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Abstract: A controller for the air temperature and relative

humidity of a greenhouse is presented that relies only on

the efficient exploitation of natural ventilation. Due to the

difficulty of modeling greenhouse climate from first princi-

ples, Neural Predictive Control (NPC) is chosen, which com-

bines the advantages of learningwithModel Predictive Con-

trol (MPC) under constraints. FeedforwardNeural Networks

(NNs) are used to obtain a predictivemodel and a simulation

model for the complex nonlinear dynamics of the tempera-

ture and humidity inside a greenhouse. The NNs are trained

and validated with an 81-day dataset recorded in a Mediter-

ranean greenhouse. The MPC approach applies operational

constraints to compute the optimal vent opening. It min-

imizes temperature and humidity tracking errors, limits

control increments to reduce motor wear, and enforces soft

bounds on greenhouse temperature and humidity. Hard

constraints include vent saturation and a wind speed limit

for safety. The NPC strategy was evaluated in simulation

with real weather, featuring both sunny and windy con-

ditions. The results show small validation errors of the

NNs. The tracking error in the control approach in situa-

tions without saturated input is below 3 K and in 81 % of

the time the humidity is within the bounds. The presented

Michael Fink and Annalena Daniels contributed equally to this work.

*Corresponding author: Michael Fink and Annalena Daniels, Chair for

Automatic Control at the Technical University of Munich, Munich,

Germany, E-mail: michael.fink@tum.de (M. Fink),

a.daniels@tum.de (A. Daniels)

Francisco García-Mañas and Francisco Rodríguez, Department of

Informatics, University of Almería, CIESOL, ceiA3, 04120, Almería, Spain,

E-mail: francisco.gm@ual.es (F. Garcïa-Mañas),

frrodrig@ual.es (F. Rodríguez)

Marion Leibold and Dirk Wollherr, Chair for Automatic Control at the

Technical University of Munich, Munich, Germany,

E-mail: marion.leibold@tum.de (M. Leibold), dirk.wollherr@tum.de

(D. Wollherr)

data-driven control approach is attractive for controller

design as data availability in greenhouses is expected to

increase in the coming years.
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Abstract: Ein Regler für die Lufttemperatur und relati-

ve Luftfeuchtigkeit in einem Gewächshaus wird vorge-

stellt, der ausschließlich auf die effiziente Nutzung der

natürlichen Belüftung setzt. Aufgrund der Schwierigkeit,

das Gewächshausklima aus physikalischenGrundlagen her-

aus zu modellieren, wird Neural Predictive Control (NPC)

eingesetzt, eine Methode, die die Vorteile des maschinel-

len Lernens mit denen der modellprädiktiven Regelung

(MPC) unter Einhaltung von Nebenbedingungen kombi-

niert. Vorwärtsgerichtete Neuronale Netze (NNs) werden

verwendet, um sowohl ein Vorhersagemodell als auch ein

Simulationsmodell für die komplexen, nichtlinearen Dy-

namiken von Temperatur und Luftfeuchtigkeit im Inne-

ren des Gewächshauses zu erstellen. Die neuronalen Net-

ze werden mit einem über 81 Tage aufgezeichneten Da-

tensatz aus einem mediterranen Gewächshaus trainiert

und validiert. Der MPC-Ansatz berücksichtigt betriebliche

Einschränkungen, um die optimale Fensteröffnung zu be-

rechnen. Dabei werden Temperatur- und Feuchtigkeitsab-

weichungen minimiert, Steuerungsänderungen begrenzt,

um den Verschleiß der Antriebe zu reduzieren, und wei-

che Schranken für Temperatur und Luftfeuchtigkeit im

Gewächshaus eingehalten. Harte Nebenbedingungen um-

fassen die Begrenzung der Fensteröffnung sowie eineWind-

geschwindigkeitsgrenze aus Sicherheitsgründen. Die NPC-

Strategie wurde in einer Simulationmit realenWetterdaten

getestet, die sowohl sonnige als auch windige Bedingungen

umfasste. Die Ergebnisse zeigen geringe Validierungsfehler

der neuronalen Netze. Der Regelabweichungsfehler liegt in

Situationen ohne gesättigte Eingaben unter 3 K, und in 81 %

der Zeit bleibt die Luftfeuchtigkeit innerhalb der vorgegebe-

nen Grenzen. Der vorgestellte datengetriebene Regelungs-

ansatz ist vielversprechend für die Reglerauslegung, da in
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den kommenden Jahren mit einer steigenden Datenverfüg-

barkeit in Gewächshäusern zu rechnen ist.

