Proposition 3 Assume L1 holds. Then each game in UTbhas non-empty core.

Let us finally compare the two thresholds blðsÞ and lðsÞ. Note that for s � n=2 we
have blðsÞ ¼ lðsÞ ¼ 1; and for s< n=2 we have blðsÞ< lðsÞ. Hence, in general, a
larger set of beliefs supports non-empty core when we impose L1.
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4 Conclusions

The notion of γ-core is widely used in cooperative games with externalities. There
are good reasons for this. First, the scenario behind the γ-core ismore plausible than
the scenarios behind other concepts used in the literature, such as the α and β-cores.
The latter notions require an excessive or even unrealistic degree of pessimism: the
members of the deviant coalition believe that the outsiders will necessarily punish
their deviation, even if this is not in the best interest of the outsiders. Clearly, there
are many economic environments where this pessimism cannot be justified. On the
other hand, the γ-core does not have the consistency of the recursive core: under the
latter framework, the characteristic function of a coalition is defined by computing
recursively the cores of all reduced games. Nonetheless, the γ-core is easier to define
and compute in applications. Finally, the γ-core scenario is dictated in some cases
by institutional arrangements which allow for the formation of one coalition only
(we refer the reader to the relevant discussion in Currarini and Marini (2003)).

The current paper analyzed various versions of the γ-core for cooperative
games generated by aggregative normal form games. The latter games are often
encountered in economic applications. The contribution of the paper was two-
fold. First, it derived a result on the existence of the γ-core per se. This result
relies on the assumption that the payoff of a player in the underlying normal
form game decreases in the aggregate value of all players’ strategies. In spite of
its merits, the γ-core still relies on a specific conjecture of the deviant coalition.
So, in the second part of the paper we allowed a multitude of beliefs over the
reactions of the outsiders and we derived bounds on the beliefs which are
compatible with core non-emptiness.

The biggest shortcoming of our analysis is that it focuses on symmetric
players only. The extension to the non-symmetric case is not straightforward
and cannot rely on the approach used in the current paper. A more fruitful
approach might be to find conditions under which the Shapley-Bondareva
theorem is applicable, i.e., find conditions under which the cooperative game
at hand is balanced. This we leave as a future research task.

Appendix

Derivation of characteristic function [16]

In this part we provide the details of the computation of the characteristic
function of coalition S in the oligopoly market example (pages 14–16).

408 G. Stamatopoulos



Consider the objective function of S given by eq. [15]. The first-order condition
for the optimal quantity of firm i 2 S is

@uSðq1; q2; . . . ; qnÞ
@qi

¼ a� c� Q� 2qi �
X
r2S
r� i

qr ¼ 0

which by symmetry reduces to

ð1þ sÞqi ¼ a� c� Q

Deriving similar conditions for all coalitions in π�S and re-arranging terms gives
us the system of equations

qi ¼
a� c� Q

1þ s
; i 2 S ½26	

qj ¼
a� c� Q
1þ sj

; j 2 Sj

..

.

½27	

ql ¼
a� c� Q
1þ sl

; l 2 Sl ½28	

Adding the left parts of all equations and doing the same for their right parts gives

Q ¼ s
a� c� Q

1þ s
þ
Xl
j¼1

sj
a� c� Q
1þ sj

from which we get

Q ¼ a� cð ÞΔ� 1
Δ

½29	

where Δ ¼ 1þ s
1þs þ

Pl
j¼1

sj
1þsj

. Using eq. [29], the quantities in eq. [26]—[28] become

qπSi ¼ a� c
ð1þ sÞΔ ; qπSj ¼ a� c

ð1þ sjÞΔ
; . . . ; qπSm ¼ a� c

ð1þ smÞΔ

Plugging the above quantities in eq. [15] gives us the function in eq. [16]. □
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