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Abstract: Allocating risk properly to subunits is crucial for performance evalua-
tion and internal capital allocation of portfolios held by banks, insurance
companies, investment funds and other entities subject to financial risk. We
show that by using coherent measures of risk it is impossible to allocate risk
satisfying simultaneously the natural game theoretical requirements of Core
Compatibility and Strong Monotonicity. To obtain the result we characterize
the Shapley value on the class of totally balanced games and also on the class
of exact games as being the only risk allocation method satisfying Strong
Monotonicity, Equal Treatment Property and Efficiency. Moreover, we clarify
and interpret the related game theoretical requirements that have appeared in
the literature so far and have been applied to risk allocation.
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1 Introduction

If a firm (financial enterprise, bank, insurance company, investment fund,
portfolio, etc.) consists of divisions (individuals, products, subportfolios, risk
factors, etc.), not only is it important to measure properly the risk of the firm, but
also to allocate the risk capital of the firm to the divisions. From now on we refer
to this problem as risk allocation problem and use the terms firm and divisions
while keeping all the possible applications in mind.
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In terms of measuring risk, we would like to model Expected Shortfall
(Acerbi and Tasche 2002), which is promoted by the Basel Committee on
Banking Supervision (BCoBS 2014) as the future industry standard, replacing
Value-at-Risk. In this setting, a measure of risk assigns a real number to the
future profit and loss random variable from the perspective of present. In order
to keep the paper as simple as possible and to reach readers who are not familiar
with the advanced mathematics of finance, we work with a finite probability
space, where the portfolios of divisions are represented by realization vectors.
We emphasize that assuming a finite probability space is not an infringement of
generality, all of our results hold when the portfolios are described by bounded
random variables on a measure space. A coherent measure of risk (Artzner et al.
1999) satisfies four natural properties (see Definition 2.1). A prominent example
is the k-Expected Shortfall (Acerbi and Tasche 2002), which is the average of the
worst 100k percent of the losses for 0 < k < 1. On the other hand, Value-at-Risk
is not a coherent measure of risk (Artzner et al. 1999).

When using a coherent measure of risk, the risk of the portfolio of the firm is at
most as much as the sum of the risks of the portfolios of the divisions. Thus there is
usually a diversification benefit, which should be allocated somehow. Risk (capital)
allocation games (Denault 2001) are transferable utility (TU) cooperative games
defined to model such risk allocation. In a TU game using the values (the negative
of the risk) of the coalitions (subsets) of the players (divisions) a solution concept (a
risk allocation rule) determines how to share the value of the grand coalition (the
firm). An allocation is in the core if the total value of the grand coalition is allocated
(Efficiency) in such a way that no coalition of the players fairs better by acting
alone. A totally balanced game has a non-empty core in each of its subgames,
where a subgame is obtained by considering only a subset of the players.

Cso6ka, Herings, and Koczy (2009) showed that the class of risk allocation
games (using coherent measures of risk) coincides with the class of totally
balanced games. That is, on the one hand, for any risk allocation game there is
a core allocation, a stable way to allocate risk using an allocation rule satisfying
Core Compatibility (CC). On the other hand, any totally balanced game can be
given by a properly chosen risk allocation game. Csoka and Herings (2014)
defined risk allocation games when divisions have illiquid portfolios and show
that the class of risk allocation games with liquidity also coincides with the class
of totally balanced games. Csdka, Herings, and Koczy (2009) also proved that the
class of risk allocation games with no aggregate uncertainty equals the class of
exact games (Schmeidler 1972), where for each coalition there is a core allocation
allocating the stand-alone value of the coalition.

In addition to CC, in this paper we consider two further fairness properties
of risk capital allocation rules: Equal Treatment Property (ETP) and Strong
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Monotonicity (SM). The motivation comes from Young’s axiomatization (Young
1985) of the Shapley value (Shapley 1953), where he showed that on the class of
all games the Shapley value is the only solution concept satisfying Efficiency,
ETP and SM. It is well-known that the Shapley value does not satisfy CC in
general, hence the properties of CC, ETP and SM cannot be satisfied simulta-
neously on the class of all games.