Keywords: Datengetriebene Modelle; maschinelles Lernen;

modellprädiktive Regelung; neuronaleNetze; natürliche Be-

lüftung

1 Introduction

In modern agriculture, precise control of environmental

conditions is essential to optimize the productivity of green-

house crops. A greenhouse is a structure designed to cre-

ate a controllable environment that favors the growth of

crops, protecting them from adverse climatic factors and

pests. Thanks to their transparentmaterials, such as glass or

plastic, greenhouses allow sunlight to enter, which is crucial

for crop photosynthesis. Climate control systems, such as

ventilation and heating, can be installed in a greenhouse

to maintain a stable environment for plants, keeping condi-

tions within a specific range regardless of outside weather

changes. The use of automatic control techniques is crucial

for regulating variables such as temperature and humidity

to ensure the healthy growth of plants and fruit. In par-

ticular, automatic control allows for quick adjustments to

external weather changes, ensuring a consistently stable

microclimate within the greenhouse [1].

In Mediterranean greenhouses, natural ventilation is

the main action for farmers to control the temperature

and humidity due to the mild climate of the region and

the low cost of this approach. Natural ventilation is the

exchange of air between the inside and outside of a green-

house without other technical assistance, such as fans or

air conditioning. The temperature needs to be controlled to

avoid too high or too low temperatures, negatively affecting

fruit development. The relative humidity must stay within

reasonable bounds to prevent plant water stress and the

appearance of fungal disease [2]. Thus, the opening of the

greenhouse vents must be controlled when the inside con-

ditions get unfavorable so that warm air can escape while

cooler air enters, promoting an airflow that also allows

for the exchange of humid air [3]. Designing an effective

controller benefits greatly from an accurate model, yet the

greenhouse environment is influenced by highly nonlinear

and tightly coupled factors [4] such as external weather con-

ditions (e.g., temperature and air pressure affect humidity)

and internal variables such as greenhouse structure, size,

and crop types. This complexity makes identification from

first principles challenging, and even a well-defined model

often applies only to a specific greenhouse under specific

weather conditions. When conditions change, model and

controller parametersmust be recalibrated. These complex-

ities make greenhouse climate control a challenging control

engineering problem.

Various control techniques have been proposed for

greenhouse control [1], [5], [6]. These include PID control

with and without feedforward component [7]–[9], adap-

tive control [10]–[12], selective and event-based control [13],

fuzzy control [14], and nonlinear control [15], [16] includ-

ing Model Predictive Control (MPC) approaches [17]–[19]. A

common approach is to track only a reference temperature

while maintaining humidity within acceptable ranges for

the crop. When humidity exceeds these ranges, the tem-

perature setpoint is changed to force the vents to open

which enables the exchange of humid air [1]. Although the

above techniques have proven to be effective, they have

some drawbacks. On the one hand, PID control (and other

approaches based on PID control) rely on low-order mod-

els identified for the dynamics of the greenhouse microcli-

mate, which changes over the year and for every green-

house and region, thus requiring repeated tuning of the

controller parameters and/or repeated model identifica-

tion. On the other hand, adaptive and nonlinear control

techniques require knowledge of the dynamics that relate

temperature and humidity to the natural ventilation effect,

for example, in the form of first-principles-based models.

While thesemodels can capture the environment dynamics,

in reality, they still need repeated recalibrations [20]. In

this sense, the expressions relating the greenhouse micro-

climate and the ventilation effect are strongly nonlinear

[4], which makes them complex to use to develop control

strategies analytically.

