
Research Article

Mikhail Galashin and Sergey V. Popov*

Teamwork Efficiency and Company Size

DOI 10.1515/bejte-2014-0040
Published online November 17, 2015

Abstract: We study how ownership structure and management objectives interact
in determining the company size without assuming information constraints or any
explicit costs of management. In symmetric agent economies, the optimal company
size balances the returns to scale of the production function and the returns to
collaboration efficiency. For a general class of payoff functions, we characterize the
optimal company size, and we compare the optimal company size across different
managerial objectives. We demonstrate the restrictiveness of common assumptions
on effort aggregation (e.g., constant elasticity of effort substitution), and we show
that common intuition (e.g., that corporate companies are more efficient and
therefore will be larger than equal-share partnerships) might not hold in general.
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1 Introduction

Many human activities benefit from collaboration. For instance, writing papers
in Economics with a coauthor is often much more efficient and fun than writing
them solo. But it is very infrequent that an activity benefits from the universal
participation of the whole human population – a moderate finite group suffices
for almost every purpose. So what determines the size of the productive com-
pany? When do the gains from cooperation balance out the costs of overcrowd-
ing? Williamson (1971) writes:

The properties of the firm that commend internal organization as a market substitute
would appear to fall into three categories: incentives, controls, and what may be referred
to broadly as “inherent structural advantages.”
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We concentrate on the inherent structural advantages of groups of different
sizes. We study a model of collaborative production that demonstrates that the
answer critically depends on the properties of the production function in a very
specific way. Our main contribution is to summarize a generic but hard-to-use
effort aggregation function that maps the agents’ individual efforts to the aggre-
gated effort spent on production with a simpler teamwork efficiency function that
measures the comparative efficiency of a team of N workers against one worker.
We demonstrate that many tradeoffs arising from employing different manage-
rial criteria can be characterized by the interplay of the production function,
which transforms aggregated effort into output, and the teamwork efficiency
function. For instance, to determine what company size maximizes the effort
made by the company’s employees, one needs to study the balance between the
returns to teamwork efficiency and the behavior of the marginal productivity of
the total effort. We compare the predictions for two types of companies:
team: workers determine their effort independently, and the product is split

evenly; and
firm: the residual profit claimant sets the effort level with the optimal contract.

We attempt to make as few assumptions as possible about the shape of
production functions, which pre-empts the chance to obtain closed-form solu-
tions. However, we are able to obtain comparative static results regarding the
change in the optimal size of the firm due to changes in the marginal costs of
effort, ownership structure (going from a worker-owned to capitalist-owned firm
and back), and managerial criteria (maximizing individual effort versus max-
imizing surplus per worker). We demonstrate that the difference in the sizes
chosen by different owners under different managerial criteria are governed by
the direction of change in the elasticity of the production function, and therefore
results obtained under the assumption of constant elasticities are misleading.
The premise that elasticities are constant is natural in parametric estimation,
but, as we show, assuming constant elasticities rules out economically signifi-
cant behavior.

We assume away monitoring, transaction and management costs, direct and
indirect, to ensure that they do not drive our results. We believe they are an
important part of the reason why firms exist, but they are complementary to the
forces we discuss, and their effects have been extensively studied. Our point is
that even in the absence of these costs, there may still be a reason for coopera-
tion – and a reason to limit cooperation. Ignoring most of the issues about
incentives and controls allows us to obtain strong predictions, providing an
opportunity to test empirically for the comparative importance of incentives in
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organizations1. Our framework allows one to make judgements about the direction
of change in the company’s size due to changes in the institutional organization
based upon the values of elasticities of certain functions, which can be estimated
empirically. Heywood and Jirjahn (2009) show that, in German data, the amount
of profit sharing in the company is not perfectly related to the company size,
whereas one would presume that profit sharing would be next to meaningless in a
large enough company. Their literature review contains similar studies, demon-
strating both the positive and negative connection of the company size and
prevalence of the profit-sharing in incentives in different countries. This line of
study is still active: one of the most recent studies, Long and Fang (2013) show
that in Canadian firms, an increase in the proportion of profit-sharing in remu-
neration is associated with increased efforts, especially for industries with team-
based production. Other channels of possible explanation are investigated, too:
Cornelissen, Heywood, and Jirjahn (2014) shows that some of the heterogeneity
can be explained by the reciprocity in particular industries. Our model, however,
shows that one can reconcile the observed mixed evidence without sophisticating
the model.

We now review the relevant literature. In Section 2, we introduce the model
and solve for the effort choice in both the team and the firm. In Section 3, we
discuss how to identify the optimal size of the company. The conclusion follows.
The mathematical Appendix contains proofs, elaborates on the characterization
of the teamwork efficiency function, and discusses the single-peakedness of our
size-choice problems.

1.1 Literature Review

The paper contributes to two strands of the literature. The moral hazard in
teams literature was introduced by Holmstrom (1982), who showed that the
provision of effort in teams will be generally suboptimal due to externalities in
effort levels and the impossibility of monitoring individual efforts perfectly.
Legros and Matthews (1993) showed that the problem of deviation from efficient
level effort may be effectively mitigated if the sharing rules are well-designed.2

Kandel and Lazear (1992) suggest peer pressure to mitigate the 1=N effect: the
increase in the number of workers lowers the marginal payoff from higher
effort. When the firm gets larger, the output is divided between a larger quantity

1 See Bikard, Murray, and Gans (2015) as an example in team efficiency estimation. This paper
also contains a vast review of other empirical papers that estimate collaboration effects, such as
in writing comic books, Broadway musicals and research papers.
2 Winter (2004) argues that, frequently, the uniform split of surplus is not necessarily a good
outcome. We keep treating workers equally for analytical tractability.
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of workers, while they bear the same individual costs. Hence, the effort of each
worker should grow less as firms grow larger, and the peer pressure should
compensate for this decline.3

Adams (2006) showed that the 1=N effect may not occur if the efforts of
workers are complementary enough. Because he uses a CES production function
with constant returns to scale, the determinant of sufficient complementarity is
the value of the elasticity of substitution. McGinty (2014) extends this argument
to power production functions. In this framework, two outcomes are generic:
either to always increase, or always to reduce the firm size. By generalizing, we
obtain a nontrivial optimal company size. This allows us to contribute to the firm
size literature too. Theories of firm boundaries are classified as technological,
organizational and institutional (see Kumar et al. 1999). The technological
theories explain the firm size by the productive inputs and the ways in which
the valuable output is produced. Basically, five technological factors are taken
into account in describing the firm size: market size, gains from specialization,
management control constraints, limited workers’ skills, and loss of coordina-
tion. For example, Adam Smith defined the firm size by benefits from specializa-
tion limited by the market size. By his logic, workers can specialize and invest in
a narrower range of skills, hence economizing on the costs of skills. Becker and
Murphy (1992) focus on the tradeoff between specialization and coordination
costs. The larger the firm, the larger the costs of management to put them
together to produce the valuable output.

Williamson (1971), Calvo and Wellisz (1978) and Rosen (1982) use loss of
control to explain the firm size. Williamson points out that the size of a
hierarchical organization may be limited by loss of control, assuming that the
intentions of managers are not fully transmitted downwards from layer to layer.
Calvo and Wellisz (1978) show that the effect of the problem largely depends on
the structure of monitoring. If the workers do not know when the monitoring
occurs, the loss of control doesn’t hinder the firm size, but it may do so if the
monitoring is scheduled. Rosen (1982) highlights the tradeoff between increasing
returns to scale in management and the loss of control. Because highly qualified
managers foster the productivity of their workers, able managers should have
larger firms. However, the attention of managers is limited, hence having too
many workers results in loss of control and substantially reduces the

3 In the same spirit of taking peers’ responses into account, Heywood and McGinty (2012)
replace the Nash equilibrium concept with the Consistent Conjectures approach: each agent,
instead of assuming that other agents do not respond to agent’s deviation, believes that there is
a (locally linear) best response. This yields more effort in outcomes when complementarities are
high enough.
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productivity of their team. The optimal firm size in this model is reached when
the value produced by the new worker is less than the losses due to attention
being diverted from his teammates.

