DE GRUYTER BE J. Theor. Econ. 2016; 16(1): 337-366

Research Article

Mikhail Galashin and Sergey V. Popov*
Teamwork Efficiency and Company Size

DOI 10.1515/bejte-2014-0040
Published online November 17, 2015

Abstract: We study how ownership structure and management objectives interact
in determining the company size without assuming information constraints or any
explicit costs of management. In symmetric agent economies, the optimal company
size balances the returns to scale of the production function and the returns to
collaboration efficiency. For a general class of payoff functions, we characterize the
optimal company size, and we compare the optimal company size across different
managerial objectives. We demonstrate the restrictiveness of common assumptions
on effort aggregation (e.g., constant elasticity of effort substitution), and we show
that common intuition (e.g., that corporate companies are more efficient and
therefore will be larger than equal-share partnerships) might not hold in general.
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1 Introduction

Many human activities benefit from collaboration. For instance, writing papers
in Economics with a coauthor is often much more efficient and fun than writing
them solo. But it is very infrequent that an activity benefits from the universal
participation of the whole human population — a moderate finite group suffices
for almost every purpose. So what determines the size of the productive com-
pany? When do the gains from cooperation balance out the costs of overcrowd-
ing? Williamson (1971) writes:

The properties of the firm that commend internal organization as a market substitute
would appear to fall into three categories: incentives, controls, and what may be referred
to broadly as “inherent structural advantages.”
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We concentrate on the inherent structural advantages of groups of different
sizes. We study a model of collaborative production that demonstrates that the
answer critically depends on the properties of the production function in a very
specific way. Our main contribution is to summarize a generic but hard-to-use
effort aggregation function that maps the agents’ individual efforts to the aggre-
gated effort spent on production with a simpler teamwork efficiency function that
measures the comparative efficiency of a team of N workers against one worker.
We demonstrate that many tradeoffs arising from employing different manage-
rial criteria can be characterized by the interplay of the production function,
which transforms aggregated effort into output, and the teamwork efficiency
function. For instance, to determine what company size maximizes the effort
made by the company’s employees, one needs to study the balance between the
returns to teamwork efficiency and the behavior of the marginal productivity of
the total effort. We compare the predictions for two types of companies:
team: workers determine their effort independently, and the product is split

evenly; and
firm: the residual profit claimant sets the effort level with the optimal contract.

We attempt to make as few assumptions as possible about the shape of
production functions, which pre-empts the chance to obtain closed-form solu-
tions. However, we are able to obtain comparative static results regarding the
change in the optimal size of the firm due to changes in the marginal costs of
effort, ownership structure (going from a worker-owned to capitalist-owned firm
and back), and managerial criteria (maximizing individual effort versus max-
imizing surplus per worker). We demonstrate that the difference in the sizes
chosen by different owners under different managerial criteria are governed by
the direction of change in the elasticity of the production function, and therefore
results obtained under the assumption of constant elasticities are misleading.
The premise that elasticities are constant is natural in parametric estimation,
but, as we show, assuming constant elasticities rules out economically signifi-
cant behavior.

We assume away monitoring, transaction and management costs, direct and
indirect, to ensure that they do not drive our results. We believe they are an
important part of the reason why firms exist, but they are complementary to the
forces we discuss, and their effects have been extensively studied. Our point is
that even in the absence of these costs, there may still be a reason for coopera-
tion — and a reason to limit cooperation. Ignoring most of the issues about
incentives and controls allows us to obtain strong predictions, providing an
opportunity to test empirically for the comparative importance of incentives in
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organizations'. Our framework allows one to make judgements about the direction
of change in the company’s size due to changes in the institutional organization
based upon the values of elasticities of certain functions, which can be estimated
empirically. Heywood and Jirjahn (2009) show that, in German data, the amount
of profit sharing in the company is not perfectly related to the company size,
whereas one would presume that profit sharing would be next to meaningless in a
large enough company. Their literature review contains similar studies, demon-
strating both the positive and negative connection of the company size and
prevalence of the profit-sharing in incentives in different countries. This line of
study is still active: one of the most recent studies, Long and Fang (2013) show
that in Canadian firms, an increase in the proportion of profit-sharing in remu-
neration is associated with increased efforts, especially for industries with team-
based production. Other channels of possible explanation are investigated, too:
Cornelissen, Heywood, and Jirjahn (2014) shows that some of the heterogeneity
can be explained by the reciprocity in particular industries. Our model, however,
shows that one can reconcile the observed mixed evidence without sophisticating
the model.

We now review the relevant literature. In Section 2, we introduce the model
and solve for the effort choice in both the team and the firm. In Section 3, we
discuss how to identify the optimal size of the company. The conclusion follows.
The mathematical Appendix contains proofs, elaborates on the characterization
of the teamwork efficiency function, and discusses the single-peakedness of our
size-choice problems.

1.1 Literature Review

The paper contributes to two strands of the literature. The moral hazard in
teams literature was introduced by Holmstrom (1982), who showed that the
provision of effort in teams will be generally suboptimal due to externalities in
effort levels and the impossibility of monitoring individual efforts perfectly.
Legros and Matthews (1993) showed that the problem of deviation from efficient
level effort may be effectively mitigated if the sharing rules are well-designed.?
Kandel and Lazear (1992) suggest peer pressure to mitigate the 1/N effect: the
increase in the number of workers lowers the marginal payoff from higher
effort. When the firm gets larger, the output is divided between a larger quantity

1 See Bikard, Murray, and Gans (2015) as an example in team efficiency estimation. This paper
also contains a vast review of other empirical papers that estimate collaboration effects, such as
in writing comic books, Broadway musicals and research papers.

2 Winter (2004) argues that, frequently, the uniform split of surplus is not necessarily a good
outcome. We keep treating workers equally for analytical tractability.
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of workers, while they bear the same individual costs. Hence, the effort of each
worker should grow less as firms grow larger, and the peer pressure should
compensate for this decline.’

Adams (2006) showed that the 1/N effect may not occur if the efforts of
workers are complementary enough. Because he uses a CES production function
with constant returns to scale, the determinant of sufficient complementarity is
the value of the elasticity of substitution. McGinty (2014) extends this argument
to power production functions. In this framework, two outcomes are generic:
either to always increase, or always to reduce the firm size. By generalizing, we
obtain a nontrivial optimal company size. This allows us to contribute to the firm
size literature too. Theories of firm boundaries are classified as technological,
organizational and institutional (see Kumar et al. 1999). The technological
theories explain the firm size by the productive inputs and the ways in which
the valuable output is produced. Basically, five technological factors are taken
into account in describing the firm size: market size, gains from specialization,
management control constraints, limited workers’ skills, and loss of coordina-
tion. For example, Adam Smith defined the firm size by benefits from specializa-
tion limited by the market size. By his logic, workers can specialize and invest in
a narrower range of skills, hence economizing on the costs of skills. Becker and
Murphy (1992) focus on the tradeoff between specialization and coordination
costs. The larger the firm, the larger the costs of management to put them
together to produce the valuable output.