Among the control methods discussed, MPC is one of

the most promising ones for greenhouse climate control

because it combines the ability to handle complex, mul-

tivariable dynamics with constraint satisfaction proper-

ties. By predicting future conditions, MPC optimizes control

actions over a given horizon, effectivelymanaging tempera-

ture and humidity while integrating operational constraints

to ensure safe, efficient control that minimizes equipment

wear. However, a major drawback of MPC is that it requires

an accurate model to perform optimally, and as mentioned

developing such a model is challenging due to the complex

and changing nature of greenhouse environments.

In recent years, learning-based control techniques have

been applied to handle complex dynamics like these, open-

ing up the possibility of using MPC efficiently for green-

houses. An overview of learning-based MPC methods is

provided in [21], and a demonstration of a state-of-the-art

Neural Network (NN)-based MPC, also known as Neural

Predictive Control (NPC), applied to robotics, is presented
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in [22]. These data-driven modeling and control techniques

have also been applied to manage the complex dynamics

of the greenhouse microclimate, e.g., by approaches using

linearMPC [23], [24]. The application of NPC for greenhouses

is explored in [25], where heating is used alongside vents as

an input, facilitating easier control but at increased opera-

tional cost. In contrast [26], uses only vent control tomanage

temperature, though this approach does not account for

indoor humidity, which significantly simplifies the learning

and control part. For learning of an NN, the approach in [27]

relies on artificially generated data based on an analytical

model, which may not fully capture the variability of real-

world greenhouse conditions.

However, datasets with a relevant amount of measure-

ments are required for the development of learning-based

control, which has previously been a limitation. An increas-

ing number of greenhouses are being equipped with data

acquisition systems that are connected to cloud comput-

ing platforms [28], [29]. Therefore, it is expected that data

availability will not be the limiting factor anymore in the

coming years [30]. This work aims to take advantage of

these future developments by using greenhouse data to

implement a temperature and humidity control technique

based directly on measured data, eliminating the need for

explicit mathematical models. This approach simplifies the

modeling of complex dynamics and ensures that themethod

is applicable across different greenhouses without the need

for extensive model identification, while retaining the ben-

efits of MPC.

1.1 Problem statement and contribution

The objective of this work is to maintain optimal temper-

ature and humidity in a greenhouse using natural ventila-

tion. This task is challenging due to the complex, nonlinear

interactions between indoor climate variables and external

weather conditions, which vary by region and depend on

greenhouse-specific factors such as orientationwith respect

to the wind and sun and structure of the greenhouse. In

addition, simultaneous control of temperature and humid-

ity often results in conflicting control actions, requiring

weighted cost functions. Safety mechanisms are essential to

prevent unsafe conditions, such as open vents during strong

winds.

In contrast to existing data-driven approaches that use

simplified linear models [23], [24] or artificially generated

data [27], this work proposes a fully data-driven nonlinear

MPC that learns directly from real greenhouse data. Com-

pared to prior neural-network-based MPC methods [26],

which focus solely on temperature, this approach jointly

optimizes temperature and humidity while accounting for

their coupled dynamics and constraints.

The main contribution of this work is the integration of

all these factors into a singlemethod, addressing gaps left by

previous approaches and advancing state-of-the-art green-

house climate control. This is achieved through a learning-

based MPC strategy to regulate greenhouse temperature

and humidity using natural ventilation. In this context, the

term “learning-based” refers to approaches in which the

system dynamics is represented by machine learning mod-

els, such as NNs. Unlike traditional models, which require

frequent recalibration, and prior data-driven models that

rely on pre-generated datasets, the approach presented in

this work enables continuous adaptation to the changing

greenhouse conditions, such as changes in dynamics due

to seasonal changes or wear. NNs were chosen over other

learning-based approaches for this application due to the

need for scalability, transfer learning, and online learning

capabilities in greenhouse environments to allow for auto-

matic adjustments to the current region and structure [31],

[32]. The NPC strategy is tested in simulation using weather

data from a traditional greenhouse in Southeastern Spain.

1.2 Paper outline

The remainder of this paper is structured as follows:

Section 2 describes the greenhouse setup and the exper-

imental data used for model learning. The background

of learning-based MPC is explained, including NN mod-

eling approaches. The proposed NPC strategy for green-

house climate control is then presented in Section 3, cov-

ering the identification of the environmental model and

the design of the control framework. Section 4 presents and

discusses the results. Finally, Section 5 summarizes themain

findings.