In this literature, Kremer (1993) is the paper closest to ours, because this is
one paper that obtains the optimal size of the firm based solely on the firm’s
production function. This paper focuses on the tradeoff between specialization
and the probability of failure associated with low skill of workers. He assumes
that the the value of output is directly proportional to the number of tasks
needed to produce it. A larger number of workers – and hence tasks tackled –
allows for the production of more valuable output, but each additional worker is
a source of the risk of spoiling the whole product. Hence, the size of the firm is
explained by the probability of failure by the workers, which correlates with the
worker’s skill.

Acemoglu and Jensen (2013) analyze a problem similar to ours. Agents
pariticipate in an aggregative game, where the payoff of each agent is a function
only of the agent himself and of the aggregate of the actions of all agents, and
they establish existence and comparative statics results for games of this type.
Nti (1997) offers a similar analysis for contests. We allow general interactions,
but under certain assumptions we can summarize these interactions in a similar
way, which does not depend on additive separability. In addition, Acemoglu and
Jensen (2013) and Nti (1997) study comparative statics for this general class of
games with respect to the number of players, whereas we go a step beyond,
looking at the optimal number of players from the perspectives of different
managerial objectives. Jensen (2010) establishes the existence of pure strategy
Nash equilibrium in aggregative games, but does not explore the symmetry of
the equilibrium or the comparative statics.

2 The Model

In this part, we introduce the model of endogenous effort choice by the company
workers as a reaction to the size of the company. We define the equilibrium,
determine how the amount of effort responds to the change in the company size
N, and obtain comparative statics results.

Company workers contribute effort for production. The efforts of individual
workers fe1, ..., eNg are transformed into aggregated effort by the effort aggrega-
tor function:

gðe1, ..., eN jNÞ :RN
+ ! R+ , (1)
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where gð� jNÞ changes with N. The aggregated effort is then used for production
via f ð�Þ, the production function4. Exercising effort lowers the utility of a team
member by the effort cost cðeÞ. Obviously, the choice of effort depends upon
other members’ effort choice.

The team members split the fruits of their efforts equally. The worker’s
problem in the team is therefore to choose effort e to maximize

uðe j e2, ..., eN ,NÞ= 1
N
f gðe, e2, ..., eN jNÞð Þ− cðeÞ. (2)

The firm of size N, following the literature, acknowledges the strategic
complementarities between workers’ efforts, and provides each worker with a
contract that makes this worker implement the first best effort level. We assume
that the residual claimant collects all the surplus; results do not change if the
residual claimant collects only a fixed proportion of the surplus, with the rest of
the surplus going to the government, to employees as a fixed transfer, or to
waste. The effort aggregator and the production function are the same.

We introduce a number of assumptions in order to obtain useful
characterizations.

Assumption 1 f ð�Þ is strictly increasing and twice continuously differentiable.

This is a technical assumption on the production function. We do not
require for now that f ð�Þ has decreasing returns to scale or that it is positive
everywhere. We use this assumption in all characterizations of the behaviour of
optimal effort.

Assumption 2 gð� jNÞ is symmetric in ei, twice continuously differentiable, strictly
increasing in each argument, concave in one’s own effort, and homogenous5 of
degree 1 with respect to fe1, ..., eNg. Normalize gð1 j 1Þ to 1.

This assumption states that the identities of workers do not matter, and only
the amount of effort does. This assumption is the cornerstone of our analysis,
since we are considering symmetric equilibria.

4 This does not have to be a production function. If, for instance, g denotes the amount of effort
spent, qðgÞ delivers the quantity produced from employing g efforts, and PðqÞ is the inverse
demand function, f ðgÞ≡ qðgÞPðqðgÞÞ would be the revenue function, which can easily be not
concave. We omit this discussion for brevity, and continue to call f ð�Þ the production function.
5 Homogeneity of degree of exactly 1 is not a very restrictive assumption: if one has gð�Þ which
is homothetic of degree γ, one can use ~gð�Þ= gð�Þ1=γ and ~f ðxÞ= f ðxγÞ. They produce the same
composition, but ~gð�Þ is homogenous degree 1.
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One of the consequences of this assumption is that g1′ðe1, e2, .., eN jNÞ is
homogenous degree 0. This, in turn, implies that in a symmetric outcome

g′′11ðe, e, .., e jNÞ+ g′′12ðe, e, .., e jNÞ+ ... + g′′1Nðe, e, .., e jNÞ =0 ,
g′′11ðe, e, .., e jNÞ= − ðN − 1Þg′′1iðe, e, .., e jNÞ ∀i 2 f2..Ng, (3)

which by the concavity in one’s own effort means that in symmetric outcomes,
not necessarily everywhere, the efforts of members are strategic complements.

Assumption 3 cð�Þ is increasing, convex, twice differentiable, cð0Þ= c′ð0Þ=0.

This immediately implies that every team member exerts a positive amount
of effort, since f ðgð�ÞÞ is assumed to be strictly increasing at zero. Without this
assumption, one would need caveats about what happens when no workers
expend any effort.

Example 1 (based on McGinty 2014) Let gðe1, .., eN jNÞ= PN
i= 1 e

ρ
i

� �1=ρ
, f ðxÞ= xα,

cðxÞ is increasing, twice differentiable and concave, and c′ðeÞe1− α is increasing6.
Therefore, agent 1 solves

max
e1

1
N

XN
i= 1

eρi

 !α=ρ

− cðe1Þ,

that which, assuming a symmetric outcome, produces e1 = ... = eN = e*ðNÞ= z
ðNα − 2ρ

ρ Þ, where zðxÞ is the inverse of c′ðzÞz1− α=α. Hence, e*ðNÞ is increasing in
N if and only if ρ 2 ð0, α=2Þ. The effort aggregator therefore needs to be closer to
Cobb-Douglas to have effort increasing in step with team size.

Even for a well-behaved aggregation function such as CES it is hard to
obtain a well-defined argmax Ne

*ðNÞ, and for other maximands, it is even
harder, for instance, the utility of a representative agent. This goes against the
data: most companies operate with a limited workforce, whatever the maximand
they pursue. In order to understand better what kind of interaction can deliver
nontrivial predictions (neither 1 nor +∞), we need to characterize the changes
in e*ðNÞ. The first-order condition of the worker’s problem is

f ′ðgðe1, ..., eNÞ jNÞÞg′1ðe1, ..., eN jNÞ=N − c′ðe1Þ=0. (4)

Solving the first-order condition is sufficient to solve for the maximum when

6 Particularly, α ≤ 1 suffices. McGinty (2014) takes cðeÞ= k e2
2 , and restricts α to less than 2.
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f ′′ðgðe1, ..., eN jNÞÞðg′1ðe1, ..., eN jNÞÞ2=N +

f ′ðgðe1, ..., eN jNÞÞg′′11ðe1, ..., eN jNÞ=N − c′′ðe1Þ < 0
(5)

for every fe2, ..., eNg. Denote εqðxÞ= q′ðxÞx=qðxÞ, the elasticity of qð�Þ with respect
to x. By dividing the second-order condition by the first-order condition and
multiplying by e1, with a slight abuse of notation one can obtain

εf ′ðgðe1, ..., eN jNÞÞεgðe1, ..., eN jNÞ+ εg′1ðe1, ..., eN jNÞ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{< 0

− εc′ðe1Þ < 0, (6)

which will hold whenever (5) holds.