Williamson (1971), Calvo and Wellisz (1978) and Rosen (1982) use loss of
control to explain the firm size. Williamson points out that the size of a
hierarchical organization may be limited by loss of control, assuming that the
intentions of managers are not fully transmitted downwards from layer to layer.
Calvo and Wellisz (1978) show that the effect of the problem largely depends on
the structure of monitoring. If the workers do not know when the monitoring
occurs, the loss of control doesn’t hinder the firm size, but it may do so if the
monitoring is scheduled. Rosen (1982) highlights the tradeoff between increasing
returns to scale in management and the loss of control. Because highly qualified
managers foster the productivity of their workers, able managers should have
larger firms. However, the attention of managers is limited, hence having too
many workers results in loss of control and substantially reduces the

3 In the same spirit of taking peers’ responses into account, Heywood and McGinty (2012)
replace the Nash equilibrium concept with the Consistent Conjectures approach: each agent,
instead of assuming that other agents do not respond to agent’s deviation, believes that there is
a (locally linear) best response. This yields more effort in outcomes when complementarities are
high enough.
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productivity of their team. The optimal firm size in this model is reached when
the value produced by the new worker is less than the losses due to attention
being diverted from his teammates.

In this literature, Kremer (1993) is the paper closest to ours, because this is
one paper that obtains the optimal size of the firm based solely on the firm’s
production function. This paper focuses on the tradeoff between specialization
and the probability of failure associated with low skill of workers. He assumes
that the the value of output is directly proportional to the number of tasks
needed to produce it. A larger number of workers — and hence tasks tackled —
allows for the production of more valuable output, but each additional worker is
a source of the risk of spoiling the whole product. Hence, the size of the firm is
explained by the probability of failure by the workers, which correlates with the
worker’s skill.

Acemoglu and Jensen (2013) analyze a problem similar to ours. Agents
pariticipate in an aggregative game, where the payoff of each agent is a function
only of the agent himself and of the aggregate of the actions of all agents, and
they establish existence and comparative statics results for games of this type.
Nti (1997) offers a similar analysis for contests. We allow general interactions,
but under certain assumptions we can summarize these interactions in a similar
way, which does not depend on additive separability. In addition, Acemoglu and
Jensen (2013) and Nti (1997) study comparative statics for this general class of
games with respect to the number of players, whereas we go a step beyond,
looking at the optimal number of players from the perspectives of different
managerial objectives. Jensen (2010) establishes the existence of pure strategy
Nash equilibrium in aggregative games, but does not explore the symmetry of
the equilibrium or the comparative statics.

2 The Model

In this part, we introduce the model of endogenous effort choice by the company
workers as a reaction to the size of the company. We define the equilibrium,
determine how the amount of effort responds to the change in the company size
N, and obtain comparative statics results.

Company workers contribute effort for production. The efforts of individual
workers {ey, ..., ey} are transformed into aggregated effort by the effort aggrega-
tor function:

g(e,....,ex |N):RY =R, )
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where g(- | N) changes with N. The aggregated effort is then used for production
via f(-), the production function®. Exercising effort lowers the utility of a team
member by the effort cost c(e). Obviously, the choice of effort depends upon
other members’ effort choice.

The team members split the fruits of their efforts equally. The worker’s
problem in the team is therefore to choose effort e to maximize

u(e| e, . eny N) = % F(g(e, e, ..., en |N)) - cle). )

The firm of size N, following the literature, acknowledges the strategic
complementarities between workers’ efforts, and provides each worker with a
contract that makes this worker implement the first best effort level. We assume
that the residual claimant collects all the surplus; results do not change if the
residual claimant collects only a fixed proportion of the surplus, with the rest of
the surplus going to the government, to employees as a fixed transfer, or to
waste. The effort aggregator and the production function are the same.

We introduce a number of assumptions in order to obtain useful
characterizations.

Assumption 1 f(-) is strictly increasing and twice continuously differentiable.

This is a technical assumption on the production function. We do not
require for now that f(-) has decreasing returns to scale or that it is positive
everywhere. We use this assumption in all characterizations of the behaviour of
optimal effort.

Assumption 2 g(-| N) is symmetric in e;, twice continuously differentiable, strictly
increasing in each argument, concave in one’s own effort, and homogenous’ of
degree 1 with respect to {e, ..., ey }. Normalize g(1|1) to 1.

This assumption states that the identities of workers do not matter, and only
the amount of effort does. This assumption is the cornerstone of our analysis,
since we are considering symmetric equilibria.

4 This does not have to be a production function. If, for instance, g denotes the amount of effort
spent, g(g) delivers the quantity produced from employing g efforts, and P(q) is the inverse
demand function, f(g)=q(g)P(q(g)) would be the revenue function, which can easily be not
concave. We omit this discussion for brevity, and continue to call f(-) the production function.
5 Homogeneity of degree of exactly 1 is not a very restrictive assumption: if one has g(-) which
is homothetic of degree y, one can use g(-)=g(-)"” and f(x)=f(x¥’). They produce the same
composition, but g(-) is homogenous degree 1.
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One of the consequences of this assumption is that gi’(e, es,..,ex |N) is
homogenous degree 0. This, in turn, implies that in a symmetric outcome

g’ule,e, ...,e|N)+g"n(e,e,...,e|N)+...+8"n(e, e, .,e|N)=0 &
g"u(e,e,..,e|N)=-(N-1)g"(e,e,..,e|N) Vie {2.N}, 3)

which by the concavity in one’s own effort means that in symmetric outcomes,
not necessarily everywhere, the efforts of members are strategic complements.

Assumption 3 c(-) is increasing, convex, twice differentiable, c(0) =c’(0) =0.

This immediately implies that every team member exerts a positive amount
of effort, since f(g(-)) is assumed to be strictly increasing at zero. Without this
assumption, one would need caveats about what happens when no workers
expend any effort.

