Startseite Medizin Personalized precision medicine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Personalized precision medicine

  • Leszek Konieczny EMAIL logo und Irena Roterman
Veröffentlicht/Copyright: 16. November 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Along with the development of modern science, medical knowledge and therapy become more and more precise and personal as a consequence. Genetics and immunology participate in the progress in particular. They open the way to molecular knowledge, allowing precise interpretation of pathology in individual cases followed by finding proper therapy. However, the large-scale improvement of medical efficacy seems to be achieved with the development of screening tests that, being not invasive and cheap, may allow for personal repeatable use and early revealing of threatening diseases.

  1. Ethical approval: The conducted research is not related to either human or animal use.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Research funding: None declared.

  4. Employment or leadership: None declared.

  5. Honorarium: None declared.

  6. Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

  7. Conflict of interests: The authors declare no conflict of interest.

References

[1] Garrett WS. The gut microbiota and colon cancer. Science 2019;364:1133–5.10.1126/science.aaw2367Suche in Google Scholar PubMed

[2] Donia MS, Fischbach MA. Human microbiota. Small molecules from the human microbiota. Science 2015;349:1254766.10.1126/science.1254766Suche in Google Scholar PubMed PubMed Central

[3] Cani PD. Gut cell metabolism shapes the microbiome. Science 2017;357:548–9.10.1126/science.aao2202Suche in Google Scholar PubMed

[4] Nobs SP, Elinav E. Walk on the wildling side. Science 2019;365:444–5.10.1126/science.aay2864Suche in Google Scholar PubMed

[5] Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 2019;365:eaaw4361.10.1126/science.aaw4361Suche in Google Scholar PubMed PubMed Central

[6] Bleich RM, Arthur JC. Revealing a microbial carcinogen. Science 2019;363:689–90.10.1126/science.aaw5475Suche in Google Scholar PubMed

[7] Muir A, Vander Heiden MG. The nutrient environment affects therapy. Science 2018;360:962–3.10.1126/science.aar5986Suche in Google Scholar PubMed PubMed Central

[8] Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5.10.1038/nature25973Suche in Google Scholar PubMed

[9] O’Neill C. Gut microbes metabolize Parkinson’s disease drug. Science 2019;364:1030–1.10.1126/science.aax8937Suche in Google Scholar PubMed

[10] Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril 2018;109:952–63.10.1016/j.fertnstert.2018.05.006Suche in Google Scholar PubMed PubMed Central

[11] Maughan T. The promise and the hype of ‘personalised medicine’. New Bioeth 2017;23:13–20.10.1080/20502877.2017.1314886Suche in Google Scholar PubMed PubMed Central

[12] Haigis KM, Cichowski K, Elledge SJ. Tissue-specificity in cancer: the rule, not the exception. Science 2019;363:1150–1.10.1126/science.aaw3472Suche in Google Scholar PubMed

[13] Ablain J, Xu M, Rothschild H, Jordan RC, Mito JK, Daniels BH, et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science 2018;362:1055–60.10.1126/science.aau6509Suche in Google Scholar PubMed PubMed Central

[14] Ledford H. Five big mysteries about CRISPR’s origins. Nature 2017;541:280–2.10.1038/541280aSuche in Google Scholar PubMed

[15] Amitai G, Sorek R. Intracellular signaling in CRISPR-Cas defense. Science 2017;357:550–1.10.1126/science.aao2210Suche in Google Scholar PubMed

[16] Zimmermann M, Murina O, Reijns MA, Agathanggelou A, Challis R, Tarnauskaitė Ž, et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 2018;559:285–9.10.1038/s41586-018-0291-zSuche in Google Scholar PubMed PubMed Central

[17] Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018;361:866–9.10.1126/science.aat5011Suche in Google Scholar PubMed PubMed Central

[18] Scott A. A CRISPR path to drug discovery. Nature 2018;555:810–1.10.1038/d41586-018-02477-1Suche in Google Scholar PubMed

[19] Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D, Rovira M, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 2016;354:aaf4445.10.1126/science.aaf4445Suche in Google Scholar PubMed

[20] Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017;548:413–9.10.1038/nature23305Suche in Google Scholar PubMed

[21] Klaeger S, Heinzlmeir S, Wilhelm M, Polzer H, Vick B, Koenig PA, et al. The target landscape of clinical kinase drugs. Science 2017;358:eaan4368.10.1126/science.aan4368Suche in Google Scholar PubMed PubMed Central

[22] Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, Duong JP, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature 2018;558:540–6.10.1038/s41586-018-0217-9Suche in Google Scholar PubMed PubMed Central

[23] Semple RK, Vanhaesebroeck B. Lessons for cancer drug treatment from tackling a non-cancerous overgrowth syndrome. Nature 2018;558:523–5.10.1038/d41586-018-05365-wSuche in Google Scholar PubMed