However, the validity of an axiomatization of a solution can vary from
subclass to subclass, e.g. Shapley’s axiomatization of the Shapley value (see
Section 4) is valid on the class of monotone games but not valid on the class of
strictly monotone games. In the case of risk allocation games (in particular
totally balanced games or exact games) we generalize Young’s result, and
show that his axiomatization remains valid on the classes of totally balanced
and exact games. We will prove (Theorem 3.4) that on the class of risk allocation
games there is no risk allocation rule satisfying CC, ETP and SM at the same
time.

We also interpret the requirements in the risk allocation setting as follows.
CC is satisfied if all the risk of the firm is allocated in such a way that no group
of the divisions can improve by allocating only the risk of the group, the risk
allocation can rightly be seen stable. The blocking interpretations of the core can
be questioned by saying that divisions cannot really leave the firm, see also
Homburg and Scherpereel (2008). However, CC can also be viewed in an other
way. The allocated risk to each coalition should be at least as much as the risk
increment the coalition causes by joining the complementary coalition. ETP
ensures that if two divisions have the same stand-alone risk and also they
contribute the same risk to all the subsets of divisions not containing them,
then they are treated equally, that is, the same risk capital is allocated to them.
In other words, ETP states that if two divisions are not distinguishable from the
point of view of risk, then they must be evaluated equally. SM requires that if a
division weakly reduces its stand-alone risk and also its risk contribution to all
the subsets of the other divisions (hence weakly increases its relative perfor-
mance), then its allocated capital should not increase. Therefore, SM is closely
related to Incentive Compatibility.

We will also prove (Proposition 3.5) that on the class of totally balanced
(exact) games if a risk allocation rule meets CC and SM together, then there does
exist a risk allocation rule which satisfies CC, SM and ETP together. However, we
know from Theorem 3.4 that these three properties cannot hold at the same time,
hence we find two (independent) requirements to blame for the impossibility
result: CC and SM, one has to give up at least one of them.

Finally, in Example 3.8 we will illustrate that our impossibility result
(Theorem 3.7) can be made stronger, because in all practical applications SM
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can be replaced by the following requirement: if a division’s stand-alone per-
formance increases, then its allocated risk should not increase. That is, in
practice there does not exist a risk allocation rule which satisfies CC and
Incentive Compatibility at the same time.

The paper is organized as follows. In the following section we introduce the
notations and notions for transferable utility cooperative games in general and
risk allocations games in particular. In Section 3 we present our impossibility
result. In Section 4 we show how our impossibility result is related to other
results in the literature. The last section concludes.

2 Risk Allocation Games

We will use the following notations and notions: |N| is for the cardinality of a
finite set N and 2V is the power set of N.

Let N denote the finite set of players. A cooperative game with transferable
utility (game, for short) is a function v: 2¥ — R such that v(§)) = 0. The class of
games with player set N is denoted by G". For a game v € G" and a coalition
C € 2, a subgame v, is obtained by restricting v to the subsets of C.

An allocation is a vector x € RN, where x; is the payoff of player i € N. An
allocation x yields payoff x(C) = >, .- X; to a coalition C € 2V. An allocation
x € RY is called Efficient, if x(N) = v(N) and Coalitionally Rational if x(C) > v(C)
for all C € 2. The core (Gillies 1959) is the set of Efficient and Coalitionally
Rational allocations. The core of game v is denoted by core(v).

Let veGY and i€ N be a game and a player, and for all CC N let
Vi(C) = v(Cu{i}) — v(C) denote player i’s marginal contribution to coalition C
in game v. Then v} is called player i’s marginal contribution function in game v.
Moreover, players i and j are equivalent in game v, i~'j, if for every C C N such
that i,j¢ C we have that v;(C) = v;(C).

A game is totally balanced, if each of its subgame has a non-empty core. Let
g{% denote the class of totally balanced games with player set N.

An interesting subclass of totally balanced games is the class of exact games
(Schmeidler 1972). A game v is exact, if for each coalition C there exists an
allocation x € core(v) such that x(C) = v(C). Let GY denote the class of exact
games with player set N.

Throughout the paper we consider single-valued solutions. The
function y: A — RN, defined on A C GV, is called solution on the class of
games A. In the context of risk allocation, we refer to solutions as risk allocation
rules.
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For any game v € G" the Shapley solution ¢ is given by

|CI'(INAC] = 1)!

IN]! ieN,

$i(v) = > V()

CcENN(i)

where ¢;(v) is also called the Shapley value (Shapley 1953) of player i in
game V.