1/p
Example 1 (based on McGinty 2014) Let g(e;,..,en |N) = (Zﬁl ef) , fx)=x4,
c(x) is increasing, twice differentiable and concave, and c’(e)e!~? is increasing®.
Therefore, agent 1 solves

1 N a/p
s (354) et

that which, assuming a symmetric outcome, produces e;=...=ey=e"(N)=z

(N%), where z(x) is the inverse of ¢’(z)z'~®/a. Hence, e"(N) is increasing in
N if and only if p € (0, a/2). The effort aggregator therefore needs to be closer to
Cobb-Douglas to have effort increasing in step with team size.

Even for a well-behaved aggregation function such as CES it is hard to
obtain a well-defined argmax ye"(N), and for other maximands, it is even
harder, for instance, the utility of a representative agent. This goes against the
data: most companies operate with a limited workforce, whatever the maximand
they pursue. In order to understand better what kind of interaction can deliver
nontrivial predictions (neither 1 nor +o0), we need to characterize the changes
in "(N). The first-order condition of the worker’s problem is

f'(g(es,....,en) | N))g'1(e1,....,en | N)/N -c’(e;) = 0. (4)

Solving the first-order condition is sufficient to solve for the maximum when

6 Particularly, a<1 suffices. McGinty (2014) takes c(e) =k%, and restricts a to less than 2.
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f"(g(e1, ....ex | N))(g'1(e1, ..., en | N))?/N +

f'(g(e1,....,en|N))g"u(er,....,en | N)/N—-c”(e;) <0 ®

for every {e,, ..., ex }. Denote g;(x) = q’(x)x/q(x), the elasticity of g(-) with respect
to x. By dividing the second-order condition by the first-order condition and
multiplying by e;, with a slight abuse of notation one can obtain

<0
—_——
gr(gler,....,en |N))es(er, ...,en | N) + &g (€1, ....,en | N) —&c(e1) <0, (6)
which will hold whenever (5) holds.

Assumption 4 (5) holds for every {ey, ...,en} for every N.

This assumption guarantees that the first-order condition has a unique
solution. Instead, one can assume that f(-) features decreasing returns to
scale, and the aggregator function g(-) is concave in each argument.
Alternatively, one can require that c(-) is convex enough.

2.1 Effort Choice in a Team: Equilibrium Outcome

The equilibrium is a collection of the efforts of agents {ej, ..ey} such that each
worker i solves his problem (2) treating the efforts of the other peers as given:

* 1 X
e; =argmax, Nf(g(e, e_;|N))-c(e),
where e” ; denotes the values of {ej, .., ey} omitting e;.
Assumption 5 A unique symmetric equilibrium with nonzero efforts exists.”

Let e"(N) be the function that solves

*

f(8(€'(N),..e'(N) |N))g's(€'(N), ..e'(N) [N)/N =c'(e (). @

7 We can obtain this assumption as a result by imposing additional assumptions on f(-) and
g(+), such as supermodularity and Inada conditions. The pure strategy equilibrium exists
because the game we consider here is a potential game; see Monderer and Shapley (1996),
Dubey, Haimanko, and Zapechelnyuk (2006) and Jensen (2010). To secure the existence and
uniqueness of the symmetric outcome, one can impose additional assumptions on f o g(-), c(-),
direct (concavity) or indirect (profit single-crossing, compactness of strategy space), but such
outcomes are clearly quite common. We opt to avoid the discussion of restrictiveness of these
additional assumptions, and concentrate on the interesting case.
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Homogeneity of degree 1 for g(-) helps us to study the behavior of " (N). Define
h(N)=g(1,..,1|N).
This function represents the efficiency of coworking. Observe that

N times N times

—— —
h(N) = eg(1,1,1,.,1|N) g(eee,.,e|N)
- el glely)

that is, h(N) measures how much more efficient is the team of agents that the
efforts of a single person, holding effort level unchanged. Henceforth we will
call this the teamwork efficiency function. For instance, if it is linear, the working
team is as efficient as its members applying the same effort separately. By
Euler’s rule and the symmetry of g(-),

d(h(N)e) _ dg(e,e,..,e|N)

de de
+gn (e, ..,e)=Ngi(e,..,e|N).

h(N) =

=gi'(e,...e) +g’(e,...,e) +..

Therefore, (7) can be rewritten as

f/(€ (N)R(N)R(N)/N? = c’(€’ (). ®)

Equation (8) is the incentive constraint that defines e"(N) as a function of N.

2.2 Effort Choice in a Firm: First Best

Following Holmstrom (1982), we assume that the residual claimant provides the
employees with contracts that implement the first-best choice of effort.

Assumption 6 The first-best choice of effort is positive and symmetric.®

The residual claimant would choose the effort size e”(N) to implement by
maximizing

N
max f(g(e, e, ..,ex |N)) - Z c(e;),

e, ..eN A
which, assuming a symmetric outcome, leads to the first-order condition

f(e"(N)h(N)R(N) /N =c'(e” (N)). ©)

8 This Assumption is a shortcut in a spirit similar to Assumption 5; see Footnote 5.
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The solution of (9), e’ (N), is greater than the solution of (8), e"(N), as long
as N >1. The reason is that in equilibrium, the marginal payoff for the individual
effort does not take into account the complementarities provided to other work-
ers. Even if the product f(-) were not split N ways, but instead were non-
rivalrous,’ the additional 1 /N in the marginal benefit of the team worker
would persist.

2.3 Second-Order Conditions and Uniqueness

Equation (6), the second-order condition of (8), in the equilibrium can be

rewritten as
<0

sff(e*(N)h(N))I% + &g, (€' (N), ..,e"(N) |N) —e-(e"(N))<O. (10)

This is because (e (N),..,e" (N)|N) = % = & Let

gr(¢ (N)h(N)) ~ (€' (N)) <O (11)
hold; then (10) is satisfied automatically. If c(x) is more convex than f(y) at every
x 2y, this condition is satisfied. Similar math is used to compare the risk-aversity
of individuals: for every u(x), &,(x) is just the negative of Arrow-Pratt measure

of relative risk aversion.
The second-order condition for (9) is

f7(e"(N)h(N))H*(N)/N - c”(e”(N)) <O,
which, after dividing by the first-order condition, can be rewritten as
g7 (e°(N)h(N)) - £-(e”(N)) <O. (12)

Observe that it is very similar to (11): but the effort level in the argument is
different. One would be sure that both (11) and (12) hold if one were sure that c(-)
is at every point “convexer” than f(-) at every point above: & (y) <&« (x)Vy>x.
This can be simpler to verify if additional assumptions are imposed on & or &.:

Result 1 If either & (x) or +(x) is weakly decreasing, & (x) <&« (x), and h(N) 21,
(11) and (12) are satisfied.