Assumption 4 (5) holds for every fe1, ..., eNg for every N.

This assumption guarantees that the first-order condition has a unique
solution. Instead, one can assume that f ð�Þ features decreasing returns to
scale, and the aggregator function gð�Þ is concave in each argument.
Alternatively, one can require that cð�Þ is convex enough.

2.1 Effort Choice in a Team: Equilibrium Outcome

The equilibrium is a collection of the efforts of agents fe*1, ..e*Ng such that each
worker i solves his problem (2) treating the efforts of the other peers as given:

e*i = argmaxe
1
N
f gðe, e*− i jNÞ
� �

− cðeÞ,

where e*− i denotes the values of fe*1 , .., e*Ng omitting e*i .

Assumption 5 A unique symmetric equilibrium with nonzero efforts exists.7

Let e*ðNÞ be the function that solves

f ′ðgðe*ðNÞ, .., e*ðNÞ jNÞÞg′1ðe*ðNÞ, .., e*ðNÞ jNÞ=N = c′ðe*ðNÞÞ. (7)

7 We can obtain this assumption as a result by imposing additional assumptions on f ð�Þ and
gð�Þ, such as supermodularity and Inada conditions. The pure strategy equilibrium exists
because the game we consider here is a potential game; see Monderer and Shapley (1996),
Dubey, Haimanko, and Zapechelnyuk (2006) and Jensen (2010). To secure the existence and
uniqueness of the symmetric outcome, one can impose additional assumptions on f � gð�Þ, cð�Þ,
direct (concavity) or indirect (profit single-crossing, compactness of strategy space), but such
outcomes are clearly quite common. We opt to avoid the discussion of restrictiveness of these
additional assumptions, and concentrate on the interesting case.
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Homogeneity of degree 1 for gð�Þ helps us to study the behavior of e*ðNÞ. Define
hðNÞ≡ gð1, .., 1 jNÞ.

This function represents the efficiency of coworking. Observe that

hðNÞ= egð1, 1, 1, .., 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{N times

jNÞ
egð1 j 1Þ =

gðe, e, e, .., ezfflfflfflfflfflffl}|fflfflfflfflfflffl{N times

jNÞ
gðe j 1Þ ;

that is, hðNÞ measures how much more efficient is the team of agents that the
efforts of a single person, holding effort level unchanged. Henceforth we will
call this the teamwork efficiency function. For instance, if it is linear, the working
team is as efficient as its members applying the same effort separately. By
Euler’s rule and the symmetry of gð�Þ,

hðNÞ= dðhðNÞeÞ
de

=
dgðe, e, .., e jNÞ

de
= g1′ðe, .., eÞ+ g2′ðe, .., eÞ+ ..

+ gN′ðe, .., eÞ=Ng1ðe, .., e jNÞ.
Therefore, (7) can be rewritten as

f ′ðe*ðNÞhðNÞÞhðNÞ=N2 = c′ðe*ðNÞÞ. (8)

Equation (8) is the incentive constraint that defines e*ðNÞ as a function of N.

2.2 Effort Choice in a Firm: First Best

Following Holmstrom (1982), we assume that the residual claimant provides the
employees with contracts that implement the first-best choice of effort.

Assumption 6 The first-best choice of effort is positive and symmetric.8

The residual claimant would choose the effort size ePðNÞ to implement by
maximizing

max
e1, ..eN

f ðgðe1, e2, .., eN jNÞÞ−
XN
i= 1

cðeiÞ,

which, assuming a symmetric outcome, leads to the first-order condition

f ′ðePðNÞhðNÞÞhðNÞ=N = c′ðePðNÞÞ. (9)

8 This Assumption is a shortcut in a spirit similar to Assumption 5; see Footnote 5.
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The solution of (9), ePðNÞ, is greater than the solution of (8), e*ðNÞ, as long
as N > 1. The reason is that in equilibrium, the marginal payoff for the individual
effort does not take into account the complementarities provided to other work-
ers. Even if the product f ð�Þ were not split N ways, but instead were non-
rivalrous,9 the additional 1=N in the marginal benefit of the team worker
would persist.

2.3 Second-Order Conditions and Uniqueness

Equation (6), the second-order condition of (8), in the equilibrium can be
rewritten as

εf ′ðe*ðNÞhðNÞÞ 1N + εg′1ðe*ðNÞ, .., e*ðNÞ jNÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{< 0

− εc′ðe*ðNÞÞ < 0. (10)

This is because εgðe*ðNÞ, .., e*ðNÞ jNÞ= ðhðNÞ=NÞe*ðNÞ
e*ðNÞhðNÞ = 1

N. Let

εf ′ðe*ðNÞhðNÞÞ− εc′ðe*ðNÞÞ < 0 (11)

hold; then (10) is satisfied automatically. If cðxÞ is more convex than f ðyÞ at every
x ≥ y, this condition is satisfied. Similar math is used to compare the risk-aversity
of individuals: for every uðxÞ, εu′ðxÞ is just the negative of Arrow-Pratt measure
of relative risk aversion.

The second-order condition for (9) is

f ′′ðePðNÞhðNÞÞh2ðNÞ=N − c′′ðePðNÞÞ < 0,
which, after dividing by the first-order condition, can be rewritten as

εf ′ðePðNÞhðNÞÞ− εc′ðePðNÞÞ < 0. (12)

Observe that it is very similar to (11): but the effort level in the argument is
different. One would be sure that both (11) and (12) hold if one were sure that cð�Þ
is at every point “convexer” than f ð�Þ at every point above: εf ′ðyÞ < εc′ðxÞ∀y > x.
This can be simpler to verify if additional assumptions are imposed on εf ′ or εc′:

Result 1 If either εf ′ðxÞ or εc′ðxÞ is weakly decreasing, εf ′ðxÞ < εc′ðxÞ, and hðNÞ ≥ 1,
(11) and (12) are satisfied.

9 For non-rivalrous goods, consumption by one agent does not prevent or worsen the con-
sumption of the same unit of good by another agent. Think of coauthoring a paper: the fact of
eventual publication contributes to both authors as much as they would derive if there was only
one author, at least in the opinion of some promotion committees.
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Second-order conditions hold at maxima automatically, but if they hold every-
where, the solution of the corresponding FOC has to be unique. Result 1 thus
provides sufficient conditions for the uniqueness of the pure strategy outcome.

εf ′ðxÞ being decreasing has the following interpretation. When εf ′ðxÞ is
constant and equal to α, it means that f ′ðxÞ=Kxα, which makes f ðxÞ a power
function, where K is an integration constant (unless α= − 1, in which case
f ′ðxÞ=K ln x). The decreasing εf ′ðxÞ implies the “lower power”, or “less convex-
ity” of f ð�Þ in larger arguments.

3 The Optimal Size of the Company

For now, hðNÞ has been defined only for N 2 f1, 2, 3, ...g. Algebraically, the
problem of the optimal firm size with distinct nonatomary agents lies in the
discreteness of the firm size, which comes from having an integer quantity of
arguments in gð�Þ. However, using symmetry, homogeneity and the function
hðNÞ, we alleviated this mathematical problem. With a heroic leap of faith, we
extend the definition of hðNÞ to real positive semi-axis.10 The discussion of how
to choose a proper hðNÞ from knowing gð�Þ is in Appendix 5.1. With differenti-
able hðNÞ, we can take derivatives with respect to N, and expect e*ðNÞ and ePðNÞ
defined with (8) and (9) to be continuous and differentiable.