To define risk allocation games we use the setup of Cséka, Herings, and
Koczy (2009). Let S denote the finite number of states of nature and consider the
set RS of realization vectors. State of nature s occurs with probability ps>0,
where zﬁjl ps = 1. The vector X € RS represents a division’s possible profit and
loss realizations. The amount X; is the division’s payoff in state of nature s.
Negative values of X; correspond to losses.

A measure of risk is a function p : RS — R measuring the risk of a realization
vector.

Definition 2.1 A function p : RS — R is called a coherent measure of risk (Artzner

et al. 1999) if it satisfies the following axioms:

1.  Monotonicity: for all X,Y € R® such that Y > X, we have p(Y)

2. Subadditivity: for all X,Y € R®, we have p(X + Y) < p(X) + p(Y).

3. Positive homogeneity: for all X € RS and h € R.., we have p(hX) = hp(X).

4. Translation invariance: for all X € R and a € R, we have p(X + a1¥) =
p(X) —a.

IN

p(X).

N D

For an interpretation of the axioms see Acerbi and Scandolo (2008), who
justify them for incorporating liquidity risk as well. A prominent example for a
coherent measure of risk is the k-Expected Shortfall (Acerbi and Tasche 2002),
which is the average of the worst 100k percent of the losses for 0 < k < 1. Note
that for k = 0 we get the maximal loss, which is then also a coherent measure of
risk.

Let the matrix of realization vectors corresponding to the divisions be given
by X € RSV, and let X; denote column i of X, the realization vector of division i.
For a coalition of divisions C € 2V, let X¢ = Y ;. X.i.

A risk environment is a tuple (N, S,p, X, p), where N is the set of divisions, S
indicates the number of states of nature, p = (p, ..., ps) is the vector of realiza-
tion probabilities of the various states, X is the matrix of realization vectors, and
p is a coherent measure of risk.

A risk allocation game assigns to each coalition of divisions the negative of
the risk the coalition runs in its aggregate portfolio.
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Definition 2.2 Given the risk environment (N, S, p, X, p), a risk allocation game is a
game v € G, where

v(C) = —p(X¢) for all € € 2V\ {0} , [1)
and v(()) = 0.

Let gf’ denote the family of risk allocation games with player set N. In such
games, according to eq. [1], the larger the risk of any subset of divisions, the
lower its value. We illustrate the definition of the risk allocation game by the
following example.

Example 2.3 Consider the following risk environment (N, S,p, X,p). We have 3
divisions, 7 states of nature with equal probability of occurrence. Risk is calcu-
lated by using the matrix of realization vectors in the first three columns of
Table 1 and the maximum loss risk measure.

Table 1: The matrix of realization vectors of a risk environment and the resulting totally
balanced risk allocation game v using the maximum loss as a measure of risk.

S\Xc Xy X2y X3y X2y X3y X231 X123
1 0 1 1 1 1 2

2 1 0 1 1 2 1 2
3 1 1 0 2 1 1 2
4 1/2 1/2 1 1 3/2 3/2 2
5 0 1 0 1 0 1 1
6 1 1/2 1/2 3/2 3/2 1 2
7 0 1 0 1 0 1 1
() 0 0 -1 0 -1 -1
v(C) 0 0 0 1 0 1 1

Note that for all Ce2V\{})} the value function is given by
v(C) = —p(Xc) = minscs X s.

If the rows of a matrix of realization vectors sum up to the same number,
then there is no aggregate uncertainty. Formally: a matrix of realization vectors
X € R has no aggregate uncertainty, if there exists a number « € R such that
Xy = a15. Let G denote the family of risk allocation games with no aggregate

mau
uncertainty and with player set N.

Theorem 2.4 (Csbka, Herings, and Kbczy 2009; Cséka and Herings 2014) The
class of risk allocation games with or without liquidity coincides with the class of
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N — G, Moreover, the class of risk allocation
games with no aggregate uncertainty equals the class of exact games, that
15, Grnaw = e -

Note that by Theorem 2.4 all risk allocation games with or without liquidity
are totally balanced (also the one in Example 2.3), and if there is no aggregate
uncertainty, then all of them are exact. Moreover, for any totally balanced
(exact) game there is a risk environment including a coherent measure of risk
(with no aggregate uncertainty) that generates the game using eq. [1].