9 For non-rivalrous goods, consumption by one agent does not prevent or worsen the con-
sumption of the same unit of good by another agent. Think of coauthoring a paper: the fact of
eventual publication contributes to both authors as much as they would derive if there was only
one author, at least in the opinion of some promotion committees.
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Second-order conditions hold at maxima automatically, but if they hold every-
where, the solution of the corresponding FOC has to be unique. Result 1 thus
provides sufficient conditions for the uniqueness of the pure strategy outcome.

gr(x) being decreasing has the following interpretation. When & (x) is
constant and equal to a, it means that f’(x) = Kx*, which makes f(x) a power
function, where K is an integration constant (unless a= -1, in which case
f’(x) =KInx). The decreasing &¢(x) implies the “lower power”, or “less convex-
ity” of f(-) in larger arguments.

3 The Optimal Size of the Company

For now, h(N) has been defined only for N € {1,2,3,...}. Algebraically, the
problem of the optimal firm size with distinct nonatomary agents lies in the
discreteness of the firm size, which comes from having an integer quantity of
arguments in g(-). However, using symmetry, homogeneity and the function
h(N), we alleviated this mathematical problem. With a heroic leap of faith, we
extend the definition of h(N) to real positive semi-axis.'® The discussion of how
to choose a proper h(N) from knowing g(-) is in Appendix 5.1. With differenti-
able h(N), we can take derivatives with respect to N, and expect e"(N) and e”(N)
defined with (8) and (9) to be continuous and differentiable.

In order to conduct the comparative statics with respect to N, we apply the
usual implicit function apparatus.'’ Knowing how the workers of the company of
size N choose their effort, we can characterize the consequences of various
company managerial objectives on its hiring policy.

Assumption 7 The Problems we study are single-peaked, that is, there is a unique
interior maximum point; the derivative of every Problem’s Lagrangean is strictly
positive below this point, and strictly negative above this point.

Our results extend to the case when intersections are multiple in a manner
similar to the way that comparative statics with multiple equilibria are treated.

10 For g(eq, e, ..en |N)= \/ef totel+ azi# eiej, a € [0, +o0) yields h(N)=/aN?+ (1-a)N,
with e,(N)=1- M%M, an increasing function of N when a<1 and a decreasing function
when a > 1. Many papers impose an ad hoc g(-) without any discussion; Kremer (1993) argues for
Cobb-Douglas, Rajan and Zingales (1998) goes for linear additive; McGinty (2014) uses CES; see
Dubey, Haimanko, and Zapechelnyuk (2006), p. 86 and Jensen (2010), p. 16 for other examples.
11 We can use it because the necessary condition for its use is that the SOC for choosing e(N),
which is either (11) or (12), holds for every N by Assumptions 4 and 5.
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We concentrate on the single-crossing case for brevity: Appendix 5.2 elaborates
on single-peakedness.

3.1 Team Size that Maximizes Effort

This may be a concern in industries where learning-by-doing is important, and
therefore the decisionmakers would like to increase efforts even though this
might hurt their immediate profits. Workers may be willing to participate in
teams of a size that maximizes their effort to combat their long-term/short-term
decisionmaking inconsistency issues. This subsection is crucial to understand-
ing the further analysis. We have therefore sought to keep the analysis in this
part very explicit. Other problems will be dealt with in a similar fashion, there-
fore we relocate the repetitive parts to the Appendix.

From (8) one can deduce " (N), well-defined and differentiable over N € R,.

Problem 1 Characterize N; =arg maxy e’ (N).

Take elasticities with respect to N on both sides of (8) to get:

*

gr(e'(N)R(N))[ee (N) +n(N)] +£n(N) ~2=€c(e"(N) &g (N).
Solve this to obtain

s (€ (NRN) +1) -2
N e W) e (e NN ©

From (13) one can immediately see that the N that maximizes e"(N) has to satisfy
en(N) (ep(e" (N)R(N)) +1) =2. (14)

The denominator of (13) is positive: it is a second-order condition of the effort
choice problem, (11). Therefore, whenever &,(N) (g (e"(N)h(N)) +1) >2, e’(N) is
increasing in N, and otherwise it is decreasing in N.

In the space of (x,y) = (ex(-), &¢(-)), Equation (14) simplifies to:

O ={(x6y)[x(y+1)=2.}

Solving out the equilibrium will produce a function e"(N), and therefore a
sequence of values of (gy(N),ep(e"(N)h(N)). We depict an example of this
path in Figure 1a. Denote

I'1 = ((en(N), & (e"(N)h(N))) | Equation (8) holds).
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(@) In (ep, e4/) space (b) Result 2 logic

Figure 1: The choice of N to maximize effort in a team; and the Result 2 logic.

For the sequence depicted in the Figure 1, one can observe that e'(N) is
increasing at N <3, and decreasing for N =4. Therefore, the optimal “continu-
ous” N (denote it N;) is between 3 and 4, and the integer N that delivers the
maximum effort is either 3 or 4.

The assumption that g(-) is CES makes &,(N) constant; the assumption
that f’(-) is a power function makes & (-) constant. Example 1 predicts that
whether e"(N) is increasing or decreasing everywhere depends upon the
elasticity of substitution of g(-) precisely because, in the world of Example
1, f(x)=x* and g(-) is CES. I is a single point in these assumptions.
Therefore, in order to have a nontrivial prediction about the optimal effort
size, one needs either a decreasing &,(N), or a decreasing &(-), or both.
Obtaining values in the general case in inherently complicated, but one can
make comparative statics predictions without knowing the precise specifica-
tion of relevant functions.

Result 2 When & is decreasing, an increase (decrease) in the marginal costs of
effort leads to an increase (decrease) in Ny. When &5 is increasing, an increase
(decrease) in the marginal costs of effort leads to a decrease (increase) in Nj.

The purpose of this Result is to illustrate that the effort choice comparative
statics are governed by the variation in &p. This illustrates that a simplifying
assumption, such as constant elasticity, for the production function is not
innocuous. Even assumptions such as the concavity of f can restrict the econom-
ically important behavior:

Example 2 (based on Rajan and Zingales 1998, Lemma 2, p. 398) Let
g(ey,..ey|N)= Z?L 1€, and let f(x) be concave. Then
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_ fII(X)X

f0
and, therefore, for every N, (e4(N),&p(e"(N)R(N))) <(1,1), no matter what c(-) is.
The individual effort decreases with N for every N.