In order to conduct the comparative statics with respect to N, we apply the
usual implicit function apparatus.11 Knowing how the workers of the company of
size N choose their effort, we can characterize the consequences of various
company managerial objectives on its hiring policy.

Assumption 7 The Problems we study are single-peaked, that is, there is a unique
interior maximum point; the derivative of every Problem’s Lagrangean is strictly
positive below this point, and strictly negative above this point.

Our results extend to the case when intersections are multiple in a manner
similar to the way that comparative statics with multiple equilibria are treated.

10 For gðe1, e2, ..eN jNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 + .. + e

2
N + α

P
i 6¼j eiej

q
, α 2 ½0, +∞Þ yields hðNÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αN2 + ð1− αÞNp
,

with εhðNÞ= 1− 1− α
2αN + ð1 − αÞ, an increasing function of N when α < 1 and a decreasing function

when α > 1. Many papers impose an ad hoc gð�Þ without any discussion; Kremer (1993) argues for
Cobb-Douglas, Rajan and Zingales (1998) goes for linear additive; McGinty (2014) uses CES; see
Dubey, Haimanko, and Zapechelnyuk (2006), p. 86 and Jensen (2010), p. 16 for other examples.
11 We can use it because the necessary condition for its use is that the SOC for choosing eðNÞ,
which is either (11) or (12), holds for every N by Assumptions 4 and 5.
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We concentrate on the single-crossing case for brevity: Appendix 5.2 elaborates
on single-peakedness.

3.1 Team Size that Maximizes Effort

This may be a concern in industries where learning-by-doing is important, and
therefore the decisionmakers would like to increase efforts even though this
might hurt their immediate profits. Workers may be willing to participate in
teams of a size that maximizes their effort to combat their long-term/short-term
decisionmaking inconsistency issues. This subsection is crucial to understand-
ing the further analysis. We have therefore sought to keep the analysis in this
part very explicit. Other problems will be dealt with in a similar fashion, there-
fore we relocate the repetitive parts to the Appendix.

From (8) one can deduce e*ðNÞ, well-defined and differentiable over N 2 R +.

Problem 1 Characterize N1 = argmaxN e*ðNÞ.

Take elasticities with respect to N on both sides of (8) to get:

εf ′ðe*ðNÞhðNÞÞ εe*ðNÞ + εhðNÞ½ �+ εhðNÞ− 2 = εc′ðe*ðNÞÞεe*ðNÞ.
Solve this to obtain

εe*ðNÞ=
εhðNÞ εf ′ðe*ðNÞhðNÞÞ+ 1

� �
− 2

εc′ðe*ðNÞÞ− εf ′ðe*ðNÞhðNÞÞ . (13)

From (13) one can immediately see that the N that maximizes e*ðNÞ has to satisfy

εhðNÞ εf ′ðe*ðNÞhðNÞÞ+ 1
� �

= 2. (14)

The denominator of (13) is positive: it is a second-order condition of the effort
choice problem, (11). Therefore, whenever εhðNÞ εf ′ðe*ðNÞhðNÞÞ+ 1

� �
> 2, e*ðNÞ is

increasing in N, and otherwise it is decreasing in N.
In the space of ðx, yÞ= ðεhð�Þ, εf ′ð�ÞÞ, Equation (14) simplifies to:

Φ1 = fðx, yÞ j x y + 1ð Þ= 2.g
Solving out the equilibrium will produce a function e*ðNÞ, and therefore a
sequence of values of ðεhðNÞ, εf ′ðe*ðNÞhðNÞÞ. We depict an example of this
path in Figure 1a. Denote

Γ1 = ððεhðNÞ, εf ′ðe*ðNÞhðNÞÞÞ jEquation ð8Þ holdsÞ.
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For the sequence depicted in the Figure 1, one can observe that e*ðNÞ is
increasing at N ≤ 3, and decreasing for N ≥ 4. Therefore, the optimal “continu-
ous” N (denote it N1) is between 3 and 4, and the integer N that delivers the
maximum effort is either 3 or 4.

The assumption that gð�Þ is CES makes εhðNÞ constant; the assumption
that f ′ð�Þ is a power function makes εf ′ð�Þ constant. Example 1 predicts that
whether e*ðNÞ is increasing or decreasing everywhere depends upon the
elasticity of substitution of gð�Þ precisely because, in the world of Example
1, f ðxÞ= xα and gð�Þ is CES. Γ1 is a single point in these assumptions.
Therefore, in order to have a nontrivial prediction about the optimal effort
size, one needs either a decreasing εhðNÞ, or a decreasing εf ′ð�Þ, or both.
Obtaining values in the general case in inherently complicated, but one can
make comparative statics predictions without knowing the precise specifica-
tion of relevant functions.

Result 2 When εf ′ is decreasing, an increase (decrease) in the marginal costs of
effort leads to an increase (decrease) in N1. When εf ′ is increasing, an increase
(decrease) in the marginal costs of effort leads to a decrease (increase) in N1.

The purpose of this Result is to illustrate that the effort choice comparative
statics are governed by the variation in εf ′. This illustrates that a simplifying
assumption, such as constant elasticity, for the production function is not
innocuous. Even assumptions such as the concavity of f can restrict the econom-
ically important behavior:

Example 2 (based on Rajan and Zingales 1998, Lemma 2, p. 398) Let
gðe1, ..eN jNÞ= PN

i= 1 ei, and let f ðxÞ be concave. Then

Figure 1: The choice of N to maximize effort in a team; and the Result 2 logic.
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εf ′ðxÞ= f ′′ðxÞx
f ′ðxÞ < 0, hðNÞ=N ) εhðNÞ= 1,

and, therefore, for every N, εhðNÞ, εf ′ðe*ðNÞhðNÞÞ
� �

< ð1, 1Þ, no matter what cð�Þ is.
The individual effort decreases with N for every N.

3.2 Firm Size that Maximizes Effort

As in the previous part, this problem occurs in industries where learning-by-
doing is important, and long term planning may motivate to increase workers’
effort by manipulating the number of workers. We assume that when the firm
designs a contract, it tries to implement the first-best, which takes into account
the agents’ complementarities in gð�Þ. If the social planner were choosing the
effort for the agents, his FOC would suggest a higher effort for a given N (see the
discussion of the 1=N effect on p. 12). Since c′ð�Þ is increasing, this immediately
implies that ePðNÞ ≥ e*ðNÞ, with equality at N = 1, and therefore the effort-max-
imizing sizes of a firm and a team do not have to coincide.

Problem 2 Characterize N2 = argmaxN ePðNÞ.

The first-order condition12 becomes

εhðNÞ εf ′ðePðNÞhðNÞÞ+ 1
� �

= 1. (15)

Again, if the left-hand side is larger than the right-hand side, the effort is
increasing in N, and the reverse holds when the left-hand side is smaller than
1. The change of the managerial objective affects multiple components of the
optimal size problem:
– The threshold that governs when the firm is big enough,Φ1, is now replaced by

Ψ1 = fðx, yÞ j x y + 1ð Þ= 1g.
The reason why 2 in the definition of Φ1 is replaced by 1 in the definition of Ψ1 is
exactly because the marginal 1=N effect, which appeared because the individual
marginal benefit did not include the benefits provided to the other participants,
went away.
– Since ePðNÞ > e*ðNÞ for almost every level of N, the values of

εf ′ðePðNÞhðNÞÞ 6¼ εf ′ðe*ðNÞhðNÞÞ, unless f ð�Þ is a power function in the rele-
vant domain.