A risk allocation rule shows how to share the risk of the firm among
the divisions. Since the situation can be converted into a TU game, a risk
allocation rule can also be a solution in cooperative game theory, such as e.g.
the Shapley solution. We illustrate the marginal contribution function and the
fact that the Shapley solution is not always in the core by continuing Example
2.3 (Table 2).

totally balanced games, that is, gV

Table 2: The marginal contribution functions of players 1, 2 and 3.

C 0 {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v(C) 0 0 0 0 1 0 1 1
v/(C) 0 0 1 0 0 0 0
v (C) 0 1 0 1 0 1 0
v(C) 0 0 1 0 0 0 0

Example 2.5 Consider the risk allocation game in Example 2.3.

Note that player 2 has a higher marginal contribution than the others, which is
also expressed by the Shapley value, since ¢(v) = (1/6,2/3,1/6). However,
coalition {1,2} is a blocking coalition for the Shapley solution in game v, since
v({1,2}) =1>5/6 =1/6 +2/3, that is, ¢(v) ¢core(v).

3 The Impossibility Result
Next, we introduce the four basic properties (axioms) that we focus on.
Definition 3.1 The solution y on subclass A C gN satisfies

- Core Compatibility (CC) if for each v € A, we have y(v) € core(v),
- Efficiency if for each v € A, we have ) y;(v) = v(N),
icN
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- Equal Treatment Property (ETP) if for allv € A and i,j € N such that i~"j, we

have y;(v) = '//j(V):
- Strong Monotonicity (SM) if for all v,w € A and i € N such that v < wj, we

have y;(v) < y;(w).

The financial interpretations of the requirements are as follows. CC is satisfied if
the risk allocation rule results in a core allocation, that is, all the risk of the firm
is allocated in such a way that no group of the divisions can fair better by
allocating only the risk of the group. A core compatible risk allocation can
rightly be viewed stable. Notice that for a Coalitionally Rational allocation x
we have that x(N\C) > v(N\C) for all C € 2", which, together with Efficiency
imply that x(C) < v(N) — v(N\C) for all C € 2V. That is, in a core allocation the
value (“diversification gain”) allocated to each coalition can be at most as much
as its contribution to the complementary coalition. To put it differently, the
allocated risk to each coalition should be at least as much as the risk increment
the coalition causes by joining the complementary coalition.

Efficiency is implied by CC, since it requires that all the risk of the firm
should be allocated to the divisions.

ETP makes sure that if two divisions have the same stand-alone risk and
also they contribute the same risk to all the subsets of divisions not containing
them, then they are treated equally, that is, the same risk capital is allocated to
them. In other words, if two divisions are the same from the viewpoint of risk,
then by ETP the same risk is assigned to both.

SM requires that if a division weakly reduces its stand-alone risk and also its
risk contribution to all the subsets of the other divisions, hence weakly increases
its relative performance, then its allocated capital should not increase. Thus as a
kind of Incentive Compatibility notion, weakly better relative performance is
weakly rewarded. Note that it follows from SM that for any v,w € A, i € N such
that v; = w}, we have y;(v) = y;(w) (called Marginality).

Theorem 3.2 (Theorem 2, Young 1985). Let w be a solution on the class of all
games. Then solution y satisfies Efficiency, ETP and SM (Marginality) if and only if
w = ¢, that is, if and only if it is the Shapley solution.

Note that risk allocation games form a proper subset of all games, since they are
always totally balanced. In the following, we prove a Theorem 3.2 type result on
the classes of totally balanced and exact games.

Theorem 3.3 Let y be a solution on the class of totally balanced (exact) games.
Then solution y satisfies Efficiency, ETP and SM (Marginality) if and only if y = ¢,
that is, if and only if it is the Shapley solution.
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Proof If: See e.g. Young (1985).

Only if: Let ur denote the unanimity game on coalition T, that is, for all C C N:
1, fCOT
ur(€) = { 2

0 otherwise”

Next, we generalize Theorem 3.2 for such classes of games where if a game v
is in the class, then for all >0 and coalition T we have that v + aur is also in
the class. Notice that the class of totally balanced (exact) games is such class of
games, since we get the required core allocations by distributing a among the
members of coalition T in a proper way.

