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Abstract: A controller for the air temperature and relative
humidity of a greenhouse is presented that relies only on
the efficient exploitation of natural ventilation. Due to the
difficulty of modeling greenhouse climate from first princi-
ples, Neural Predictive Control (NPC) is chosen, which com-
bines the advantages of learning with Model Predictive Con-
trol (MPC) under constraints. Feedforward Neural Networks
(NNs) are used to obtain a predictive model and a simulation
model for the complex nonlinear dynamics of the tempera-
ture and humidity inside a greenhouse. The NNs are trained
and validated with an 81-day dataset recorded in a Mediter-
ranean greenhouse. The MPC approach applies operational
constraints to compute the optimal vent opening. It min-
imizes temperature and humidity tracking errors, limits
control increments to reduce motor wear, and enforces soft
bounds on greenhouse temperature and humidity. Hard
constraints include vent saturation and a wind speed limit
for safety. The NPC strategy was evaluated in simulation
with real weather, featuring both sunny and windy con-
ditions. The results show small validation errors of the
NNs. The tracking error in the control approach in situa-
tions without saturated input is below 3K and in 81 % of
the time the humidity is within the bounds. The presented
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data-driven control approach is attractive for controller
design as data availability in greenhouses is expected to
increase in the coming years.

Keywords: data-driven models; machine learning; model
predictive control; neural networks; natural ventilation

Abstract: Ein Regler fiir die Lufttemperatur und relati-
ve Luftfeuchtigkeit in einem Gewéchshaus wird vorge-
stellt, der ausschliefilich auf die effiziente Nutzung der
natiirlichen Beliiftung setzt. Aufgrund der Schwierigkeit,
das Gewachshausklima aus physikalischen Grundlagen her-
aus zu modellieren, wird Neural Predictive Control (NPC)
eingesetzt, eine Methode, die die Vorteile des maschinel-
len Lernens mit denen der modellpradiktiven Regelung
(MPC) unter Einhaltung von Nebenbedingungen kombi-
niert. Vorwartsgerichtete Neuronale Netze (NNs) werden
verwendet, um sowohl ein Vorhersagemodell als auch ein
Simulationsmodell fiir die komplexen, nichtlinearen Dy-
namiken von Temperatur und Luftfeuchtigkeit im Inne-
ren des Gewdchshauses zu erstellen. Die neuronalen Net-
ze werden mit einem iiber 81 Tage aufgezeichneten Da-
tensatz aus einem mediterranen Gewéchshaus trainiert
und validiert. Der MPC-Ansatz beriicksichtigt betriebliche
Einschrédnkungen, um die optimale Fensteroffnung zu be-
rechnen. Dabei werden Temperatur- und Feuchtigkeitsab-
weichungen minimiert, Steuerungsdnderungen begrenzt,
um den Verschleifd der Antriebe zu reduzieren, und wei-
che Schranken fiir Temperatur und Luftfeuchtigkeit im
Gewachshaus eingehalten. Harte Nebenbedingungen um-
fassen die Begrenzung der Fensterdffnung sowie eine Wind-
geschwindigkeitsgrenze aus Sicherheitsgriinden. Die NPC-
Strategie wurde in einer Simulation mit realen Wetterdaten
getestet, die sowohl sonnige als auch windige Bedingungen
umfasste. Die Ergebnisse zeigen geringe Validierungsfehler
der neuronalen Netze. Der Regelabweichungsfehler liegt in
Situationen ohne gesattigte Eingaben unter 3 K, und in 81 %
der Zeit bleibt die Luftfeuchtigkeit innerhalb der vorgegebe-
nen Grenzen. Der vorgestellte datengetriebene Regelungs-
ansatz ist vielversprechend fiir die Reglerauslegung, da in
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den kommenden Jahren mit einer steigenden Datenverfiig-
barkeit in Gewachshdusern zu rechnen ist.

Keywords: Datengetriebene Modelle; maschinelles Lernen;
modellpréadiktive Regelung; neuronale Netze; natiirliche Be-
liftung

1 Introduction

In modern agriculture, precise control of environmental
conditions is essential to optimize the productivity of green-
house crops. A greenhouse is a structure designed to cre-
ate a controllable environment that favors the growth of
crops, protecting them from adverse climatic factors and
pests. Thanks to their transparent materials, such as glass or
plastic, greenhouses allow sunlight to enter, which is crucial
for crop photosynthesis. Climate control systems, such as
ventilation and heating, can be installed in a greenhouse
to maintain a stable environment for plants, keeping condi-
tions within a specific range regardless of outside weather
changes. The use of automatic control techniques is crucial
for regulating variables such as temperature and humidity
to ensure the healthy growth of plants and fruit. In par-
ticular, automatic control allows for quick adjustments to
external weather changes, ensuring a consistently stable
microclimate within the greenhouse [1].

In Mediterranean greenhouses, natural ventilation is
the main action for farmers to control the temperature
and humidity due to the mild climate of the region and
the low cost of this approach. Natural ventilation is the
exchange of air between the inside and outside of a green-
house without other technical assistance, such as fans or
air conditioning. The temperature needs to be controlled to
avoid too high or too low temperatures, negatively affecting
fruit development. The relative humidity must stay within
reasonable bounds to prevent plant water stress and the
appearance of fungal disease [2]. Thus, the opening of the
greenhouse vents must be controlled when the inside con-
ditions get unfavorable so that warm air can escape while
cooler air enters, promoting an airflow that also allows
for the exchange of humid air [3]. Designing an effective
controller benefits greatly from an accurate model, yet the
greenhouse environment is influenced by highly nonlinear
and tightly coupled factors [4] such as external weather con-
ditions (e.g., temperature and air pressure affect humidity)
and internal variables such as greenhouse structure, size,
and crop types. This complexity makes identification from
first principles challenging, and even a well-defined model
often applies only to a specific greenhouse under specific
weather conditions. When conditions change, model and
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controller parameters must be recalibrated. These complex-
ities make greenhouse climate control a challenging control
engineering problem.