12 See Appendix for the derivation of solutions for Problems 2–4.
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Figure 2b demonstrates the difference, assuming that εf ′ð�Þ is an increasing func-
tion. Since hðNÞ did not change, abscissae are the same for different values of N
for both Φ1 and Ψ1. It is plain that the two effects are at odds: since the threshold
is further away, larger firms become more efficient. However, the change in εf ′ð�Þ
due to higher efforts for each firm size might lower the optimal firm size.

Result 3 If εf ′ðxÞ is weakly increasing, firms that maximize employees’ effort will
be larger than teams that choose their team size to maximize the efforts of the
members (N2 >N1).

Proof See Appendix. □

3.3 Team Size that Maximizes Utility

Would team members invite more members to join the team? If this increases the
utility of each team member, yes. Thus, the team size that maximizes the utility
of a member of the team is the team size that would emerge if teams were free to
invite or expel members.

Problem 3 Characterize N3 = argmaxN 1
N f ðhðNÞe*ðNÞÞ− cðe*ðNÞÞ.

N3 should solve the following first-order condition:

εf ðe*ðNÞhðNÞÞ εhðNÞ+ N − 1
N

εe*ðNÞ
� 	

= 1. (16)

Again, at values of N where the left-hand side is larger (smaller) than 1, the
utility is increasing (decreasing) in N. LetΦ2 be the set of locations where (16) holds
with equality. This line, evaluated at N =N1, is plotted over Γ1 and Φ1 on Figure 3.

Figure 2: Choosing N to maximize effort, the firm case.
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One can immediately see that:
– There is a unique intersection of Φ1 and Φ2, which happens at

�εh = 1=εf ðeðN1ÞhðN1ÞÞ.
– The path of Γ1 intersects Φ1 above Φ1

T
Φ2 if and only if N1 <N3. In general,

when two different maximands are used, different answers are to be
expected, but our result makes issues clearer: the only thing necessary to
establish whether N1 <N3 is the value of εhðN1Þ and of εf ðe*ðN1Þh*ðN1ÞÞ.

Result 4 If εf ′ðe*ðN1ÞhðN1ÞÞ+ 1 < ð > Þ 2εf ðe*ðN1ÞhðN1ÞÞ,N3 is larger (smaller) than N1.

Proof See Appendix. □

Therefore, if the elasticity of f ð�Þ at the size of the team chosen by team
members N3 is too small, it is likely that the team will be too large to implement
high efforts (N3 >N1).

Observe that the local monotonicity of εf ðxÞ is informative about the com-
parison between εf ′ðxÞ + 1 and εf ðxÞ:

εf ðxÞ
� �

′= εf ′ðxÞ+ 1− εf ðxÞ
� � εf ðxÞ

x
.

In particular, f ðxÞ > 0 implies εf ðxÞ
� �

′ > 0 , εf ′ðxÞ+ 1 > εf ðxÞ, and the condition in
Result 4 means that the elasticity of f ð�Þ is either not decreasing too fast, or that
it is decreasing quite quickly. Since adding and subtracting constants to the

Figure 3: Choosing N to maximize individual utility.
Note: Below both graphs both efforts and profits increase as the size of the firm gets larger.
Above both graphs both efforts and profits decrease with N. Between graphs, when εhðNÞ < �εh,
efforts increase with N, but profits decrease; the reverse holds when εhðNÞ > �εh.
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production function does not change εf ′ðxÞ, but does change εf ðxÞ, both cases
(N1 <N3 and N1 >N3) are generic.

In teaching, many lecturers assign home assignments for group work. Some
lecturers use fixed group sizes, other lecturers allow students to form groups of
their own choosing. If higher effort is desirable (for instance, because effort in the
classroom is valuable on the labor market, which is not fully understood by
students), it may be a good idea to restrict the group size, notwithstanding the
complaints of students. If the elasticity of f ð�Þ at N1 is greater than 1

2 ðεf ′ð�Þ+ 1Þ at
the same N1, students will yearn for an increase of the size of the group, and they
will complain that the required group size is too large otherwise.13 Instead of
assigning the group sizes, a teacher who wants to implement teamwork projects
can manipulate the group’s payoff implied by the project design, to make sure the
maximal effort group size is close to the maximal utility group size.

3.4 Firm Size that Maximizes Utility

When the principal extracts all surplus from the workers, maximizing the payoff
per worker translates to maximizing profit per worker. The principal maximizes
the surplus per worker, not the total surplus, because the principal can own
more than one firm, as fast food franchisers do.

Problem 4 Characterize N4 = argmaxN 1
N f ðhðNÞePðNÞÞ− cðePðNÞÞ.

At N4, the following holds (see Appendix for derivation):

εf ðePðNÞhðNÞÞεhðNÞ= 1 (17)

When εf ðePðNÞhðNÞÞεhðNÞ > 1, the utility of each member of the firm increases
with the size of the firm, and the utility is reduced otherwise.

One can see the difference between (15) and (17); they have to be equal only
when ∀x, εf ðxÞ = εf ′ðxÞ+ 1, which implies that f ðxÞ is the power function.

Result 5 If εf ðxÞ is increasing (decreasing), εf ′ðxÞ+ 1 > ð < Þ εf ðxÞ, and therefore N4

is larger (smaller) than N2.

Proof See Appendix. □

13 If one believes that the teachers do not split the payoff equally, but with the rule of 1=βðNÞ
per person with βðNÞ > 0, one can instead of 1

2 in the footnoted sentence use εβðN1Þ
1 + εβðN1Þ.
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This Result helps to establish why people do not work efficiently in different
environments. The problem is not so much in the returns to scale of the production
function; the relevant threshold is the comparisonof the first and secondderivatives of
the production function, which is known if it is known that the elasticity of the
production function is locally increasing or decreasing. Those employee-owned com-
panies whose employees feel that they would be more motivated and would work
harder had theyhadmore collaborators have εf ðePðNÞhðNÞÞ < εf ′ðePðNÞhðNÞÞ+ 1. The
curvature of their production function is increasing.

Result 6 If εf ðxÞ is decreasing, N4 is smaller than N3. If εf ðxÞ is increasing, and
2εf ðe*ðN1ÞhðN1ÞÞ < εf ′ðe*ðN1ÞhðN1ÞÞ+ 1, N4 is larger than N3.

Proof See Appendix. □

This Result shows that the issue of which companies are bigger, teams or
firms, boils down to the properties of the production function, and the only
limitations for the rest of the fundamentals (such as the cost function and effort
aggregation function) is to guarantee that assumptions hold. The precise shape
of hð�Þ determines the value of N3 and N4, but is not always needed to establish
which one is bigger. Obviously, there’s plenty of f ð�Þ whose elasticities are not
monotone, but (a) the part that is harder to observe, the teamwork efficiency
function, may not require estimation, and (b) the monotonicity is only important
locally, for company sizes near N3 and N4.

Results for other managerial objectives can be obtained in a similar fashion:
for instance, a residual claimant that collects a fixed proportion of the total
surplus of the firm will employ more than N4 workers as long as (12) holds. We
reserve these for future research.

3.5 The Quagmire of Constant Elasticities

The previous analysis showed that at least one of two elasticities cannot be
constant in order to obtain a well-defined optimal company size. However, even
holding one of two elasticities constant can mislead. In the following example,
we assume that εhðNÞ is decreasing from a large enough value to 0, and the
production function is a power function.