Let v be a totally balanced (exact) game and let us decompose it to the
unique sum of unanimity games such as v =73 ,-yarur. Moreover, let
a™ =maxrcy ar, V- =™ Y reyUr, and vg =vF —v. -

Notice that v* is a totally balanced (exact) game and in v4 = > ren Brur we
have that gy > 0 for all T C N. For each game w define the index I (w) as
follows: I(w) = [{yp#0 :w = > 7y yrur}|-

The proof goes by induction on I(v,).

If I(v4) = O, then v = v*, all players are equivalent in game v, so Efficiency
and ETP imply that solution y is well-defined (unique) for game v.

Let k be an integer such that 0< k< 2" — 1. Assume that for each totally
balanced (exact) game w such that I(wy) < k, w(w) is well-defined. Then, let v
be a totally balanced (exact) game such that I(v;) = k + 1. Consider the decom-
position vg =Y oy fBrur, that is, v=v* =3 .y prur, where g, >0 for all
T CN. . R

First, if it exists, take any player i for which there exists T C N, f>0 such
that i¢T. Let vk = v + frur. Notice that since ;>0 we have that is totally
balanced (exact). Moreover, I(v€) = k and by the induction hypothesis y(v¥) is
well-defined. Since v, = (v + frur);, SM (Marginality) implies that y;(v) = y;(v¥).

Second, if they exist, take the remaining players, that is, take all i such that
ie TCN for all T C N where f;>0. These players are equivalent in v (since
they are equivalent in all games fur, S >0), so by ETP they get the same value.

Finally, by Efficiency, solution y is well-defined for game v.

Since the Shapley solution satisfies Efficiency, ETP and SM (Marginality)
and y is well-defined (unique) using these properties, we have y = ¢. O

Using Theorem 3.3 we can state the following.

Theorem 3.4 There is no risk allocation rule meeting the properties of CC, ETP
and SM (Marginality) at the same time.
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Proof Theorem 3.3 is characterizing the Shapley value as being the only risk
allocation rule satisfying Efficiency, ETP and SM (Marginality) on the class of
risk allocation games with or without liquidity (with no aggregate uncertainty),
which, by Theorem 2.4 coincides with the class of totally balanced (exact)
games. By Example 2.5 the Shapley value is not always in the core for totally
balanced games. Moreover, Rabie (1981) showed by an example that for at least
five players the Shapley value is not in the core for exact games. O

So far we have established that the Shapley value is the only risk allocation rule
satisfying Efficiency, ETP and SM (Marginality) on the class of risk allocation
games with or without liquidity (with or without aggregate uncertainty), but it
does not satisfy CC in general, hence there is no hope to satisfy CC, ETP and SM
(Marginality) at the same time. Next, we show that Theorem 3.4 can be refined
using the following proposition.

Proposition 3.5 Suppose that y is a solution satisfying CC and SM on the class of
totally balanced (exact) games. Then there exists a solution y on the class of
totally balanced (exact) games which satisfies CC, SM and also meets ETP.

Proof For all v € G (v € GY) and player i € N let

1,7/ i Z v o 7r R
neH
where II(N) is the class of permutations on set N.

Then it is easy to see that for each 7 € II(N) game v o x is a totally balanced
(exact) game, and v; > wj if and only if (vo 77:);0 > (wo 77:) Therefore i also
meets CC and SM.

Take a game v € gﬁg (ve gleV ) such that players i and j are equivalent in game v.
Let 7;; € II(N) be the permutation such that z;;(k) = k if k € N\{i,j} and z;(i) = j.
Then for each permutation = € II(N) we have that v ox o mj = v o w. Therefore
ZIEH(N) y(vo ”)n(i) = ZEEH(N) y(vo 7[)7:(]‘)‘ o

x(i)*

Thus ETP is not independent from CC and SM on the class of totally balanced
(exact) games.

Remark 3.6 Notice that Proposition 3.5 can be (straightforwardly) generalized to
the case where CC is replaced by Efficiency, or SM is replaced either by
Marginality or by Coalitional Monotonicity (see Young 1985). Moreover, the
domain of axiomatization can be any class of games which is closed under
permutations. The relationship among the above mentioned concepts of
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monotonicity and CC was also examined by Young (1985) and Housman and
Clark (1998).
Using Proposition 3.5 we have the following theorem.

Theorem 3.7 There is no risk allocation rule satisfying the requirements of CC and
SM (Marginality) at the same time.