& (x) <0,  h(N)=N = & (N)=1,

3.2 Firm Size that Maximizes Effort

As in the previous part, this problem occurs in industries where learning-by-
doing is important, and long term planning may motivate to increase workers’
effort by manipulating the number of workers. We assume that when the firm
designs a contract, it tries to implement the first-best, which takes into account
the agents’ complementarities in g(-). If the social planner were choosing the
effort for the agents, his FOC would suggest a higher effort for a given N (see the
discussion of the 1/N effect on p. 12). Since c’(-) is increasing, this immediately
implies that e’ (N)=e"(N), with equality at N=1, and therefore the effort-max-
imizing sizes of a firm and a team do not have to coincide.

Problem 2 Characterize N, = arg maxy ef (N).

The first-order condition'? becomes
en(N) (ep(e"(N)R(N)) +1) =1. (15)

Again, if the left-hand side is larger than the right-hand side, the effort is
increasing in N, and the reverse holds when the left-hand side is smaller than
1. The change of the managerial objective affects multiple components of the
optimal size problem:

—  The threshold that governs when the firm is big enough, ®;, is now replaced by

Yi={(6y) [x(y+1)=1}.

The reason why 2 in the definition of @, is replaced by 1 in the definition of ¥; is

exactly because the marginal 1/N effect, which appeared because the individual

marginal benefit did not include the benefits provided to the other participants,

went away.

- Since ef(N)>e’(N) for almost every level of N, the values of
p(eP(N)h(N)) # &-(e"(N)h(N)), unless f(-) is a power function in the rele-
vant domain.

12 See Appendix for the derivation of solutions for Problems 2—4.



DE GRUYTER Teamwork Efficiency and Company Size =—— 351

en(N) en(N)
(a) If e* (V) were equal to e”’(N) (b) e*(N) < P (N), and e/ () is increasing

Figure 2: Choosing N to maximize effort, the firm case.

Figure 2b demonstrates the difference, assuming that &¢(-) is an increasing func-
tion. Since h(N) did not change, abscissae are the same for different values of N
for both ®@; and ¥;. It is plain that the two effects are at odds: since the threshold
is further away, larger firms become more efficient. However, the change in &'(-)
due to higher efforts for each firm size might lower the optimal firm size.

Result 3 If &7 (x) is weakly increasing, firms that maximize employees’ effort will
be larger than teams that choose their team size to maximize the efforts of the
members (N> > Ny).

Proof See Appendix. O

3.3 Team Size that Maximizes Utility

Would team members invite more members to join the team? If this increases the
utility of each team member, yes. Thus, the team size that maximizes the utility
of a member of the team is the team size that would emerge if teams were free to
invite or expel members.

Problem 3 Characterize N; =argmaxy +f(h(N)e"(N)) —c(e’(N)).

N3 should solve the following first-order condition:

N-1
N

g (e (N)h(N)) (sh(N) + & (N)) =1 (16)
Again, at values of N where the left-hand side is larger (smaller) than 1, the

utility is increasing (decreasing) in N. Let @, be the set of locations where (16) holds

with equality. This line, evaluated at N = Ny, is plotted over I'y and @; on Figure 3.
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ep(e’(N)h(N)) N=1

Figure 3: Choosing N to maximize individual utility.

Note: Below both graphs both efforts and profits increase as the size of the firm gets larger.
Above both graphs both efforts and profits decrease with N. Between graphs, when &,(N) <&,
efforts increase with N, but profits decrease; the reverse holds when g,(N) > .

One can immediately see that:

— There is a unique intersection of ®; and ®,, which happens at
En=1/gr(e(N1)h(Ny)).

—  The path of I'; intersects ®; above @, (@, if and only if N; <Ns. In general,
when two different maximands are used, different answers are to be
expected, but our result makes issues clearer: the only thing necessary to
establish whether N; <Ns is the value of &,(N;) and of & (e"(Ny)h"(Ny)).

Result 4 Ifep (" (N1)h(Ny)) +1 < (>) 2&¢(e"(N1)h(]Ny)), N is larger (smaller) than N;.
Proof See Appendix. O

Therefore, if the elasticity of f(-) at the size of the team chosen by team
members Nj is too small, it is likely that the team will be too large to implement
high efforts (N3 > Ny).

Observe that the local monotonicity of & (x) is informative about the com-
parison between & (x) +1 and &(x):

' (o & (%)

(er(0)" = (g7 00 + 1-g7(0)) L=

In particular, f(x) >0 implies (g(x))’>0 < & (x) +1>&(x), and the condition in
Result 4 means that the elasticity of f(-) is either not decreasing too fast, or that
it is decreasing quite quickly. Since adding and subtracting constants to the
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production function does not change &¢(x), but does change & (x), both cases
(N; <N5 and N; >N3) are generic.

In teaching, many lecturers assign home assignments for group work. Some
lecturers use fixed group sizes, other lecturers allow students to form groups of
their own choosing. If higher effort is desirable (for instance, because effort in the
classroom is valuable on the labor market, which is not fully understood by
students), it may be a good idea to restrict the group size, notwithstanding the
complaints of students. If the elasticity of f(-) at Ny is greater than (g (-) +1) at
the same Ny, students will yearn for an increase of the size of the group, and they
will complain that the required group size is too large otherwise.”” Instead of
assigning the group sizes, a teacher who wants to implement teamwork projects
can manipulate the group’s payoff implied by the project design, to make sure the
maximal effort group size is close to the maximal utility group size.

3.4 Firm Size that Maximizes Utility

When the principal extracts all surplus from the workers, maximizing the payoff
per worker translates to maximizing profit per worker. The principal maximizes
the surplus per worker, not the total surplus, because the principal can own
more than one firm, as fast food franchisers do.

Problem 4 Characterize N, =argmaxy ~f(h(N)e"(N)) - c(e’(N)).

At N,, the following holds (see Appendix for derivation):
gr(e"(N)R(N))en(N) =1 17)

When & (ef (N)h(N))ey(N) >1, the utility of each member of the firm increases
with the size of the firm, and the utility is reduced otherwise.

One can see the difference between (15) and (17); they have to be equal only
when VXx, & (x) =¢€p(x) +1, which implies that f(x) is the power function.

Result 5 If & (x) is increasing (decreasing), & (x) +1 > (<) &(x), and therefore N,
is larger (smaller) than N,.

Proof See Appendix. O

13 If one believes that the teachers do not split the payoff equally, but with the rule of 1/(N)

per person with B(N) >0, one can instead of 1 in the footnoted sentence use 1f”g(;(];\}|).
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This Result helps to establish why people do not work efficiently in different
environments. The problem is not so much in the returns to scale of the production
function; the relevant threshold is the comparison of the first and second derivatives of
the production function, which is known if it is known that the elasticity of the
production function is locally increasing or decreasing. Those employee-owned com-
panies whose employees feel that they would be more motivated and would work
harder had they had more collaborators have & (ef (N)h(N)) <&r (e (N)h(N)) + 1. The
curvature of their production function is increasing.