Example 3 Let f ðxÞ = xα and cðeÞ= eβ. Let β > α > 0, then the relevant Assumptions
and (11) are satisfied. For general but convenient hð�Þ, where εhð�Þ is decreasing,
the first-best ePðNÞ chosen by the firm satisfies
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αðePðNÞhðNÞÞα− 1 hðNÞ
N

= βðePðNÞÞβ− 1 )

ePðNÞ= exp
ln α− ln β

β− α
+

α
β− α

ln hðNÞ− 1
β− α

lnN

 �

.

The effort size e*ðNÞ chosen by the members of the team satisfies

αðe*ðNÞhðNÞÞα− 1 hðNÞ
N2 = βðe*ðNÞÞβ − 1 )

e*ðNÞ= exp ln α− ln β
β− α

+
α

β− α
ln hðNÞ− 2

β− α
lnN


 �
.

Let us order firm sizes chosen with different managerial objectives. When εhðNÞ
is decreasing,
1. N1, the team size that maximizes the effort when the effort level is chosen

simultaneously and independently, satisfies εhðN1Þ= 2=α;
2. N2, the firm size that maximizes the effort when the effort level is chosen

according to the first best, satisfies εhðN2Þ= 1=α;
3. N3, the team size that maximizes the team member’s utility when the effort

level is chosen simultaneously and independently, solves εhðNÞ= 1
α +

N − 1
Nβ− α,

the right-hand side of which is monotone and converges to 1
α +

1
β from below;

4. N4, the firm size that maximizes the utility per worker14 when the effort level
is chosen according to the first best, satisfies εhðN4Þ= 1=α.

Example 3 supplies the following intuition for different maximands (see
Figure 4):
1 & 2 The effort-maximizing size of the firm is greater than the effort-maximizing

size of the team. This is a consequence of f ð�Þ being a power function (see
Result 3), and need not hold in general.

1 & 3 The company size chosen by the team when the decision to hire is in the
hands of the team members is greater than the company size chosen to
maximize the effort size. This is not a general result, but a consequence of a
close connection between εf ð�Þ= α and εf ′ð�Þ= α− 1. Compare (14) and (16):
when N is such that (8) is satisfied, (16) suggests that the utility of each
participant increases with the size of the team.

14 This coincides with the revenue per worker if the first best contract provides 0 utility to the
worker.
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2 & 4 The size of the firm that maximizes employees’ utilities is maximizing their
effort as well. This is not a general result, but a direct consequence of
f ðxÞ= xα: conditions (15) and (17) coincide algebraically.

3 & 4 When a self-organized team becomes incorporated, it will become larger.
This, however, is not a general result, but a consequence of a power produc-
tion function.

This exercise demonstrates many spurious findings arising simply from the
desire for closed form solutions. Some of the strong predictions are general-
izable, but most are a consequence of the power function assumptions.

4 Conclusion

In this paper, we stepped away from the common assumptions about production
functions to study the effects of scale on the optimal size of a company, from
many perspectives. We found ways to circumvent the inherent discontinuity in
hiring when complementarities are important. Our contribution is to characterize
the effects of changes in the management of the company, such as the incor-
poration of a partnership, or going from private to public, on hiring or firing,
and whether employees’ effort will suffer from overcrowding or from insufficient
specialization. We found that teams do not have to be larger or smaller than
firms that use the same production function. The analytic framework that we

Figure 4: Ordering solutions from Example 3.
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suggest is very general, and can be modified to include uncertainty, non-trivial
firm ownership (for instance, one worker can be the claimant to the residual
profit, with nontrivial implications on the effort choice), non-trivial wage sche-
dules (for instance, imperfect observability of effort, total or individual, can call
for the design of an optimal wage schedule), or profit-splitting schemes from
cooperative game theory, for instance the Shapley value.

The homogeneity of workers is important in our analysis. We have
obtained results for a heterogenous workforce, where some workers are cap-
able (can choose a positive effort value), and others incapable (those who can
only choose zero effort). We can show that it might be the case that the
incapable workers are employed along with the capable ones: this happens
if the effort aggregation function is such that the employment of an extra
person provides teamwork efficiency externalities for the capable workers,
whereas additional effort from one hired capable person would diminish the
productivity of other capable employees.

Appendix

Proofs

Solution of Problem 1 in text, on page 14.

Solution of Problem 2 To choose the firm size that maximizes the level of effort,
take the derivative of both sides of

f ′ðePðNÞhðNÞÞhðNÞ=N = c′ðePðNÞÞ
with respect to N. The values of N where ðePðNÞÞ′=0 will be the one we are
looking for. The derivative looks like

f ′′ðePðNÞhðNÞÞ½hðNÞðePðNÞÞ′+ h′ðNÞePðNÞ�hðNÞ=N
+ f ′ðePðNÞhðNÞÞ½h′ðNÞ=N − hðNÞ=N2�= c′′ðePðNÞÞðePðNÞÞ′.

Divide by the first-order condition to obtain

f ′′ðePðNÞhðNÞÞ½hðNÞðePðNÞÞ′+ h′ðNÞePðNÞ�hðNÞ=N + f ′ðePðNÞhðNÞÞ½h′ðNÞ=N − hðNÞ=N2�
f ′ðePðNÞhðNÞÞhðNÞ=N =

=
c′′ðePðNÞÞðePðNÞÞ′

c′ðePðNÞÞ .
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Rearrange to obtain

c′′ðePðNÞÞePðNÞ
c′ðePðNÞÞ −

f ′′ðePðNÞhðNÞÞhðNÞePðNÞ
f ′ðePðNÞhðNÞÞ


 � ðePðNÞÞ′N
ePðNÞ

=
h′ðNÞN
hðNÞ 1 +

f ′′ðePðNÞhðNÞÞ
f ′ðePðNÞhðNÞÞ


 �
− 1.

Rewrite:

εeP ðNÞ=
εhðNÞ εf ′ðePðNÞhðNÞÞ+ 1

� �
− 1

εc′ðePðNÞÞ− εf ′ðePðNÞhðNÞÞ .

When εhðNÞ εf ′ðePðNÞhðNÞÞ+ 1
� �

> 1, effort increases with the size of team, and
effort decreases otherwise.

Solution of Problem 3 To choose the team size that maximizes utility, solve

max
N

1
N
f hðNÞe*ðNÞ� �

− cðe*ðNÞÞ,

where e*ðNÞ is such that (8) holds. The first-order condition is:

f ′ðe*ðNÞhðNÞÞ e*ðNÞh′ðNÞ + ðe*ðNÞÞ′hðNÞ� �
=N − f ðe*ðNÞhðNÞÞ=N2

− c′ðe*ðNÞÞðe*ðNÞÞ′ < > 0,

with a > sign when the utility of each team member is increasing with the
membership size, with a < when the utility of each member is decreasing with
the membership size, and with equality at optimum. Substitute (8):

f ′ðe*ðNÞhðNÞÞ e*ðNÞh′ðNÞ+ ðe*ðNÞÞ′hðNÞ� �
=N − f ðe*ðNÞhðNÞÞ=N2 −

f ′ðe*ðNÞhðNÞÞhðNÞ=N2
� �ðe*ðNÞÞ′ < > 0.

Group the variables and divide by f ðe*ðNÞhðNÞÞ=N2 > 0 to obtain

f ′ðe*ðNÞhðNÞÞðe*ðNÞhðNÞÞ
f ðe*ðNÞhðNÞÞ

e*ðNÞh′ðNÞN + ðe*ðNÞÞ′hðNÞðN − 1Þ
ðe*ðNÞhðNÞÞ

� 	
− 1 < > 0,

εf ðe*ðNÞhðNÞÞ εhðNÞ+ N − 1
N

εe*ðNÞ
� 	

− 1 < > 0.