[24] Konieczny L, Roterman I, Spólnik P. Systems biology. Dordrecht: Springer, 2013.10.1007/978-3-319-01336-7Suche in Google Scholar

[25] Manfredi C, Tindall JM, Hong JS, Sorscher EJ. Making precision medicine personal for cystic fibrosis. Science 2019;365:220–1.10.1126/science.aaw0553Suche in Google Scholar PubMed PubMed Central

[26] Sievers QL, Petzold G, Bunker RD, Renneville A, Słabicki M, Liddicoat BJ, et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 2018;362:eaat0572.10.1126/science.aat0572Suche in Google Scholar PubMed PubMed Central

[27] Snyder EY. Finding a new purpose for old drugs. Science 2017;357:869–70.10.1126/science.aao2992Suche in Google Scholar PubMed

[28] Manning BD. Signalling protein protects the heart muscle from pressure-related stress. Nature 2019;566:187–8.10.1038/d41586-019-00245-3Suche in Google Scholar PubMed

[29] Ranek MJ, Kokkonen-Simon KM, Chen A, Dunkerly-Eyring BL, Vera MP, Oeing CU, et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature 2019;566:264–9.10.1038/s41586-019-0895-ySuche in Google Scholar PubMed PubMed Central

[30] Servick K. Unexpected drug emerges for stroke recovery. Science 2019;363:805.10.1126/science.363.6429.805Suche in Google Scholar PubMed

[31] Couzin-Frankel J. Anti-inflammatory prevents heart attacks. Science 2017;357:855.10.1126/science.357.6354.855Suche in Google Scholar PubMed

[32] Hejtmancik JF. Cataracts dissolved. Nature 2015;523:540–1.10.1038/nature14629Suche in Google Scholar PubMed

[33] Couzin-Frankel J. Second chapter. Science 2016;353:983–5.10.1126/science.353.6303.983Suche in Google Scholar PubMed

[34] Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 2018;554:373–7.10.1038/nature25500Suche in Google Scholar PubMed PubMed Central

[35] Munn LL, Jain RK. Vascular regulation of antitumor immunity. Science 2019;365:544–5.10.1126/science.aaw7875Suche in Google Scholar PubMed PubMed Central

[36] McKinney EF, Lee JC, Jayne DR, Lyons PA, Smith KG. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 2015;523:612–6.10.1038/nature14468Suche in Google Scholar PubMed PubMed Central

[37] Clouthier DL, Ohashi PS. Costimulation, a surprising connection for immunotherapy. Science 2017;355:1373–4.10.1126/science.aan1467Suche in Google Scholar PubMed

[38] Bryant VL, Hodgkin PD. Life, death, and antibodies. Science 2017;358:171–2.10.1126/science.aap8728Suche in Google Scholar PubMed

[39] Jagusiak A, Rybarska J, Piekarska B, Stopa B, Konieczny L. Self-assembled molecules – new kind of protein ligands – supramolecular ligands. In: Roterman I, Konieczny L, editor. Springer Open, 2018:21–42.10.1007/978-3-319-65639-7_2Suche in Google Scholar PubMed

[40] Zemanek G, Jagusiak A, Rybarska J, Piwowar P, Chłopaś K, Roterman I. Self-assembled molecules – new kind of protein ligands. In: Roterman I, Springer Open, 2018:43–60.10.1007/978-3-319-65639-7_3Suche in Google Scholar PubMed

[41] Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019;567:257–61.10.1038/s41586-019-0987-8Suche in Google Scholar PubMed

[42] Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926–30.10.1126/science.aar3247Suche in Google Scholar PubMed PubMed Central

[43] Kalinich M, Haber DA. Cancer detection: seeking signals in blood. Science 2018;359:866–7.10.1126/science.aas9102Suche in Google Scholar PubMed PubMed Central

[44] Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 2017;355:1433–6.10.1126/science.aah4115Suche in Google Scholar PubMed PubMed Central

[45] Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012;22:R741–52.10.1016/j.cub.2012.07.024Suche in Google Scholar PubMed

[46] Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell 2014;159:709–13.10.1016/j.cell.2014.10.039Suche in Google Scholar PubMed PubMed Central

[47] Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019;571:183–92.10.1038/s41586-019-1365-2Suche in Google Scholar PubMed PubMed Central

[48] Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Aging: a common driver of chronic diseases and a target for novel interventions. Cell 2014;159:709–13.10.1016/j.cell.2014.10.039Suche in Google Scholar

[49] Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 2007;117:2033–5.10.1172/JCI31771Suche in Google Scholar PubMed PubMed Central

[50] Steketee RW, ter Kuile F. Single low-dose primaquine to reduce malaria transmission. Lancet Infect Dis 2014;14:91–2.10.1016/S1473-3099(13)70288-3Suche in Google Scholar PubMed

Received: 2019-09-09
Accepted: 2019-10-21
Published Online: 2019-11-16

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/bams-2019-0047/pdf
Button zum nach oben scrollen