Various control techniques have been proposed for
greenhouse control [1], [5], [6]. These include PID control
with and without feedforward component [7]-[9], adap-
tive control [10]-[12], selective and event-based control [13],
fuzzy control [14], and nonlinear control [15], [16] includ-
ing Model Predictive Control (MPC) approaches [17]-[19]. A
common approach is to track only a reference temperature
while maintaining humidity within acceptable ranges for
the crop. When humidity exceeds these ranges, the tem-
perature setpoint is changed to force the vents to open
which enables the exchange of humid air [1]. Although the
above techniques have proven to be effective, they have
some drawbacks. On the one hand, PID control (and other
approaches based on PID control) rely on low-order mod-
els identified for the dynamics of the greenhouse microcli-
mate, which changes over the year and for every green-
house and region, thus requiring repeated tuning of the
controller parameters and/or repeated model identifica-
tion. On the other hand, adaptive and nonlinear control
techniques require knowledge of the dynamics that relate
temperature and humidity to the natural ventilation effect,
for example, in the form of first-principles-based models.
While these models can capture the environment dynamics,
in reality, they still need repeated recalibrations [20]. In
this sense, the expressions relating the greenhouse micro-
climate and the ventilation effect are strongly nonlinear
[4], which makes them complex to use to develop control
strategies analytically.

Among the control methods discussed, MPC is one of
the most promising ones for greenhouse climate control
because it combines the ability to handle complex, mul-
tivariable dynamics with constraint satisfaction proper-
ties. By predicting future conditions, MPC optimizes control
actions over a given horizon, effectively managing tempera-
ture and humidity while integrating operational constraints
to ensure safe, efficient control that minimizes equipment
wear. However, a major drawback of MPC is that it requires
an accurate model to perform optimally, and as mentioned
developing such a model is challenging due to the complex
and changing nature of greenhouse environments.

Inrecent years, learning-based control techniques have
been applied to handle complex dynamics like these, open-
ing up the possibility of using MPC efficiently for green-
houses. An overview of learning-based MPC methods is
provided in [21], and a demonstration of a state-of-the-art
Neural Network (NN)-based MPC, also known as Neural
Predictive Control (NPC), applied to robotics, is presented
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in [22]. These data-driven modeling and control techniques
have also been applied to manage the complex dynamics
of the greenhouse microclimate, e.g., by approaches using
linear MPC [23], [24]. The application of NPC for greenhouses
is explored in [25], where heating is used alongside vents as
an input, facilitating easier control but at increased opera-
tional cost. In contrast [26], uses only vent control to manage
temperature, though this approach does not account for
indoor humidity, which significantly simplifies the learning
and control part. For learning of an NN, the approach in [27]
relies on artificially generated data based on an analytical
model, which may not fully capture the variability of real-
world greenhouse conditions.

However, datasets with a relevant amount of measure-
ments are required for the development of learning-based
control, which has previously been a limitation. An increas-
ing number of greenhouses are being equipped with data
acquisition systems that are connected to cloud comput-
ing platforms [28], [29]. Therefore, it is expected that data
availability will not be the limiting factor anymore in the
coming years [30]. This work aims to take advantage of
these future developments by using greenhouse data to
implement a temperature and humidity control technique
based directly on measured data, eliminating the need for
explicit mathematical models. This approach simplifies the
modeling of complex dynamics and ensures that the method
is applicable across different greenhouses without the need
for extensive model identification, while retaining the ben-
efits of MPC.

1.1 Problem statement and contribution

The objective of this work is to maintain optimal temper-
ature and humidity in a greenhouse using natural ventila-
tion. This task is challenging due to the complex, nonlinear
interactions between indoor climate variables and external
weather conditions, which vary by region and depend on
greenhouse-specific factors such as orientation with respect
to the wind and sun and structure of the greenhouse. In
addition, simultaneous control of temperature and humid-
ity often results in conflicting control actions, requiring
weighted cost functions. Safety mechanisms are essential to
prevent unsafe conditions, such as open vents during strong
winds.

In contrast to existing data-driven approaches that use
simplified linear models [23], [24] or artificially generated
data [27], this work proposes a fully data-driven nonlinear
MPC that learns directly from real greenhouse data. Com-
pared to prior neural-network-based MPC methods [26],
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which focus solely on temperature, this approach jointly
optimizes temperature and humidity while accounting for
their coupled dynamics and constraints.

The main contribution of this work is the integration of
all these factors into a single method, addressing gaps left by
previous approaches and advancing state-of-the-art green-
house climate control. This is achieved through a learning-
based MPC strategy to regulate greenhouse temperature
and humidity using natural ventilation. In this context, the
term “learning-based” refers to approaches in which the
system dynamics is represented by machine learning mod-
els, such as NNs. Unlike traditional models, which require
frequent recalibration, and prior data-driven models that
rely on pre-generated datasets, the approach presented in
this work enables continuous adaptation to the changing
greenhouse conditions, such as changes in dynamics due
to seasonal changes or wear. NNs were chosen over other
learning-based approaches for this application due to the
need for scalability, transfer learning, and online learning
capabilities in greenhouse environments to allow for auto-
matic adjustments to the current region and structure [31],
[32]. The NPC strategy is tested in simulation using weather
data from a traditional greenhouse in Southeastern Spain.