Solution of Problem 4 To maximize the utility of each member of the team when
their effort is imposed to deliver the first best outcome, the size of the firm
should be chosen to solve

max
N

f ðePðNÞhðNÞÞ 1
N

− cðePðNÞÞ,
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subject to (9). The first-order condition of this problem is

f ′ðf ðePðNÞhðNÞÞÞ½ePðNÞh′ðNÞ+ hðNÞðePðNÞÞ′� 1
N

−
1
N2 f ðePðNÞhðNÞÞ

− c′ðePðNÞÞðePðNÞÞ′ < > 0.

Divide by f ðePðNÞhðNÞÞ=N2 and rearrange to obtain

1
f ðePðNÞhðNÞÞ=N2 εf ðePðNÞhðNÞÞεhðNÞ− 1

� �
< > 0. (18)

Result 1: If εf ′ is decreasing, then for every level of effort e,

εf ′ðehðNÞÞ ≤ εf ′ðeÞ < εc′ðeÞ.
If εc′ is decreasing, then for every level of effort e,

εf ′ðehðNÞÞ < εc′ðehðNÞÞ ≤ εc′ðeÞ.
Substituting the relevant effort levels completes the proof. □

Lemma 1: Let ~eðNÞ > eðNÞ. If εf ′ð�Þ is weakly decreasing (increasing), the effort-
maximizing team size under ~eðNÞ is lower (higher) than the effort maximizing team
size for eðNÞ.

Proof of Lemma 1: Let N1 and ~N1 be solutions to team effort maximizing
problems with effort functions eðNÞ and ~eðNÞ respectively. If εf ′ð�Þ is weakly
decreasing, since eðNÞ < ~eðNÞ

εhð~N1Þ εf ′ðeð~N1Þhð~N1ÞÞ+ 1
� �

− 2 ≥ εhð~N1Þ εf ′ð~eð~N1Þhð~N1ÞÞ+ 1
� �

− 2 = 0.

Since we assumed that the problem is single-peaked, this implies that the effort
is increasing with N for eðNÞ at N = ~N1, or that N1 > ~N1. The result for increasing
εf ′ð�Þ is proven similarly. □

Result 2: Suppose the marginal costs decrease to ~c′ðxÞ ≤ c′ðxÞ for any x. Consider
symmetric equilibrium efforts eðNÞ for the initial problem and cð�Þ costs, and
~eðNÞ under modified costs ~cð�Þ. By necessary conditions eðNÞ and ~eðNÞ solve (7)
with marginal cost functions c′ðxÞ and ~c′ðxÞ respectively. Therefore,

f ′ðeðNÞhðNÞÞhðNÞ=N2 −~c′ðeðNÞÞ ≥0= f ′ð~eðNÞhðNÞÞhðNÞ=N2 −~c′ð~eðNÞÞ.

This, combined with second order conditions and single crossing, implies
~e′ðNÞ ≥ eðNÞ. Applying Lemma 1, we obtain the result. □
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Result 3: Let ~N1 solve

εhð~N1Þ εf ′ðePð~N1Þhð~N1ÞÞ+ 1
� �

− 2 = 0.

Then ~N1 ≤N2 by single-peakedness assumption for Problem 1. Moreover, by
Lemma 1, ~N1 ≥N1 as ePðNÞ ≥ e*ðNÞ for each N. Hence, N2 ≥ ~N1 ≥N1. □

Result 4: Evaluate (16) at N1:

εf ðe*ðN1ÞhðN1ÞÞεhðN1Þ < > 1.

We know that

ðεf ′ðe*ðN1ÞhðN1ÞÞ+ 1ÞεhðN1Þ= 2.
When 2εf ðe*ðN1ÞhðN1ÞÞ > εf ′ðe*ðN1ÞhðN1ÞÞ+ 1,

2εf ðe*ðN1ÞhðN1ÞÞhðN1Þ > 2 ) εf ðe*ðN1ÞhðN1ÞÞhðN1Þ > 1,
meaning by the single-peakedness of Problem 3 that N3 >N1. The proof in the
opposite direction is identical. □

Result 5: εf ðxÞ ≥ εf ′ðxÞ+ 1 means

εf ðePðN2ÞhðN2ÞÞεhðNÞ− 1 ≥ ðεf ′ðePðN2ÞhðN2ÞÞ+ 1ÞεhðNÞ− 1 = 0
Workers’ utility increases at N2; hence, by the single-peakedness of Problem 4,
N2 ≤N4. The proof in the opposite direction is identical. □

Result 6: N3 is governed by Equation (16), N4 is governed by Equation (17).

If εf ð�Þ is decreasing, εf ðe*ðNÞhðNÞÞ > εf ðePðNÞhðNÞÞ for every N, and therefore the
path in the space ðεf ðÞ, εhðÞÞ for e*ðÞ is above the path for ePðÞ; see Figure 5b for
illustration. The intersection of the solid path, that is the outcome of the first-

Figure 5: Result 6 logic.
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best effort choice outcome, with the εf ð�Þεh = 1 locus provides N4. The intersec-
tion of the dashed path, that is the outcome of the team-member effort choice,
with εf ð�Þεh = 1 locus would provide N3 if N1 were equal to N3: then εe* would be
equal to zero. In this case, we would argue, N4 <N3: if the intersection happened
for the dashed path, the solid path has already intersected the solid threshold,
because it is below the dashed line. However, because εf ð�Þ is decreasing,
εf ð�Þ > εf ′ð�Þ+ 1, and by Result 4, N3 happens before the dashed path intersects
with εf ð�Þεh = 1 locus. Therefore, N3 <N4.

If εf ð�Þ is increasing, εf ðe*ðNÞhðNÞÞ < εf ðePðNÞhðNÞÞ for every N, and therefore
the path in the space ðεf ðÞ, εhðÞÞ for e*ðÞ is below the path for ePðÞ; see Figure 5a
for illustration. The intersection of the solid path, that is the outcome of the first-
best effort choice outcome, with the εf ð�Þεh = 1 locus provides N4. The intersec-
tion of the dashed path, that is the outcome of the team-member effort choice,
with εf ð�Þεh = 1 locus would provide N3 if N1 were equal to N3: then εe* would be
equal to zero. In this case, we would argue, N4 >N3: if the intersection happened
for the dashed line, the solid line cannot yet intersect with the threshold,
because it’s above the dashed line. However, because of Result 4, we know
that N1 is smaller than N3 when 2εf ðe*ðN1ÞhðN1ÞÞ < εf ′ðe*ðN1ÞhðN1ÞÞ+ 1, and by
single-peakedness of Problem 1, this means that at the intersection of the dashed
path and the threshold, εe* is negative. Therefore, N3 is a point before the
threshold, further ensuring that N4 >N3. □

The Choice of h′ð�Þ
If one knows f ð�Þ, hð�Þ, and cð�Þ, one can conduct the analysis above. However,
h′ðNÞ is not a fundamental, at least not in non-integer values. It suffices to know
hðNÞ to evaluate e*, eP, εf , εf ′ and εc at integer Ns. The optimum characterizations,
however, depend upon h′ðNÞ as well. h′ðNÞ values at integer points would suffice,
since optimization requires checking whether the value of the elasticity of hð�Þ is
above or below a certain threshold. How can one choose the value of h′ðNÞ at
integer points if one knows only hðNÞ at integer points? Obviously, arbitrary
choices of h′ðNÞ can position the points everywhere in the space of ðεh, εf ′Þ. One
can impose a refinement over the possible derivatives of hðNÞ, such as:

h′ðNÞ 2½minðhðN + 1Þ− hðNÞ, hðNÞ − hðN − 1ÞÞ, maxðhðN + 1Þ
− hðNÞ, hðNÞ − hðN − 1ÞÞ�. (19)

