Home Application of WLS strips for position determination in strip PET tomograph based on plastic scintillators
Article
Licensed
Unlicensed Requires Authentication

Application of WLS strips for position determination in strip PET tomograph based on plastic scintillators

  • Jerzy Smyrski EMAIL logo , Paweł Moskal , Tomasz Bednarski , Piotr Białas , Eryk Czerwiński , łukasz Kapłon , Andrzej Kochanowski , Grzegorz Korcyl , Jakub Kowal , Paweł Kowalski , Tomasz Kozik , Wojciech Krzemień , Marcin Molenda , Szymon Niedźwiecki , Marek Pałka , Monika Pawlik-Niedzwiecka , Lech Raczyński , Zbigniew Rudy , Piotr Salabura , Neha Gupta-Sharma , Michał Silarski , Artur Słomski , Adam Strzelecki , Wojciech Wiślicki , Marcin Zieliński and Natalia Zoń
Published/Copyright: May 24, 2014
Become an author with De Gruyter Brill

Abstract

A method of the determination of a γ-quantum absorption point in a plastic scintillator block using a matrix of wavelength-shifting (WLS) strips is proposed. An application of this method for the improvement of position resolution in newly proposed positron emission tomography (PET) detectors based on plastic scintillators is presented. The method enables to reduce parallax errors in the reconstruction of images, which occurs in the presently used PET scanners.


Corresponding author: Jerzy Smyrski, Institute of Physics, Jagiellonian University, 30-059 Cracow, Poland, E-mail:

Acknowledgments

We acknowledge the technical and administrative support by M. Adamczyk, T. Gucwa-Rys, A. Heczko, M. Kajetanowicz, G. Konopka-Cupiał, J. Majewski, W. Migdał, and A. Misiak and the financial support by the Polish National Center for Development and Research through grant INNOTECH-K1/IN1/64/159174/NCBR/12, the Foundation for Polish Science through the MPD program, and the EU and MSHE Grant No. POIG.02.03.00-161 00-013/09.

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article. Research support played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared

References

1. Denisov S, Dzierba A, Heinz R, Klimenko A, Samoylenko V, Scott E, et al. Timing characteristics of scintillator bars. Nucl Instrum Methods A 2002;478:440–3.10.1016/S0168-9002(01)01798-3Search in Google Scholar

2. Anton G, Arends J, Beulertz W, Hey J. Amadeus – a new type of large area scintillation detector with position-, energy- and time-of-flight determination. Nucl Instrum Methods A 1991;310:631–5.10.1016/0168-9002(91)91110-HSearch in Google Scholar

3. Brauksiepe S, Grzonka D, Kilian K, Oelert W, Roderburg E, Rook M, et al. COSY-11, an internal experimental facility for threshold measurements. Nucl Instrum Methods A 1996;376:397–410.10.1016/0168-9002(96)00080-0Search in Google Scholar

4. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the positron emission tomography. Bio-Algorithms Med-Systems 2011;7:73; arXiv:1305.5187.Search in Google Scholar

5. Moskal P, Bednarski T, Bialas P, Ciszewska M, Czerwinski E, Heczko A, et al. Strip-PET: a novel detector concept for the TOF-PET scanner, Nucl Med Rev 2012;15:C68; arXiv: 1305.5562.Search in Google Scholar

6. Moskal P, Bednarski T, Bialas P, Ciszewska M, Czerwinski E, Heczko A, et al. TOF-PET detector concept based on organic scintillators. Nucl Med Rev 2012;15:C81; arXiv:1305.5559.Search in Google Scholar

7. Awes TC, Baktash C, Cumby RP, Ferguson RL, Franz A, Gabriel TA, et al. The mid-rapidity calorimeter for the relativistic heavy-ion experiment WA80 at CERN. Nucl Instrum Methods A 1989;279:479–502.10.1016/0168-9002(89)91295-3Search in Google Scholar

8. Abdallah J, Adragna P, Alexa C, Alves R, Amaral P, Ananiev A, et al. Mechanical construction and installation of the ATLAS tile calorimeter. J Instrum 2013;8:T11001.Search in Google Scholar

9. Mineev O, Kudenko Y, Musienko Y, Polyansky I, Yershov N, et al. Scintillator detectors with long WLS fibers and multi-pixel photodiodes. arXiv:1110.2651v1.Search in Google Scholar

10. Maeda J, Matsubara T, Nitta K, Kuze M. Development of cosmic-ray tracker for KASKA neutrino oscillation experiment. Physica E 2007;40:425–9.10.1016/j.physe.2007.06.055Search in Google Scholar

11. Stephan AC, Dai S, Wallace SA. Neutronics aspects of position-sensitive neutron scintillator detectors using wavelength-shifting readout fibers. Appl Radiat Isotopes 2004;61:1375–82.10.1016/j.apradiso.2004.04.005Search in Google Scholar

12. Nakamara T, Kawasaki T, Hosoya T, Toh K, Ebine M, Birumachi A, et al. A wavelength-shifting-fibre-based scintillator neutron detector implemented with the median point calculation method. J Instrum 2012;7:C02003.10.1088/1748-0221/7/02/C02003Search in Google Scholar

13. Belcari N, Damiani C, Del Guerra A, Di Domenico G, Motta A, Sabba N, et al. Measurement of photoelectron yield from scintillating fibers coupled to a YAP:Ce matrix. Nucl Instrum Methods A 2001;461:413–5.10.1016/S0168-9002(00)01261-4Search in Google Scholar

14. Braem A, Chesi E, Joram C, Séguinot J, Weilhammer P, De Leo R, et al. High precision coordinate readout for an axial 3-D PET detector module using a wave length shifter strip matrix. Nucl Instrum Methods A 2007;580:1513–21.10.1016/j.nima.2007.06.107Search in Google Scholar

15. Saint-Gobain Company. Product Data Sheets. Available at: http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx.Search in Google Scholar

16. Knoll GK. Radiation detection and measurement, 3rd ed. New York: John Wiley & Sons, 1999:251.Search in Google Scholar

Received: 2013-10-22
Accepted: 2014-2-26
Published Online: 2014-5-24
Published in Print: 2014-6-30

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/bams-2013-0103/html
Scroll to top button