1.2 Paper outline

The remainder of this paper is structured as follows:
Section 2 describes the greenhouse setup and the exper-
imental data used for model learning. The background
of learning-based MPC is explained, including NN mod-
eling approaches. The proposed NPC strategy for green-
house climate control is then presented in Section 3, cov-
ering the identification of the environmental model and
the design of the control framework. Section 4 presents and
discusses the results. Finally, Section 5 summarizes the main
findings.

1.3 Notation

Vectors are written as bold lowercase letters, matrices are
denoted as bold uppercase letters, and sets are denoted
with calligraphic font, e.g., x, 4, and X, respectively. The
variable x, is the state at time k, and X, is the predic-
tion i steps ahead from k. Predicted sequences are denoted
as uppercase vectors, ie., X;, U,. The weighted norm is
||x||é = x" Qx. The function diag: R™" — R" maps diagonal
elements of a matrix into a column vector. The maximum
operator max: R" X R" X - - - —» R™ acts on each argument
element-wise. Percentage points are denoted as %pt.
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2 Materials and methods

2.1 Greenhouse data

The data used in this work is from the greenhouse shown in
Figure 1, located at “Las Palmerillas” Experimental Station
of the Cajamar Foundation, in El Ejido, Almeria, Spain. Itis a
traditional Almeria-type greenhouse with an area of 877 m?
(37.80 m x 32.20 m) and a polyethylene cover. The green-
house is equipped with several actuation systems that con-
trol the climate. In particular, the natural ventilation system
consists of five roof vents (8.36 m X 0.73 m) and two lateral
vents (32.75m X 1.90 m) on the north and south sidewalls.
As shown in Figure 1, the roof vents have an angled opening
and the lateral vents are opened by rolling up a plastic film.
The vents are motor-controlled and can be opened from 0 %
to 100 % of their ventilation area.

The main climatic variables were recorded every 30 s
using two sensors (each measuring both temperature and
humidity). One is placed outside and one inside central in
the greenhouse. The following variables were measured
for this work: solar global radiation R in % (pyranome-
ters model LP02, Hukseflux, Delft, The Netherlands), inside
and outside air temperature in °C, 9;, and 9, inside and
outside relative humidity in %, ¢;, and ¢, (probes model
HC2S3, Campbell Scientific Ltd., Shepshed, UK), and outside
wind speed v;,q in ? (anemometer model A100L2, Vector
Instruments, Rhyl, UK).

The opening ratio of each vent in %, u,,, was recorded
every 30 s, as the electric motors are connected to a super-
visory and control data acquisition (SCADA) system in
which manual and automatic actions are performed to reg-
ulate the air temperature inside the greenhouse by natural
ventilation.

Roof vent
Lateral vent

o

N
X \ -
L

Figure 1: Traditional Aimeria-type greenhouse.
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Formally, for a given time k, the input u, = u,, , is the
opening percentage, meaning that at 100 % all windows are
fully open and at 0 % they are fully closed. All windows
are controlled identically, so Uy, x is a scalar value applied
to each window. For a traditional low-tech greenhouse,
there are no other actuators that heat, cool, humidify, or
dehumidify the greenhouse. The state of the greenhouse is
described by x; = [9y 4> @inx] " The weather data that act
as measurable and predictable disturbances on the system
is P = [@outir R Sout > Uwind k| " at each time step k. Using
this data, the objective is to develop a model that can pre-
dict greenhouse temperature and humidity in the next time
step based on current temperature, humidity levels, current
weather data, and vent positions. This single-step predictive
model allows to predict the sequences up to the prediction
horizon using the state predictions from the previous time
steps and the weather forecast as input for subsequent
predictions.

The next section introduces NPC which is a standard
learning-based MPC.

2.2 Learning-based model predictive control

For prediction of the state sequence for a specified input
sequence, the system dynamics are modeled using a non-
linear discrete-time state-space representation

Xipak = Xy + o Kijies Wy Pigi) » ()]
—_—
Ay

where X;, is the predicted state, i, is the scalar input
producing the prediction, and p; is the predicted weather
data. The index [']ilk denotes a prediction variable where
k is the initial time and i is the prediction steps ahead.
The nonlinear function f, describes the predicted update
of the state A)?ilk based on the current state, input, and
system parameter. The standard MPC paradigm, explained
in Section 2.2.1, uses a nonlinear function fp derived from
first principles, typically based on physics-based modeling
or system identification techniques where parameters are
estimated through regression or optimization on experi-
mental data. In contrast, the learning-based MPC paradigm
replaces the first principles-derived model with a machine
learning model, specifically an NN in this work. In con-
trast to traditional system identification, which assumes
a predefined functional structure (e.g., linear state-space
models) and estimates the parameters accordingly, the NN
learns a more flexible representation of f, directly from
the data. This modeling approach will be explained in
Section 2.2.2.
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2.2.1 Model predictive control

MPC is a control method that optimizes future inputs
of a system by predicting the state trajectory over a
time horizon N € N. Using a system model, MPC mini-
mizes a predefined cost function J(U,,X,) for the whole
horizon [33], where U = [y, ly g, ... y_q]7 and X, =
[)”(Ole,)?lle, LR
on input and state, the optimization problem is subject
to state and input constraints X;, € X CR", i, € U" C
R, Vi€ [0, N —1]. At each time step k, the optimization
problem is solved resulting in the optimal input sequence
U, but only the first optimal control input ﬁ(’)‘l « 1s applied to
the system. The process then repeats at the next time step,
k + 1, using the new measured state and predicted weather

data py .