Proof Assume that there is a risk allocation rule meeting the requirements of CC
and SM (Marginality) at the same time. Then by Proposition 3.5 there exists a
solution i on the class of totally balanced (exact) games which satisfies CC, SM
and also satisfies ETP, contradicting Theorem 3.4. O

The following example demonstrates that in practice SM can be replaced by
the following requirement: if a divisions’ stand-alone (reported) performance
increases, then its allocated risk should not increase. That is, in practice SM can
be replaced by Incentive Compatibility.

Example 3.8 Consider the risk environments (N,S,p,X,p) and (N,S,p,Y,p),
where S = {s,...,519}, N = {1,2,3,4,5}, p is the uniform distribution, p is the
maximal loss risk measure, and X is as in Table 3, Y is the same as X except for

Table 3: The matrix X in Example 3.8.

Xw X2y X3y X Xy
S1 0 100 0 100 100
S 100 100 3/2 100 3/2
3 1 1 1 100 100
Sy 0 100 0 100
Ss 0 0 100 100 0
Se 3 100 3 3 100
S7 0 100 3/2 100 3/2
Sg 0 100 100 0 0
Sg 100 0 0 0 100
S10 100 0 3/2 100 3/2
Su 100 3 100 3 3
Sp 100 100 3/2 0 3/2
S13 3 0 3 3 100
S, 0 0 3 100 0
S15 2 5 100 3 2
S16 3 100 3 3 0
S17 100 3 0 3 3
S1s 3 0 0 6 3
S19 0 4 2 7 1
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division 2, where at state sy9 it performs worse or reports worse performance
by 3, that is, Ypy = X5 — (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3) .

Let the risk allocation games w and v be generated by risk environments
(N,S,p,X,p) and (N,S,p,Y,p), respectively. It is easy to see that we get the
games by Young (1985, Theorem 1, p. 69), where core(w) = (3,0,0,6,3) and
core(v) = (0,1,2,7,1). Moreover, Y, <X{;, thus in this case division 2 can
outsmart any risk allocation method satisfying CC by performing worse or
reporting less profit (like in Y), because then it gets 1 instead of 0. In other
words there is no risk allocation rule satisfying CC and Incentive Compatibility.

4 Relations to Other Axiomatic Approaches

Other axiomatic approaches in the literature related to our work will be dis-
cussed below.

4.1 Denault (2001)

Denault (2001) considers (a version of) Shapley’s axiomatization of the Shapley
value (Shapley 1953), and concludes that there is no relevant risk allocation rule
which satisfies CC, Symmetry, Dummy Player Property and Additivity.

By Symmetry Denault (2001) means ETP, which is a bit misleading, since
Symmetry means something different: A solution y meets Symmetry if every
game v € G and permutation 7 on N such that v = vor, we have that for each
player i € N, y;(v) = y,; (v) (see Peleg and Sudhdélter 2007).

It is worth noticing that the av = v o zxioms ETP and Symmetry are not related to
each other in general, but for totally balanced games Symmetry is stronger than ETP.

Furthermore, a solution y satisfies the Dummy Player Property if every game
ve ' and player i € N such that vi(S) =¢ for all SC N\{i}, we have
w;(v) = ¢;. This axiom is stronger than the related Shapley’s axiom (see Axiom
2 and Lemma 1 in Shapley 1953).

A solution y meets Additivity if for all games v,we G¥ we have
w(v+w) =y(v) + w(w). Considering risk allocation games it is very difficult
to interpret this axiom (there is a similar problem in regression games, for more
details see Pintér 2011). The problem is that while it is reasonable to add up the
matrices of realization vectors of two risk allocation games, the risk allocation
game generated by the sum of two risk environments is typically not the sum of
the two risk allocation games generated by the two risk environments. Actually,
Additivity (on environments) only has a bite if the portfolios for each coalition in
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the games to be added are comonotonic, that is, they are a positive function of
the same random variable. Therefore, in our opinion Shapley’s axiomatization of
the Shapley value does not fit with the risk allocation problem.

Moreover, Denault (2001) does not prove that Shapley’s axiomatization is
true on the class of risk allocation games. This is a problem because even if an
axiomatization holds on the whole class of games it does not mean that the
axiomatization holds on a subclass of games. E.g. Shapley’s axiomatization does
not hold on the class of strictly monotone games, where e.g. the egalitarian
solution, where the value of the grand coalition is divided equally among the
players, also satisfies Shapley’s axioms. To the best of our knowledge the
problem of whether Shapley’s axioms characterize the Shapley value on the
class of risk allocation games is open.