Result 6 If £ (x) is decreasing, N, is smaller than Ns. If & (x) is increasing, and
2¢r(€" (Ny)h(Ny)) < (e"(N1)h(Ny)) +1, Ny is larger than N.

Proof See Appendix. O

This Result shows that the issue of which companies are bigger, teams or
firms, boils down to the properties of the production function, and the only
limitations for the rest of the fundamentals (such as the cost function and effort
aggregation function) is to guarantee that assumptions hold. The precise shape
of h(-) determines the value of N5 and N,, but is not always needed to establish
which one is bigger. Obviously, there’s plenty of f(-) whose elasticities are not
monotone, but (a) the part that is harder to observe, the teamwork efficiency
function, may not require estimation, and (b) the monotonicity is only important
locally, for company sizes near N3 and Nj.

Results for other managerial objectives can be obtained in a similar fashion:
for instance, a residual claimant that collects a fixed proportion of the total
surplus of the firm will employ more than N, workers as long as (12) holds. We
reserve these for future research.

3.5 The Quagmire of Constant Elasticities

The previous analysis showed that at least one of two elasticities cannot be
constant in order to obtain a well-defined optimal company size. However, even
holding one of two elasticities constant can mislead. In the following example,
we assume that €,(N) is decreasing from a large enough value to O, and the
production function is a power function.

Example 3 Let f(x) =x* and c(e) = €P. Let B>a>0, then the relevant Assumptions
and (11) are satisfied. For general but convenient h(-), where &;(-) is decreasing,
the first-best " (N) chosen by the firm satisfies
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a(@ R MY ey

e’ (N) = exp lnz_lnﬁ ﬁ? Inh(N) - 5— ——InN|.

The effort size e"(N) chosen by the members of the team satisfies

. Ina-1n B a
e (N)=exp “poa /3‘ ——1Inh(N) - ﬁ— ——InN|.

Let us order firm sizes chosen with different managerial objectives. When &,(N)

is decreasing,

1. N, the team size that maximizes the effort when the effort level is chosen
simultaneously and independently, satisfies &;(N;) =2/a;

2. N, the firm size that maximizes the effort when the effort level is chosen
according to the first best, satisfies e,(N>) =1/a;

3. N3, the team size that maximizes the team member’s utility when the effort
level is chosen simultaneously and independently, solves &,(N)=1 + 1\% L
the right-hand side of which is monotone and converges to i + ll? from below;

4. Ny, the firm size that maximizes the utility per worker'* when the effort level
is chosen according to the first best, satisfies ,(Ns) =1/a.

Example 3 supplies the following intuition for different maximands (see

Figure 4):

1 & 2 The effort-maximizing size of the firm is greater than the effort-maximizing
size of the team. This is a consequence of f(-) being a power function (see
Result 3), and need not hold in general.

1 & 3 The company size chosen by the team when the decision to hire is in the
hands of the team members is greater than the company size chosen to
maximize the effort size. This is not a general result, but a consequence of a
close connection between &(-)=a and &-(-)=a-1. Compare (14) and (16):
when N is such that (8) is satisfied, (16) suggests that the utility of each
participant increases with the size of the team.

14 This coincides with the revenue per worker if the first best contract provides 0 utility to the
worker.
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Figure 4: Ordering solutions from Example 3.

2 & 4 The size of the firm that maximizes employees’ utilities is maximizing their
effort as well. This is not a general result, but a direct consequence of
f(x) =x*: conditions (15) and (17) coincide algebraically.

3 & 4 When a self-organized team becomes incorporated, it will become larger.
This, however, is not a general result, but a consequence of a power produc-
tion function.

This exercise demonstrates many spurious findings arising simply from the
desire for closed form solutions. Some of the strong predictions are general-
izable, but most are a consequence of the power function assumptions.

4 Conclusion

In this paper, we stepped away from the common assumptions about production
functions to study the effects of scale on the optimal size of a company, from
many perspectives. We found ways to circumvent the inherent discontinuity in
hiring when complementarities are important. Our contribution is to characterize
the effects of changes in the management of the company, such as the incor-
poration of a partnership, or going from private to public, on hiring or firing,
and whether employees’ effort will suffer from overcrowding or from insufficient
specialization. We found that teams do not have to be larger or smaller than
firms that use the same production function. The analytic framework that we
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suggest is very general, and can be modified to include uncertainty, non-trivial
firm ownership (for instance, one worker can be the claimant to the residual
profit, with nontrivial implications on the effort choice), non-trivial wage sche-
dules (for instance, imperfect observability of effort, total or individual, can call
for the design of an optimal wage schedule), or profit-splitting schemes from
cooperative game theory, for instance the Shapley value.

The homogeneity of workers is important in our analysis. We have
obtained results for a heterogenous workforce, where some workers are cap-
able (can choose a positive effort value), and others incapable (those who can
only choose zero effort). We can show that it might be the case that the
incapable workers are employed along with the capable ones: this happens
if the effort aggregation function is such that the employment of an extra
person provides teamwork efficiency externalities for the capable workers,
whereas additional effort from one hired capable person would diminish the
productivity of other capable employees.

Appendix

Proofs
Solution of Problem 1 in text, on page 14.

Solution of Problem 2 To choose the firm size that maximizes the level of effort,
take the derivative of both sides of

f(e"(N)h(N))R(N) /N =c'(e" (N))

with respect to N. The values of N where (e’(N))' =0 will be the one we are
looking for. The derivative looks like

f(e"(N)h(N))[h(N)(e"(N))’ + k' (N)e" (N)]h(N) /N
+f(e" (N)h(N))[W'(N)/N - h(N) /N*] =c”(e" (N)) (" (N) )"
Divide by the first-order condition to obtain

f"(e"(N)h(N))[h(N)(e"(N))"+ I’ (N)e" (N)|h(N) /N + f*(e” (N)h(N)) [}'(N) /N - h(N) /N?]
f'(e?(N)h(N))h(N)/N
c’(e"(N))(e"(N))’
ceP(N)) 7
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Rearrange to obtain

[c"<eP<N>>eP<N> ) f”(eP(N)h(N))h(N)eP(N)] (" (N)'N
(e () FleP(N)h(N) e (N)
HOON f"(e"(N)h(N))} )
RN) [ PR

Rewrite:
e (N) = LD (e (€ (MR +1) -1
ef - E‘C/(QP(N))—gf,(eP(N)h(N)) .

When &,(N) (g (P (N)h(N)) +1) >1, effort increases with the size of team, and
effort decreases otherwise.