. In order to avoid violations of bounds

2.2.2 Modeling with neural networks

In contrast to physics-based models that rely on the analyti-
cal description of systems dynamics, NNs indirectly capture
these mappings and correlations based on the data they
see, making them an attractive option for the modeling of
systems and for model-based control methods.

In this work, a simple feedforward NN is used to model
the system dynamics update, with a mapping from input
data d, € RY, to an outputy, € R®. Normalizing input data
is recommended to improve network performance.

The input data d, is weighted by W, € R™4, and off-
set with a bias term b, € R’, resulting in an input to the
first activation function a;. The output of this function, h,,
then serves as input to the next layer, where it is processed
with weights W, € R™" and biases b, € R”. This procedure
continues across all L layers until the final activation func-
tion, a;, yields the output y,. The activation function of the
output layer is chosen as linear function. The mathematical
formulation of this feedforward NN with L layers (consisting
of L — 1 hidden layers with r neurons each) is given by

z, = Wyd, + by, (2a)
h, = ay(z)) = a(W,d; + b,), (2b)
z, = W,h; + b,, (2¢)
hZ = az(zz) = az(WZ . al(Wldk + bl) + bz), (Zd)
z, =W, h,_+b,, (2e)
h, = a;(z;) = f(d,, W,b) =y,. 2f)
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The parameterization of a NN combines all weights in
W and biases in b resulting in the parametrized function
f(d,, W, b). In this setup, q represents the dimension of the
input vector d,, (i.e., the number of features), r is the number
of neurons in each hidden layer, and s is the dimensionality
of the output (i.e., the number of output neurons in h;).

The next section describes how the NPC is adapted
specifically for the given greenhouse data in order to fulfill
the requirements given in Section 2.1.

3 Neural predictive control for
greenhouses

In order to control the greenhouse climate with an NPC
approach, two major design steps must be considered. First,
the model for the controller must be learned, and thus, the
data must be prepared to be used in a NN. As a second step,
the NPC algorithm must be tuned according to the needs.
This interplay is illustrated in the blue box in Figure 2. The
optimal control problem of the NPC algorithm is based on
a predictive NN that takes the current inside temperature
and humidity x,, the weather data p,, and allowed vent
opening percentages u;, as inputs and predicts the corre-
sponding changes in the state for the next time step Ax;.
The optimization finds a full sequence of future optimal vent
configurations that result in good tracking performance for

Simulation Neural
Network Model

Optimization

Predictive Neural
Network Model

Inside
X | Temperature
& Humidity

Reference Xypef
=

Figure 2: Overview of the NPC strategy. The controller generates inputs
tested in the simulation model. At each time step, the optimization
provides control inputs to bring states close to the reference values.
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temperature and humidity regarding a specified reference
X.s While never violating constraints. The predictive NN
is chosen to have a large enough network to reproduce
the main characteristics and dynamics of the greenhouse,
but small enough to be computationally efficient, i.e., the
parameterization of the predictive NN, given as f,, presents
a trade-off between accuracy and function evaluation time.
The model uses a coarser sampling time for the prediction,
T, than both the sampling rate of the motor controller for
vent adjustments and the frequency of measurements taken
in the greenhouse. This slower sampling rate is suitable
because the dynamics of the greenhouse climate change
slowly over time, allowing the model to make long-term
predictions with reduced calculation time. Faster dynamics
such as wind are handled by a safety layer in the controller
in case a problem occurs between sampling times. The gen-
erated optimal inputs are applied to a more detailed sim-
ulation network, f,, which simulates the real greenhouse
dynamics. This simulation network operates at the mea-
surement sampling time of the greenhouse, T. Since the
simulation network is larger than the predictive network,
there is a potential risk of overfitting. In order to mitigate
this, k-fold cross validation and regularization techniques
were employed, which will be explained in more detail in
Section 3.1. Although both networks are trained on the same
dataset, they are fundamentally different, to allow to mimic
a scenario where the learning-based controller is applied for
the real greenhouse. The prediction network is tailored to
longtime prediction, the simulation network captures short-
time dynamics as well. The structure with two NN ensures
that, on the one hand, the NPC is computationally feasi-
ble during optimization and, on the other hand, evaluated
under realistic conditions. Details on the training of the two
networks will be given in Section 3.1, and details on the NPC
and on the optimization will be given in Section 3.2.

3.1 Greenhouse model identification

For the training of the NN model, it is essential to use a
dataset containing the most informative data and with suf-
ficient excitation for the relevant features. Note that in a
greenhouse, the indoor climate is a consequence not only of
the effect of the ventilation, but also of the external climate
thatacts as a disturbance. The excitation required to capture
the dynamics of the indoor variables is therefore mainly
imposed by the inherent variations of the external climate.
As for the natural ventilation system, it has a strongly non-
linear effect on the indoor climate. Therefore, as shown in
Figure 3, data with opening and closing of the greenhouse
vents have been used, covering the whole actuator opera-
tion range. The vents remain open or closed for different
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Figure 3: Dataset for neural networks. Green background: data used for
learning and validation in a k-fold cross-validation scheme; blue
background: data solely used for testing.

intervals of time each day, and under different external cli-
mate conditions, especially wind speed, which significantly
affects the ventilation effect.