1.3 Notation

Vectors are written as bold lowercase letters, matrices are

denoted as bold uppercase letters, and sets are denoted

with calligraphic font, e.g., x, A, and  , respectively. The

variable xk is the state at time k, and x̂i|k is the predic-

tion i steps ahead from k. Predicted sequences are denoted

as uppercase vectors, i.e., Xk , Uk . The weighted norm is

‖x‖2
Q
= x⊤Qx. The function diag:ℝn×n → ℝn maps diagonal

elements of a matrix into a column vector. The maximum

operator max:ℝn ×ℝn × · · ·→ ℝn acts on each argument

element-wise. Percentage points are denoted as %pt.
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2 Materials and methods

2.1 Greenhouse data

The data used in this work is from the greenhouse shown in

Figure 1, located at “Las Palmerillas” Experimental Station

of the Cajamar Foundation, in El Ejido, Almería, Spain. It is a

traditional Almería-type greenhouse with an area of 877 m2

(37.80 m × 32.20 m) and a polyethylene cover. The green-

house is equipped with several actuation systems that con-

trol the climate. In particular, the natural ventilation system

consists of five roof vents (8.36 m × 0.73 m) and two lateral

vents (32.75 m × 1.90 m) on the north and south sidewalls.

As shown in Figure 1, the roof vents have an angled opening

and the lateral vents are opened by rolling up a plastic film.

The vents aremotor-controlled and can be opened from 0 %

to 100 % of their ventilation area.

The main climatic variables were recorded every 30 s

using two sensors (each measuring both temperature and

humidity). One is placed outside and one inside central in

the greenhouse. The following variables were measured

for this work: solar global radiation R in W

m2 (pyranome-

ters model LP02, Hukseflux, Delft, The Netherlands), inside

and outside air temperature in ◦C, 𝜗in and 𝜗out, inside and

outside relative humidity in %, 𝜑in and 𝜑out (probes model

HC2S3, Campbell Scientific Ltd., Shepshed, UK), and outside

wind speed 𝑣wind in
m

s
(anemometer model A100L2, Vector

Instruments, Rhyl, UK).

The opening ratio of each vent in %, uven, was recorded

every 30 s, as the electric motors are connected to a super-

visory and control data acquisition (SCADA) system in

which manual and automatic actions are performed to reg-

ulate the air temperature inside the greenhouse by natural

ventilation.

Figure 1: Traditional Almería-type greenhouse.

Formally, for a given time k, the input uk = uven,k is the

opening percentage, meaning that at 100 % all windows are

fully open and at 0 % they are fully closed. All windows

are controlled identically, so uven,k is a scalar value applied

to each window. For a traditional low-tech greenhouse,

there are no other actuators that heat, cool, humidify, or

dehumidify the greenhouse. The state of the greenhouse is

described by xk =
[
𝜗in,k, 𝜑in,k

]⊤
. The weather data that act

as measurable and predictable disturbances on the system

is pk =
[
𝜑out,k,Rk, 𝜗out,k, 𝑣wind,k

]⊤
at each time step k. Using

this data, the objective is to develop a model that can pre-

dict greenhouse temperature and humidity in the next time

step based on current temperature, humidity levels, current

weather data, and vent positions. This single-step predictive

model allows to predict the sequences up to the prediction

horizon using the state predictions from the previous time

steps and the weather forecast as input for subsequent

predictions.

The next section introduces NPC which is a standard

learning-based MPC.

2.2 Learning-based model predictive control

For prediction of the state sequence for a specified input

sequence, the system dynamics are modeled using a non-

linear discrete-time state-space representation

x̂i+1|k = x̂i|k + f p(x̂i|k, ûi|k, p̂i|k )
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Δx̂i|k

, (1)

where x̂i|k is the predicted state, ûi|k is the scalar input

producing the prediction, and p̂i|k is the predicted weather
data. The index [⋅]i|k denotes a prediction variable where

k is the initial time and i is the prediction steps ahead.