Solution of Problem 3 To choose the team size that maximizes utility, solve

max - f (R(N)e (V) (e’ (N)),

where e"(N) is such that (8) holds. The first-order condition is:

(€' (N)R(N)) (&' (N)I'(N) + (&' (N))'h(N)) /N ~ f (" (N)h(N)) /N?
~c(€'(N))(e'(N)) < >0,
with a > sign when the utility of each team member is increasing with the
membership size, with a < when the utility of each member is decreasing with

the membership size, and with equality at optimum. Substitute (8):

* * *

f'(€'(N)h(N)) (€' (N)I'(N) + (€' (N))'h(N)) /N ~f (¢ (N)h(N)) /N* -
(f"(¢"(N)R(N))h(N)/N?) (€ (N))' < >0.
Group the variables and divide by f(e"(N)h(N))/N?>0 to obtain
€ (N)h(N)) (€ (N)I'(N)N + (e"(N))'h(N)(N-1)\ _
S (e (NJ(V)) )10
-1

*(N)) -1<>0.

Solution of Problem 4 To maximize the utility of each member of the team when
their effort is imposed to deliver the first best outcome, the size of the firm
should be chosen to solve

max (" (N)R(N)) y; - c(e"(N)),
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subject to (9). The first-order condition of this problem is

1 1

f/(F(€" (N)R(N))[e" (NI (N) + h(N) (e (N))] 3 = 2/ (€"(N)R(N)
-c'(eP(N))(eP(N)) < >0.
Divide by f(e”(N)h(N))/N? and rearrange to obtain
Frera e € R () 1) < >0. 18)

Result 1: If & is decreasing, then for every level of effort e,
& (eh(N)) <ep(e) <ec(e).
If e is decreasing, then for every level of effort e,
gr(eh(N)) <eq(eh(N)) <ec(e).
Substituting the relevant effort levels completes the proof. O
Lemma 1: Let é(N)>e(N). If &¢(-) is weakly decreasing (increasing), the effort-

maximizing team size under e(N) is lower (higher) than the effort maximizing team
size for e(N).

Proof of Lemma 1: Let N; and N; be solutions to team effort maximizing
problems with effort functions e(N) and e(N) respectively. If &(-) is weakly
decreasing, since e(N)<e(N)

en(N1) (g7 (e(N1)R(Ny)) +1) =22 ,(Ny) (ep(8(N1)R(N1)) +1) —2=0.

Since we assumed that the problem is single-peaked, this implies that the effort
is increasing with N for e(N) at N =N, or that N; >Nj. The result for increasing
& (-) is proven similarly. O

Result 2: Suppose the marginal costs decrease to ¢’(x) < c’(x) for any x. Consider
symmetric equilibrium efforts e(N) for the initial problem and c(-) costs, and
é(N) under modified costs ¢(-). By necessary conditions e(N) and é(N) solve (7)
with marginal cost functions ¢’(x) and ¢’(x) respectively. Therefore,

f'(e(N)h(N))h(N)/N? - ¢'(e(N)) = 0 =f"(é(N)h(N))h(N)/N* - & (&(N)).

This, combined with second order conditions and single crossing, implies
€’(N)=ze(N). Applying Lemma 1, we obtain the result. O
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Result 3: Let N; solve
en(N1) (e (€P (N1)R(Ny)) +1) -2=0.

Then N;<N, by single-peakedness assumption for Problem 1. Moreover, by
Lemma 1, N; = N; as e (N) =e"(N) for each N. Hence, N, >N > Nj. O

Result 4: Evaluate (16) at N;:
er(€'(N)h(NL) )en(Ny) < > 1.
We know that
(&7 (€"(N1)R(Ny)) + D)en(Ny) =2.
When 2¢¢(€" (Ny)h(N;)) > p (e (N1 )h(Ny)) +1,
2er(€” (N1)R(N1) )h(Ny) >2 = g7 (e’ (N1)h(Ny))h(Ny) > 1,

meaning by the single-peakedness of Problem 3 that N;>N;. The proof in the
opposite direction is identical. O

Result 5: & (x) 2 &¢(x) +1 means

&7 (€" (N2)h(N2))en(N) = 1= (ep-(e” (N2)h(N7)) + 1)en(N) —1=0
Workers’ utility increases at N,; hence, by the single-peakedness of Problem 4,
N, <N,. The proof in the opposite direction is identical. O

Result 6: N; is governed by Equation (16), N, is governed by Equation (17).

If () is decreasing, & (e (N)h(N)) > & (ef (N)h(N)) for every N, and therefore the
path in the space (&(), ex()) for e”() is above the path for ef(); see Figure 5b for
illustration. The intersection of the solid path, that is the outcome of the first-

- = (ea (), 24 (e* (N)R(N)))
— (en(N), £4(e? (N)YR(N)))
N=1

(a) When €¢() is increasing (b) When ¢() is decreasing

Figure 5: Result 6 logic.
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best effort choice outcome, with the &(-)e, =1 locus provides N,. The intersec-
tion of the dashed path, that is the outcome of the team-member effort choice,
with & (-)e, =1 locus would provide N5 if N; were equal to Ns: then €, would be
equal to zero. In this case, we would argue, N, < N: if the intersection happened
for the dashed path, the solid path has already intersected the solid threshold,
because it is below the dashed line. However, because &(-) is decreasing,
&(-)>€ep(-) +1, and by Result 4, N3 happens before the dashed path intersects
with & (-)ep =1 locus. Therefore, N3 <Nj.

If &(-) is increasing, & (e (N)h(N)) <& (e (N)h(N)) for every N, and therefore
the path in the space (g(), &x()) for €"() is below the path for ef(); see Figure 5a
for illustration. The intersection of the solid path, that is the outcome of the first-
best effort choice outcome, with the &(-)e, =1 locus provides N,. The intersec-
tion of the dashed path, that is the outcome of the team-member effort choice,
with & (-)e, =1 locus would provide N3 if N; were equal to Ns: then &, would be
equal to zero. In this case, we would argue, N, > Ns: if the intersection happened
for the dashed line, the solid line cannot yet intersect with the threshold,
because it’s above the dashed line. However, because of Result 4, we know
that N; is smaller than N3 when 2e/(e”(N))h(N;)) <&p(€"(N1)h(Ny)) +1, and by
single-peakedness of Problem 1, this means that at the intersection of the dashed
path and the threshold, &, is negative. Therefore, N5 is a point before the
threshold, further ensuring that Nj > N3. O

The Choice of h'(-)