Following an exploratory data analysis, relevant fea-
tures were selected from the Mediterranean greenhouse
data (see Section 2.1) to ensure that the model is trained
on the most meaningful information, also ensuring cover-
age of diverse weather conditions. To that end, the dataset
presented in Figure 3, comprising 81 days between October
and December, was divided into three subsets: training data,
validation data, and test data. The majority of the data (73
days, representing 90 % of the total data) was allocated
for training and validation, while eight days from different
weather scenarios were designated for testing. For train-
ing and hyperparameter tuning, a k-fold cross validation
approach [34] was used with k = 5, meaning that in each
ensemble, approximately 15 days out of the 73 were used for
validation. Since this approach dynamically assigns train-
ing and validation data, it is not explicitly represented in
Figure 3.

The following considerations were taken into account
when using the data to synthesize the NN models. Although
the greenhouse has roof and lateral vents, a single input
is used to indicate the opening percentage of all the vents
(i.e., all the vents are opened and closed at the same time).
Similarly, internal radiation data is omitted as it follows
external radiation, differing only by a factor influenced by
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Figure 4: Setup for neural network training. The network inputs are
states, inputs, and parameters from the training. Its output predicts state
changes for the next time step.

the transmission coefficient of the cover. The inputs and
outputs are then restructured to match the state-space rep-
resentation, as shown in Figure 4. The network receives

the data for one time step d, = [XZ Uy, p;]T and predicts
the changes in the inside temperature and humidity for
the next timestep y, = Ax. Therefore, the prediction and
the simulation model f,(d,) and f(d,) are represented as
f(d,, W, b) with the learned parameterization W, b based
on different sampling times and network sizes. During the
training of the respective NN, this output is compared to the
actual values in the training dataset.

In contrast to the standard NN approaches, the pro-
posed models of the greenhouse climate are in the form of a
state space representation, and only the update of the state
is modeled by the NN, as introduced in (1). The training was
conducted in an open-loop setup, where the NN was trained
using data from the dataset at each time step. The input
of the NN is data from a single timestep, and the output
is the state of the next time step, e.g., inside temperature
and humidity. The chosen NNs for the predictive and sim-
ulation models are both feedforward networks composed
of fully connected layers. The choice of activation functions
a; for each layer j should reflect the expected nonlinear
dynamics. The predictive network is used in the gradient-
based optimization of the MPC approach and must therefore
remain differentiable, making the commonly used ReLU
activation «(z) = max(0, z) unsuitable. Instead, the smooth
approximation softplus activation a(x) = log(1+ exp(x)) is
used [35].
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The presented identification method is applicable to
all kinds of greenhouses if sufficient data is available, as it
purely relies on the given data for a specific greenhouse.

3.2 Greenhouse climate control

Relying solely on the opening and closing of windows to
track the desired indoor temperature and humidity refer-
ence simultaneously is a challenging task. This difficulty
arises in particular because the single decision variable, the
ratio at which the vents are open, has a significant impact on
the humidity and the temperature, and the required control
action for successful tracking of temperature and humidity
is often in conflict. In order to obtain the best possible results
for this trade-off in greenhouse climate control, optimal con-
trol is used, i.e., MPC, in combination with the NN models,
as described in (1). Therefore, the proposed NPC problem
is a specific adaptation of the general MPC framework, as
described in Section 2.2.1, tailored to the specific needs of

greenhouse climate control and is defined as follows
U* = argminJ(U,, X,) (3a)
U

S.t. &i+1|k = Xﬂk +fp(ki|k’ ﬁi|k, i)ilk), le [O;N - 1] (3b)

Uy €V i€[0,N-1] (30)

&y, Py) = 0 ie[0,N—-1] (3d)
)A(()|k = Xk» (3e)

gy = Uy (30

The optimization is based on the current measure-
ment of the state x; defined in (3e). Based on this mea-
surement, the state trajectory is predicted with the learned
predictive model (1), and the input trajectory results from
minimizing the cost function J. The cost function J in (6)
will be explained in Section 3.2.2. It contains a smoothing
part, therefore it also requires the previous input, defined
in the problem in (3f). The weather data p;, are chosen
from the weather forecast. The constraints on the inputs,
introduced in (3c) and (3d), will be further specified in
Section 3.2.1.

3.2.1 Constraints

When managing temperature and humidity in the green-
house, operational restrictions must be included as con-
straints in the optimization process to ensure safe and real-
istic control inputs. In the optimization problem presented
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in (3), these constraints are introduced as hard constraints
for inputs and states.

Vent openings are constrained to a feasible range
of 0%-100%. Therefore, in the optimization the
input is bounded by a hard constraint i, € U, for
all i€[0,N—1] with U={u€R| Uy, < U< Uy}
with uyg, = 0, Uy, = 100.

In order to protect the greenhouse from structural dam-
ages, the vent position must be zero, i.e., closed vents, if
the wind exceeds an upper bound, modeled by the hard
constraint

g(ﬁilk’ ﬁilk) = ﬁilk maX(Uwind,i ~ Uwind,max> 0=0. 4

The function g(i;., Pyy) is zero if either the wind is below
the threshold value vy,qmax OF the vent position is 0 %.
The equality constraint (4) is linear in the input, since
the remainder of the equations is constant. It depends on
predicted wind data, which is known from the weather
forcast.