The nonlinear function f p describes the predicted update

of the state Δx̂i|k based on the current state, input, and

system parameter. The standard MPC paradigm, explained

in Section 2.2.1, uses a nonlinear function f p derived from

first principles, typically based on physics-based modeling

or system identification techniques where parameters are

estimated through regression or optimization on experi-

mental data. In contrast, the learning-based MPC paradigm

replaces the first principles-derived model with a machine

learning model, specifically an NN in this work. In con-

trast to traditional system identification, which assumes

a predefined functional structure (e.g., linear state-space

models) and estimates the parameters accordingly, the NN

learns a more flexible representation of f p directly from

the data. This modeling approach will be explained in

Section 2.2.2.
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2.2.1 Model predictive control

MPC is a control method that optimizes future inputs

of a system by predicting the state trajectory over a

time horizon N ∈ ℕ. Using a system model, MPC mini-

mizes a predefined cost function J(Uk,Xk) for the whole

horizon [33], where Uk = [û0|k, û1|k,… ûN−1|k]⊤ and Xk =[
x̂⊤
0|k, x̂⊤1|k,… x̂⊤

N|k
]⊤
. In order to avoid violations of bounds

on input and state, the optimization problem is subject

to state and input constraints x̂i|k ∈  ⊂ ℝn, ûi|k ∈  ⊂

ℝ, ∀i ∈ [0,N − 1]. At each time step k, the optimization

problem is solved resulting in the optimal input sequence

U∗
k
, but only the first optimal control input û∗

0|k is applied to
the system. The process then repeats at the next time step,

k + 1, using the new measured state and predicted weather

data p̂i|k .
2.2.2 Modeling with neural networks

In contrast to physics-based models that rely on the analyti-

cal description of systems dynamics, NNs indirectly capture

these mappings and correlations based on the data they

see, making them an attractive option for the modeling of

systems and for model-based control methods.

In this work, a simple feedforward NN is used to model

the system dynamics update, with a mapping from input

data dk ∈ ℝq, to an output yk ∈ ℝs. Normalizing input data

is recommended to improve network performance.

The input data dk is weighted by W 1 ∈ ℝr×q, and off-

set with a bias term b1 ∈ ℝr, resulting in an input to the

first activation function 𝜶1. The output of this function, h1,

then serves as input to the next layer, where it is processed

withweightsW 2 ∈ ℝt×r and biases b2 ∈ ℝr. This procedure

continues across all L layers until the final activation func-

tion, 𝜶L, yields the output yk . The activation function of the

output layer is chosen as linear function. The mathematical

formulation of this feedforwardNNwithL layers (consisting

of L− 1 hidden layers with r neurons each) is given by

z1 = W 1dk + b1, (2a)

h1 = 𝜶1(z1 ) = 𝜶(W 1dk + b1 ), (2b)

z2 = W 2h1 + b2, (2c)

h2 = 𝜶2(z2 ) = 𝜶2(W 2 ⋅ 𝜶1(W 1dk + b1 )+ b2 ), (2d)

...

zL = WLhL−1 + bL, (2e)

hL = 𝜶L(zL ) = f (dk,W , b) = yk . (2f)

The parameterization of a NN combines all weights in

W and biases in b resulting in the parametrized function

f (dk,W , b). In this setup, q represents the dimension of the

input vectordk (i.e., the number of features), r is the number

of neurons in each hidden layer, and s is the dimensionality

of the output (i.e., the number of output neurons in hL).

The next section describes how the NPC is adapted

specifically for the given greenhouse data in order to fulfill

the requirements given in Section 2.1.

3 Neural predictive control for

greenhouses

In order to control the greenhouse climate with an NPC

approach, twomajor design steps must be considered. First,

the model for the controller must be learned, and thus, the

data must be prepared to be used in a NN. As a second step,

the NPC algorithm must be tuned according to the needs.

This interplay is illustrated in the blue box in Figure 2. The

optimal control problem of the NPC algorithm is based on

a predictive NN that takes the current inside temperature

and humidity xk , the weather data pk , and allowed vent

opening percentages uk as inputs and predicts the corre-

sponding changes in the state for the next time step Δxk .