To connect integer points, assume that between two neighboring integers, h′ðNÞ is
monotone. This implies that the extrema of hðNÞ are found only at integer points.
Obviously, this preserves concavity, convexity andmonotonicity, if hðNÞ defined over
integers had had these properties. This limitation greatly helps to characterize the
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optimal paths. Consider Figure 6, which is similar to Figure 3, but instead of points
along the path of Γ1, we plot sets for every value of εf ′ðe*ðNÞhðNÞÞ that is consistent
with some value of h′ðNÞ restricted by (19) at integer values, and then impose
monotonicity for hð�Þ across the path to connect the integer values. On Figure 6,
one can see that the intersection withΦ1 happens between N = 3 and N = 4, whereas
for the Φ2 intersection with Γ1 is found between N = 4 and N = 5. Therefore, for f ð�Þ
and gð�Þ behind Figure 6, the self-organizing team will be too large to maximize
efforts.

The reverse problem of obtaining gð�Þ if one knows hð�Þ but not gð�Þ is
surprisingly easy.

Result 7: For every hðNÞ,

gðe1, .., eN jNÞ= hðNÞ e1e2...eNð Þ1=Nand gðe1, .., eN jNÞ= hðNÞ=N1=ρ
XN
i= 1

eρi

 !1=ρ

for ρ < 1 have properties necessary to apply the analysis above.

Proof: It is straightforward to see that, for gðe1, ..eNÞ= hðNÞðe1e2...eNÞ1=N , one
obtains

gð1, 1, .., 1 jNÞ= hðNÞð1 × 1 × 1 × .. × 1Þ1=N = hðNÞ,

Figure 6: Applying restriction (19) to characterize N1 when continuous hð�Þ is not available.
Note: The solid lines represent the possible values for the path Γ1 at integer Ns under the
restriction of (19). Shaded region represent possible places for the path of Γ1 over non-integer
values of N. Arrows follow a sample path.
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and homogeneity degree 1 is trivial. Since the function is Cobb-Douglas condi-
tional on N, g′ið� jNÞ= 1

N
gð� jNÞ

ei
> 0 and g′′ii = − N − 1

N2
gð� jNÞ

e2i
< 0, therefore,

Assumption 1 is satisfied. The CES case is proven similarly. □

This result emphasizes the comparative importance of hðNÞ over the complementa-
rities in gð�Þ: many different families of gð�Þ functions can supply mathematically
identical hðNÞ functions. gð�Þ should provide enough complementarity for the effort
choice problem to have a unique solution. The marginal effects of effort complemen-
tarity are less important than the scale effects of teamwork for the question of efficient
firm size. This, of course, is a consequence of the homogeneity of gð�Þ.

When Our Problems are Single Peaked

In general, the solutions of our Problems characterize two areas in the space of
two elasticities: one where the maximand is increasing with company size, and
another where the maximand is decreasing with company size. Consider
Problem 1. For single-peakedness, we need the path of elasticity values (such
as the one depicted with arrows in Figure 1) for our specific Problem to cross the
boundary once. Therefore, the path must start from above the boundary, and
should end below the boundary.

Moreover, the path should intersect the boundary at most once.
Guaranteeing this is hard: since effort might be decreasing in N, the elasticity
of f or of f ′ might reverse the direction, as soon as the boundary was crossed.

Result 8: Problem 1 is single-peaked if
– εhðNÞ > 2,
– εhðNÞ is weakly decreasing, and εf ′ðxÞ is weakly decreasing,
– εhð1Þðεf ′ðe*ð1ÞÞ+ 1Þ ≥ 2,
– and the limit points of εhðNÞðεf ′ðe*ðNÞhðNÞÞ+ 1Þ as N ! +∞ are less than 2.

Proof: The last two conditions are to guarantee that teams of size infinity and
teams of size of less than 1 are not optimal. The second condition makes sure
that the path of elasticity values can cross the boundary only from above.
Finally, the first condition makes sure that eðNÞhðNÞ is an increasing function:

Differentiate f ′ðe*ðNÞhðNÞÞ hðNÞ
N2 = c′ðe*ðNÞÞfwrt to N )

f ′′ðe*ðNÞhðNÞÞ hðNÞ
N2

de*ðNÞhðNÞ
dN

+ f ′ðe*ðNÞhðNÞÞ h′ðNÞ
N2 − 2

hðNÞ
N3

� 	
=
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= c′′ðe*ðNÞÞde
*ðNÞ
dN

=
c′′ðe*ðNÞÞ

hðNÞ
de*ðNÞhðNÞ

dN
− c′′ðe*ðNÞÞ h′ðNÞ

hðNÞ e
*ðNÞ.

Divide by the FOC:

εf ′ðe*ðNÞhðNÞÞ
e*ðNÞhðNÞ

de*ðNÞhðNÞ
dN

+
h′ðNÞ
hðNÞ −

2
N

� 	
=
εc′ðe*ðNÞhðNÞÞ
e*ðNÞhðNÞ

de*ðNÞhðNÞ
dN

− εc′ðe*ðNÞhðNÞÞ h′ðNÞhðNÞ .

de*ðNÞhðNÞ
dN N

e*ðNÞhðNÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
εe*h

=
εhðNÞð1 +Nεc′ðe*ðNÞÞÞ− 2

εc′ðe*ðNÞhðNÞÞ− εf ′ðe*ðNÞhðNÞÞ . □

For CES effort aggregation function, gðe1, e2, .., eNÞ= eρ1 + e
ρ
2 + ... + e

ρ
N

� �1=ρ
,

hðNÞ =N1=ρ, and εhðNÞ= 1
ρ, so this condition mean that ρ must be in ð0, 1

2�.
Similarly,

dePðNÞhðNÞ
dN N

ePðNÞhðNÞ =
εhðNÞð1 +Nεc′ðePðNÞÞÞ− 1

εc′ðePðNÞhðNÞÞ− εf ′ðePðNÞhðNÞÞ .

Therefore, for the single-peakedness of Problem 2, one can impose similar
conditions, with the only difference that εhðNÞ > 1, which is a weaker require-
ment, would suffice instead; we omit the derivation and the formal statement for
brevity.

The difference between the boundaries of Problem 2 and Problem 4 is that
εf ð�Þ, not εf ′ð�Þ, should be decreasing, so conditions 2–4 change. There are
obviously plenty of functions that have decreasing elasticities of both f ðxÞ and
f ′ðxÞ, for example, f ðxÞ= −Ax2 +Bx +C with A >C > 0 and B > 0 when x 2 ½0, B

2A�,
that is, when f ðxÞ is increasing. In any case, one can supply the sufficient
conditions for the single-peakedness of Problem 4 in the spirit of Result 8 by
modifying the first condition.

The single-peakedness of Problem 3 is harder to obtain, because it involves
εe* . As with the approach about Problem 4, we can impose an assumption about
εf ð�Þ being decreasing. However, it is harder to show that the boundary (16),
which should be intersected, is decreasing: the equation is not defined in the
space of two elasticities. Even if one were sure that εe*ðNÞ is decreasing as a
function of N, one could not be sure that Problem 3 is single-peaked: the weight
attached to elasticities changes with N. Explicit derivation will yield such objects
as εf ′′′ and εc′′′, which have no well-established intuition.
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