Due to the poor insulation of a greenhouse, the indoor
climate often closely follows the external weather condi-
tions, making it difficult to keep the greenhouse tempera-
ture and humidity hard-constrained. There is no guaran-
tee that the external conditions will not enter phases that
are highly unfavorable for plant growth. Enforcing hard

N
2
J(U, X)) = Z ||Xi|k - Xref,k+i“ + Hmax(x”k —X
= Qr+i J

DE GRUYTER OLDENBOURG

constraints on system states is therefore impractical, since
constraint satisfaction cannot be guaranteed. To ensure
that the constraints are mostly satisfied, state constraints
are included in the optimization problem only as soft con-
straints that penalize too large and too small temperature
and humidity. Thus, the term

max(f‘uk — Xmax,i» Xmin,i ~ )A(i|kv 0) ©)

is included in the cost function with appropriate weights
(detailed in the following Section 3.2.2), where X, ; € R"
is the upper bound on the states, and x;,; € R" is the
lower bound. The maximum in (5) is zero if all con-
straints are satisfied. This formulation introduces a penalty
into the objective function when states exceed their speci-
fied bounds, encouraging compliance with the constraints
while allowing some flexibility in response to external
disturbances.

3.2.2 Cost function

The control goal for the greenhouse climate is defined
by the cost function (6) over the prediction horizon N. It
includes reference tracking, soft constraints, and a term that
smoothens the control signal over time.

N-1
o 2 A A 22

max,k+i» Xmink+i ~ Xilk» 0)“3 + Z R(ui—1|k - uilk) 6
o =0 e, e’

Tracking

The cost function penalizes larger deviation from
the reference temperature and reference humidity X,
which are given as kth element of the reference trajectory
Xrerx € R™. For more details on the environmental con-
trol of greenhouses, see [36]. The deviation from the ref-
erence is weighted by a positive definite weighting matrix
Q, € R™™" which switches between two realizations: one
for day and one for night. Additionally, the violation of the
state constraint is considered by incorporating (5) in the
cost function weighted with the positive definite weight
S € R™". To prevent excessive wear on actuators and to
reduce abrupt input changes, the cost function penalizes
deviations between successive inputs (i.e., control signal
increments), weighted by the positive value R € R. This
smoothing term limits motor stress and improves energy
efficiency.

g

Soft Constraints Smoothing

3.2.3 Adaption to day and night

Greenhouse conditions are strongly influenced by exter-
nal weather, which fluctuates significantly, particularly
between day and night. A significant contributing factor is
the fact that greenhouses typically have only minor insula-
tion, which allows sunlight to heat them during the day. This
thin insulation, however, results in rapid cooling when out-
side temperatures drop, making it difficult to sustain day-
time temperature levels overnight. The reference trajectory
is designed based on the knowledge of the farmers. Since
photosynthesis ceases without sunlight, and most plants do
not require high temperatures at night, it is more efficient
to lower the reference temperature during the night.

In order to achieve this, instead of a constant refer-
ence a sinusoidal temperature reference is used, setting
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a higher target during the day and a lower one at night.
This approach minimizes large setpoint deviations at night
and enhances controller performance, aligning it with plant
requirements. For humidity, a constant tracking point is set
at 70 % because the crop loses water if the humidity is too
low and is at risk of disease if it is too high, regardless of
day or night. However, the control priorities are adjusted
by weighting temperature regulation more heavily during
the day, when it is crucial, and focusing more on humidity
control at night.

4 Results and discussion

The proposed method is evaluated using a simulation with
weather data. Instead of deploying the controller in a physi-
cal greenhouse, it is tested on a simulation where the green-
house dynamics are represented by f. For offline training,
the neural networks were run on a high-performance com-
puter with 8 Tesla P100-PCIE-16GB GPUs and 2 AMD EPYC
7542 32-Core CPUs. The online control algorithm, including
the optimization process, was run on a standard laptop with
an 8-core AMD Ryzen 5 PRO 3500U processor.

First, in Section 4.1, the outputs of the greenhouse cli-
mate model are presented to demonstrate its accuracy and
suitability for control purposes. Following in Section 4.2, the
performance of the proposed controller is discussed when
applied to the simulated greenhouse environment.

4.1 Data and modeling results

The predictive model f, is a fully connected NN with
L, =2 layers with r, = 64 neurons and a sampling time
T, =10 min. The p in the subscript, indicates the hyper-
parameter of the predictive model. The deeper and more
accurate simulation network f, consists of L, = 4 layers
with r; = 208 neurons each and the real-time sampling time
of T, = 30 s, where the s in the subscript denotes param-
eter of the simulation model. This finer sampling interval
is chosen as it aligns with the original 30 s sampling of the
data, providing a more precise system model than that of
the predictive network needed for the controller. In order to
prevent overfitting, several regularization techniques were
applied, including k-fold cross-validation (k = 5), dropout
[37], learning rate reduction on plateaus, and weight decay.
Training and validation losses were continuously moni-
tored to detect early signs of overfitting, but no such issues
were observed in the selected models. Further increas-
ing the network size did not yield significant performance
improvements. Both networks were trained using the mean
squared error (MSE) loss with the Adam [38] optimizer. All
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Table 1: Evaluation metrics for the neural networks on test data for a
one-step prediction.

NN Prediction Simulation
Temp. Hum. Temp. Hum.
inK in %pt inK in %pt
Mean absolute error 0.080 4.002 0.048 4.442
Standard deviation 0.100 4.895 0.067 5.838
Maximum error 0.238 14.988 0.198 16.255
Variance of error 0.010 21.570 0.003 33.924

hyperparameters, including the number of layers, neurons
per layer, learning rate, weight decay, and dropout rate,
were optimized using Optuna [39], which efficiently iden-
tified the best-performing configurations. This automated
approach provides a more systematic and scalable opti-
mization process compared to manual tuning. The selected
hyperparameters include a weight decay of 6.71 x 10~¢ for
the predictive network and 1.95 x 108 for the simulation
network, along with dropout rates of 0.1 and 0.125, respec-
tively. The learning rates were set to 2.2 X 10~ for the pre-
dictive network and 1.4 x 10~2 for the simulation network.
The predictive network was trained for 850 epochs, while
the simulation network underwent 750 epochs of training.

