Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1α,25-dihydroxyvitamin D3
-
Julia L. Ober-Blöbaum
, Gabriela Engelhardt , Silke Hebel , Lothar Rink und Hajo Haase
Abstract
Cadmium exposure has multiple effects on the immune system. These can be stimulating, leading to improved clearance of infections, or inhibiting, increasing susceptibility toward infectious agents. One in vivo observation in cadmium-exposed individuals is increased monocyte numbers. Therefore, the objective of this study is to investigate the impact of cadmium on monocyte differentiation in the HL-60 model cell line. Administered alone, cadmium had no effect. However, cadmium amplified the expression of monocyte surface markers CD11b and CD14 when differentiation was induced by 1α,25-dihydroxyvitamin D3 (VD3). Furthermore, differentiation with VD3 in the presence of cadmium augmented key monocyte functions: the capacities to perform phagocytosis and generate an oxidative burst. One important signaling pathway required for monocyte differentiation involves extracellular signal-regulated kinase (ERK)1/2. Notably, cadmium induced ERK1/2 phosphorylation in HL-60 cells. Furthermore, U0126, which inhibits ERK1/2 phosphorylation by upstream MAPK/ERK kinases (MEK)1/2, reduced VD3-mediated differentiation and abrogated the effects of cadmium. In conclusion, cadmium can augment monocytic differentiation by activating ERK1/2 signaling, leading to increased generation of functional monocytes. These increased monocyte numbers could contribute to the impact of cadmium on the immune system owing to their role in the production of pro-inflammatory cytokines and activation of T-cells by antigen presentation.
©2010 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Guest Editorial
- Highlight: Xenobiotics and Cell Signaling
- Reviews
- An introduction to the molecular basics of aryl hydrocarbon receptor biology
- Mechanisms and cell signaling in alcoholic liver disease
- Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action
- Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products
- Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1α,25-dihydroxyvitamin D3
- Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras
- The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells
- Short Communications
- c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy
- Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles
- Review
- Lipoprotein receptors – an evolutionarily ancient multifunctional receptor family
Artikel in diesem Heft
- Guest Editorial
- Highlight: Xenobiotics and Cell Signaling
- Reviews
- An introduction to the molecular basics of aryl hydrocarbon receptor biology
- Mechanisms and cell signaling in alcoholic liver disease
- Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action
- Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products
- Cadmium ions promote monocytic differentiation of human leukemia HL-60 cells treated with 1α,25-dihydroxyvitamin D3
- Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras
- The C2-streptavidin delivery system promotes the uptake of biotinylated molecules in macrophages and T-leukemia cells
- Short Communications
- c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy
- Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to carbon or silica-based nanoparticles
- Review
- Lipoprotein receptors – an evolutionarily ancient multifunctional receptor family