If one knows f(-), h(-), and c(-), one can conduct the analysis above. However,
K’ (N) is not a fundamental, at least not in non-integer values. It suffices to know
h(N) to evaluate e”, e”, gr, & and & at integer Ns. The optimum characterizations,
however, depend upon h’(N) as well. #’(N) values at integer points would suffice,
since optimization requires checking whether the value of the elasticity of h(-) is
above or below a certain threshold. How can one choose the value of h’(N) at
integer points if one knows only h(N) at integer points? Obviously, arbitrary
choices of h'(N) can position the points everywhere in the space of (&g, &). One
can impose a refinement over the possible derivatives of h(N), such as:

W (N) €min(h(N +1) - h(N), h(N) - h(N - 1)), max(h(N +1)

~h(N), h(N) = h(N - 1))]. (19)

To connect integer points, assume that between two neighboring integers, h’(N) is
monotone. This implies that the extrema of h(N) are found only at integer points.
Obviously, this preserves concavity, convexity and monotonicity, if h(N) defined over
integers had had these properties. This limitation greatly helps to characterize the
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ep (e’ (N)h(N))

Figure 6: Applying restriction (19) to characterize N; when continuous h(-) is not available.
Note: The solid lines represent the possible values for the path I, at integer Ns under the
restriction of (19). Shaded region represent possible places for the path of I'; over non-integer
values of N. Arrows follow a sample path.

optimal paths. Consider Figure 6, which is similar to Figure 3, but instead of points
along the path of Ty, we plot sets for every value of & (e”(N)h(N)) that is consistent
with some value of h’'(N) restricted by (19) at integer values, and then impose
monotonicity for h(-) across the path to connect the integer values. On Figure 6,
one can see that the intersection with @, happens between N =3 and N = 4, whereas
for the @, intersection with Iy is found between N =4 and N = 5. Therefore, for f(-)
and g(-) behind Figure 6, the self-organizing team will be too large to maximize
efforts.

The reverse problem of obtaining g(-) if one knows h(-) but not g(-) is
surprisingly easy.

Result 7: For every h(N),

N 1/p
g(er, ..,en | N) =h(N)(ese,...ey) Nand g(ey, .., ey | N) = h(N) /NP <Z >

1

for p<1 have properties necessary to apply the analysis above.

Proof: It is straightforward to see that, for g(el,..eN)=h(N)(e1e2...eN)1/ N one
obtains

g(1,1,.,1|N)=h(N)(1x1x1x..x1)"¥ = h(N),
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and homogeneity degree 1 is trivial. Since the function is Cobb-Douglas condi-

tional on N, g%(-|N)= lg ‘N) >0 and g";=- NNzlg(JzN) <0, therefore,
Assumption 1 is satisfied. The CES case is proven similarly. , O

This result emphasizes the comparative importance of h(N) over the complementa-
rities in g(-): many different families of g(-) functions can supply mathematically
identical h(N) functions. g(-) should provide enough complementarity for the effort
choice problem to have a unique solution. The marginal effects of effort complemen-
tarity are less important than the scale effects of teamwork for the question of efficient
firm size. This, of course, is a consequence of the homogeneity of g(-).

When Our Problems are Single Peaked

In general, the solutions of our Problems characterize two areas in the space of
two elasticities: one where the maximand is increasing with company size, and
another where the maximand is decreasing with company size. Consider
Problem 1. For single-peakedness, we need the path of elasticity values (such
as the one depicted with arrows in Figure 1) for our specific Problem to cross the
boundary once. Therefore, the path must start from above the boundary, and
should end below the boundary.

Moreover, the path should intersect the boundary at most once.
Guaranteeing this is hard: since effort might be decreasing in N, the elasticity
of f or of f’ might reverse the direction, as soon as the boundary was crossed.

Result 8: Problem 1 is single-peaked if
- &n(N)>2
- &(N)is weakly decreasing, and &r(x) is weakly decreasing,

- a()(gp(e’(1)+1)22,
— and the limit points of en(N)(g(e"(N)h(N)) +1) as N — + oo are less than 2.

Proof: The last two conditions are to guarantee that teams of size infinity and
teams of size of less than 1 are not optimal. The second condition makes sure
that the path of elasticity values can cross the boundary only from above.
Finally, the first condition makes sure that e(N)h(N) is an increasing function:

h(N)
N2

Differentiate f’(e”(N)h(N)) =c’'(e"(N)){wrt to N =

h(N) de’ (N)h(N) (N)

£ (€' (N)R(N) =55 T+f'(e’(N)h(N))( 2 —thvj\al))=
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) dedI(VN) _ c;e( A(II)V)) de (IC\III)Vh(N) e ))}’11((]1\[\1)) c).

g (€ (N)h(N)) de"(N)h(N) (h’(N) ~ g) _ (€' (N)h(N)) de” (N)h(N)
’ h(N) “N)~ e (N)h(N) dN
H(N)

—&c(e’(N)h(N)) RN

€ (N)h(N) ~ ec(e"(N)h(N)) - & (e (N)(N))
——

£

ERNN g (N)(1+Neo(€'(N)) -2

. O

e'h

For CES effort aggregation function, g(ei,es,..,en)= (e +€5+..+ eﬁ,)l/ P

h(N)=N'?, and &,(N) = »» so this condition mean that p must be in (0, 3.
Similarly,

LOPNN g (N)(1+Nec(e"(N))) -1
FP(N)A(N) ~ ec(eP(N)A(N)) - er (P (N)h(N))"

Therefore, for the single-peakedness of Problem 2, one can impose similar
conditions, with the only difference that &,(N)>1, which is a weaker require-
ment, would suffice instead; we omit the derivation and the formal statement for
brevity.

The difference between the boundaries of Problem 2 and Problem 4 is that
&(-), not &p(-), should be decreasing, so conditions 2-4 change. There are
obviously plenty of functions that have decreasing elasticities of both f(x) and
f’(x), for example, f(x)= - Ax?+Bx+C with A>C>0 and B>0 when x € [0, £],
that is, when f(x) is increasing. In any case, one can supply the sufficient
conditions for the single-peakedness of Problem 4 in the spirit of Result 8 by
modifying the first condition.

The single-peakedness of Problem 3 is harder to obtain, because it involves
&.+. As with the approach about Problem 4, we can impose an assumption about
& (-) being decreasing. However, it is harder to show that the boundary (16),
which should be intersected, is decreasing: the equation is not defined in the
space of two elasticities. Even if one were sure that €, (N) is decreasing as a
function of N, one could not be sure that Problem 3 is single-peaked: the weight
attached to elasticities changes with N. Explicit derivation will yield such objects
as &~ and £, which have no well-established intuition.
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