The networks were trained on the dataset presented
in Figure 3, as explained in Section 3.1. The metrics for the
test of both NNs are given in Table 1, which summarizes
the mean, maximum, and variance of the absolute predic-
tion errors for temperature and humidity. These metrics
are computed solely for a one-step prediction, as the net-
works were trained to predict the state in the next time-
step based on the current state and the current input.
Both networks demonstrate strong performance, with the
prediction network achieving low mean absolute errors
of 0.080 K and 4.002 %pt for temperature and humidity,
respectively, where %pt denotes percentage points. The sim-
ulation network also performs well, with minimal errors in
both temperature (0.048 K) and humidity (4.442 %pt), indi-
cating effective generalization to the test data.

Figure 5 presents results for test data. In the temper-
ature and humidity plots, the gray line represents mea-
sured data, while the black and orange lines correspond
to predictions from the NNs. Given the correct data from
prior time steps, both networks closely match the actual
dynamics for the next step. These results confirm that the
model has effectively learned the training data, ensuring
a highly accurate one-step prediction, which is an essen-
tial foundation for reliable multi-step forecasts and control
applications. Since, in practice, predictions cannot rely on
real measurements of the states for future time steps, the
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Figure 5: Model evaluation on test data. The test includes the
performance of the model on days 3-6, with corresponding weather
conditions and the vent inputs used during this period.

performance of the network is also evaluated over longer
horizons without measurement updates. This is especially
relevant for the prediction network that will be used in the
NPC controller. However, in this work, the control method
will be tested in a closed-loop simulation with the simulation
network, making the accuracy of the simulation network
relevant as well.

Figure 6 shows this evaluation for both networks.
Both networks effectively capture the dynamics over the
extended prediction horizon, although they both show
slight deviations from the real data. On average, the sim-
ulation network remains closer to the actual temperature
values than the predictive network, making it more suit-
able choice for control evaluation purposes. For humid-
ity, both networks perform similarly well. The general
dynamics of temperature and humidity are predicted cor-
rectly; however, absolute errors can be relatively large
at certain moments, exceeding 5K for temperature and
20 %pt for humidity. Unlike typical cases where predic-
tion errors accumulate over time, Figure 6 shows that the
errors do not propagate indefinitely. This stability can be
attributed to external weather conditions, which act as
stabilizing factors for temperature and humidity, prevent-
ing uncontrolled error growth. This qualitative evaluation
highlights that the networks do not merely memorize the
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Figure 6: Model prediction performance on test data. In the comparison,
the networks predict states over days 3-6 without updates from real
measurements, relying solely on their own state predictions at each time
step.

training data but generalize well over longer prediction
horizons.

4.2 Control results

The NPC controller is based on a learned PyTorch model
[40], which is used in the optimal control problem described
in (3). The problem is solved with CasADi [41] with the IPOPT
solver. The PyTorch model is translated to CasADi by using
the L4CasADi toolbox [22], [42].

A prediction horizon of N = 30 samples was selected,
and with the controller sampling time T}, =10 min, this
resulted in a prediction time of 5 h. Note that this prediction
horizon was selected according to the dynamics of the effect
of natural ventilation on the indoor temperature. In that
sense, natural ventilation is effective to control temperature
during the day, particularly around midday, so the time gap
for this control is usually 5-8 h depending on the season
(i.e., depending on the hours with solar radiation). In addi-
tion, the natural ventilation effect is strongly influenced by
the external weather conditions, especially by wind speed
and the difference of temperature between indoor and out-
door, so it is difficult to know in advance and with certainty
(i.e., even with greater prediction horizons) the values of
these variables. With a 5-h forecast time, it is possible to
react to changes in the weather forecast in sufficient time
while the computing load is still manageable with a time
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step of 10 min. The opening speed of the vents is also taken
into account by the time specification, as it takes approx-
imately 5 min to open all vents from fully closed to fully
open.

The state reference x,.; contains the reference of the
inside temperature and humidity. The indoor temperature
reference is a sinusoidal function that is 28 °C at noon and
18 °C at midnight, while the humidity reference is con-
stant at 70 %. The inside temperature bounds are at 5K
below and above the temperature reference, and the pre-
ferred humidity is in the interval [50 %, 90 %]. The weights
in the cost function (6) are determined empirically, such
that the results reflect the desired behavior. The weights
of the state reference tracking are Q, = diag(1-10%1) at
day and Q, = diag(1-10%,10) at night. During the day,
the primary focus is on maintaining precise temperature
tracking. At night, while the temperature remains essen-
tial, there is an additional emphasis on humidity control
to ensure the humidity stays below a critical value. The
penalties of the soft constraints are weighted with § =
diag(1-10%,100). The change of the input is penalized with
R =0.5. The wind hard constraint ensures that the vents
must be closed when the wind speed exceeds 8 m/s. In
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Figure 7: Control results for four sunny days (day 3-7 in the dataset).
Periods, where the wind speed exceeds 8 m/s and windows must be
closed, are marked with gray vertical lines.
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both scenarios, the calculations to solve the optimization
problem with the NPC approach take around 0.5 s for each
iteration, which is adequate for working within the 10 min
that are used for the controller sampling time but is also
adequate for working within the 30-s threshold required
for real-time system operation. Note that the optimization
was done on a standard laptop. The weather forecast in
the simulation is based on the data from the real green-
house described in Section 2.1, where zero-mean noise with
a standard deviation of 1 % of the value range is added to
the dataset. This noise reflects the uncertainty in real-world
weather forecasts, ensuring a realistic evaluation of the
NPC.