What is also problematic is that Denault (2001) is imposing very strict
necessary conditions for the Shapley value to be in the core, which are not
sufficient. In fact, we are not aware of any necessary and sufficient conditions
for the Shapley value to be in the core.

To sum up, Denault’s conclusion on a proper risk allocation method is only
partially verified, so it is worth to examine the problem further.

4.2 Other Related Papers

Drehmann and Tarashev (2013) also consider Shapley’s axiomatization of the
Shapley value for systemic risk allocation games but it has the same short-
comings as Denault (2001) (the axiomatization is not proved and additivity is not
so natural to require) and they even interpret Additivity as Efficiency.

Valdez and Chernih (2003) showed that for elliptically contoured distribu-
tions the covariance (or beta) method satisfies CC (No Undercut), ETP (the
authors call it Symmetry) and Consistency (requiring that the allocation method
should be independent of the hierarchical structure of the firm). However, Kim
and Hardy (2009) showed that it is not even true that the covariance method
satisfies Core Compatibility in this setting. Moreover, profit and loss distribu-
tions of financial assets are not elliptically contoured, but heavy tailed (see for
instance Cont 2001), hence our approach is clearly more relevant by not restrict-
ing the probability distributions.

Kalkbrener (2005) showed that Linear Aggregation, Diversification and
Continuity characterizes the gradient principle (or Euler method, where risk is
allocated as a result of slightly increasing the weights of the divisions) to be the
only allocation which satisfies these requirements. Although those requirements
are also natural, they are not related to the properties of CC, ETP or SM. In fact
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Kalkbrener (2005) explicitly assumed that the risk allocated to a division does
not depend on the decomposition of the other divisions, only on the firm itself,
which is a strange and strong assumption.

Finally, there is a related impossibility result by Buch and Dorfleitner
(2008). They showed that if one uses the gradient principle to allocate risk
and ETP (the authors call it Symmetry) is satisfied, then the measure of risk
must be linear, not allowing for any diversification benefits. In other words,
Buch and Dorfleitner (2008) argue that ETP is to blame for the impossibility of
fair risk allocation. In this paper, however, we are looking for a general risk
allocation method, not the gradient one. Moreover, as our result (Theorem 3.7)
indicates, in our setting it becomes clear that ETP cannot be blamed, but the fact
that CC and SM exclude each other makes the impossibility result to hold.

5 Conclusion

We have shown that by using coherent measures of risk it is impossible to
allocate risk satisfying simultaneously the natural requirements of Core
Compatibility and Strong Monotonicity (in practice Incentive Compatibility). To
obtain the result we have characterized the Shapley value on the class of totally
balanced games and also on the class of exact games as being the only risk
allocation method satisfying Strong Monotonicity, Equal Treatment Property and
Efficiency. Both classes are proper subsets of all TU games, hence it is not
obvious that the characterization by Young (1985) holds on them. We have
also interpreted the axioms and our results in the risk allocation setting and
clarified their relation to the existing literature.

Since due to the results in this paper the Shapley value is the only risk
allocation method satisfying Strong Monotonicity, Equal Treatment Property and
Efficiency, the deepness of our impossibility result can be captured by checking
the necessary and sufficient condition for the Shapley value to be in the core.
Since no such condition is known, one has to resort to simulation. Balog et al.
(2014) showed that our analytical result is not only a theoretical possibility. For
randomly generated risk allocation games with 3 or 4 divisions the Shapley
value is not in the core about 40-60% of the cases on the average. Csdka (2015)
reported only a few percent lower numbers for risk allocation games with
liquidity. Moreover, for a higher number of divisions in general we expect higher
numbers.

Therefore our result raises the practical problem: one has to give up one of
Core Compatibility or Incentive Compatibility to allocate risk in practice too.
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Depending on the application at hand, the literature on cooperative games can
help in deciding requirement to drop in light of the trade-off between theoretical
versus computational gains and losses. For instance (as we have seen) the
Shapley solution meets Efficiency, Equal Treatment Property and Strong
Monotonicity (in practice Incentive Compatibility). Moreover, it is well-known
that the nucleolus (Schmeidler 1969) meets Core Compatibility and Equal
Treatment Property, and there are many other well-analyzed solution concepts
to choose from.
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