The control method was tested for two different
weather scenarios. The first scenario, shown in Figures 7
and 9, covers days 3—7 of the dataset and represents a sunny
period. The second scenario, shown in Figure 8, covers days
10-14 and represents a period of cloudy and windy days.

In the sunny weather scenario in Figure 7, a clear
control pattern can be observed: during the day, the vents
open just enough to maintain the reference temperature,
while at night, they remain closed to slow the cooling of the
greenhouse. Also, around the 38-h time step, the vents are
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Figure 8: Control results for four days with weather fluctuations (days

10-14 in the dataset). Periods, where the wind speed exceeds 8 m/s and
windows must be closed, are marked with gray vertical lines.
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closed due to high wind speeds. The controller successfully
maintains the temperature within the acceptable range for
almost the entire period, mainly compensating the external
weather disturbances by changing the vents opening. At
daytime, when no saturation of the control signal occurs,
the temperature is less than 3 K and on average 1.1 K away
from the reference. While the nighttime humidity success-
fully remains below the maximum limit, it occasionally falls
below the desired minimum for short intervals during the
day. In those short daytime intervals and according to the
observed vents opening, the controller is giving priority
to regulating the greenhouse temperature since it is more
important for crop growth. In 81.4 % of the time, the humid-
ity is within the bounds.

In Figure 8, it is clear that the controller adapts its
behavior based on changing weather conditions. As before,
the vents close when wind speeds exceed 8 ? During
the first night, the outside temperature remains relatively
high, causing the controller to keep the vents open for an
extended period of time, allowing for effective humidity and
temperature tracking. On the third day, however, minimal
sunlight limits the daytime heating of the greenhouse, which
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means, it does not even reach the reference temperature
when the vents are mostly closed. On the fourth day, as the
weather improves, the greenhouse is maintained in more
optimal conditions. In addition, the effect of natural venti-
lation to compensate for the weather disturbances and to
follow the temperature reference is shown on the second
and fourth day. In particular, on the second day (between
the 33-h and 43-h time steps), the controller significantly
modifies the vents opening when the outside temperature
changes, so that the temperature inside the greenhouse does
not deviate from the reference.

A different setting of NPC is presented in Figure 9.
The temperature reference is kept constant at 25°C for
both day and night, and the cost for humidity deviation is
set to zero. That is, only the humidity soft constraints are
used, without a specific humidity reference. The resulting
temperature trajectory is controlled at the set point when
feasible. On the second day, however, the ventilation open-
ings are temporarily closed due to the wind protection,
which temporarily leads to a higher temperature. At night,
the temperature setpoint cannot be maintained, leading
to a drop in temperature. Therefore, changing references
such as in Figure 7 are beneficial, as they are better to
reach and incorporate the knowledge of realizable tem-
perature trajectories, taking into account the experience of
farmers.

5 Conclusions

A control method for regulating air temperature and rel-
ative humidity in greenhouses was introduced, focusing
solely on the efficient use of natural ventilation. Given the
complexity of modeling the greenhouse climate from first
principles, NPC was chosen as the control approach because
it combines the benefits of MPC with learning. Feedforward
NNs were used to construct both a predictive and a simula-
tion model for the complex, nonlinear dynamics that define
temperature and humidity inside the greenhouse. These
models were trained and tested on an 81-day dataset from
a Mediterranean greenhouse, yielding a mean test error
of 0.08 K and 0.05K for temperature, with corresponding
relative humidity errors of 4.0 %pt and 4.4 %pt.

The proposed NPC strategy successfully maintains tem-
perature and humidity within specified ranges, tailored to
the needs of the crops. This is a particularly challenging
control problem, as it requires simultaneous regulation of
both temperature and humidity using a single actuator, the
natural ventilation. The results demonstrate that the system
effectively tracks temperature and humidity setpoints while
incorporating additional safety constraints, such as closing
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the vents when wind speed is high to protect the greenhouse
structure. The results showed that the temperature is on
average only 1.1 K away from the reference when the con-
trol signal is not saturated. The humidity stays within the
bounds for 81.4 % of the time.

Data-driven learning approaches like this are highly
versatile and can be applied to greenhouses in various
climates. Furthermore, the NPC strategy requires minimal
parameter tuning, making it a practical solution for agricul-
tural applications.

A limitation of this approach is the need for pre-
recorded data to train the neural network model, which
requires the greenhouse to initially operate under a dif-
ferent controller during data collection. However, this can
be mitigated by starting with a generic climate model that
uses transfer learning [31] to handle the dynamics of a new
greenhouse. This generic model can initially control the
greenhouse, then be gradually refined with online learning
as it adapts to the specific conditions of the greenhouse
environment. As the ultimate goal is to control the green-
house environment based on optimal plant growth, tem-
perature, and humidity setpoints will, in future work, be
determined by an optimization framework that accounts for
crop growth dynamics [43], [44]. Additional variables, such
as wind direction, rainfall detection, and crop growth, will
be incorporated into the dataset to improve the training of
the NN models.
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