The optimizationfinds a full sequence of future optimal vent

configurations that result in good tracking performance for

Figure 2: Overview of the NPC strategy. The controller generates inputs

tested in the simulation model. At each time step, the optimization

provides control inputs to bring states close to the reference values.
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temperature and humidity regarding a specified reference

xref while never violating constraints. The predictive NN

is chosen to have a large enough network to reproduce

the main characteristics and dynamics of the greenhouse,

but small enough to be computationally efficient, i.e., the

parameterization of the predictive NN, given as f p, presents

a trade-off between accuracy and function evaluation time.

The model uses a coarser sampling time for the prediction,

Tp, than both the sampling rate of the motor controller for

vent adjustments and the frequency ofmeasurements taken

in the greenhouse. This slower sampling rate is suitable

because the dynamics of the greenhouse climate change

slowly over time, allowing the model to make long-term

predictions with reduced calculation time. Faster dynamics

such as wind are handled by a safety layer in the controller

in case a problem occurs between sampling times. The gen-

erated optimal inputs are applied to a more detailed sim-

ulation network, f s, which simulates the real greenhouse

dynamics. This simulation network operates at the mea-

surement sampling time of the greenhouse, Ts. Since the

simulation network is larger than the predictive network,

there is a potential risk of overfitting. In order to mitigate

this, k-fold cross validation and regularization techniques

were employed, which will be explained in more detail in

Section 3.1. Although both networks are trained on the same

dataset, they are fundamentally different, to allow to mimic

a scenariowhere the learning-based controller is applied for

the real greenhouse. The prediction network is tailored to

longtime prediction, the simulation network captures short-

time dynamics as well. The structure with two NN ensures

that, on the one hand, the NPC is computationally feasi-

ble during optimization and, on the other hand, evaluated

under realistic conditions. Details on the training of the two

networks will be given in Section 3.1, and details on the NPC

and on the optimization will be given in Section 3.2.

3.1 Greenhouse model identification

For the training of the NN model, it is essential to use a

dataset containing the most informative data and with suf-

ficient excitation for the relevant features. Note that in a

greenhouse, the indoor climate is a consequence not only of

the effect of the ventilation, but also of the external climate

that acts as a disturbance. The excitation required to capture

the dynamics of the indoor variables is therefore mainly

imposed by the inherent variations of the external climate.

As for the natural ventilation system, it has a strongly non-

linear effect on the indoor climate. Therefore, as shown in

Figure 3, data with opening and closing of the greenhouse

vents have been used, covering the whole actuator opera-

tion range. The vents remain open or closed for different

Figure 3: Dataset for neural networks. Green background: data used for

learning and validation in a k-fold cross-validation scheme; blue

background: data solely used for testing.

intervals of time each day, and under different external cli-

mate conditions, especially wind speed, which significantly

affects the ventilation effect.

Following an exploratory data analysis, relevant fea-

tures were selected from the Mediterranean greenhouse

data (see Section 2.1) to ensure that the model is trained

on the most meaningful information, also ensuring cover-

age of diverse weather conditions. To that end, the dataset

presented in Figure 3, comprising 81 days between October

andDecember, was divided into three subsets: training data,

validation data, and test data. The majority of the data (73

days, representing 90 % of the total data) was allocated

for training and validation, while eight days from different

weather scenarios were designated for testing. For train-

ing and hyperparameter tuning, a k-fold cross validation

approach [34] was used with k = 5, meaning that in each

ensemble, approximately 15 days out of the 73 were used for

validation. Since this approach dynamically assigns train-

ing and validation data, it is not explicitly represented in

Figure 3.

The following considerations were taken into account

when using the data to synthesize the NN models. Although

the greenhouse has roof and lateral vents, a single input

is used to indicate the opening percentage of all the vents

(i.e., all the vents are opened and closed at the same time).

Similarly, internal radiation data is omitted as it follows

external radiation, differing only by a factor influenced by
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Figure 4: Setup for neural network training. The network inputs are

states, inputs, and parameters from the training. Its output predicts state

changes for the next time step.

the transmission coefficient of the cover. The inputs and

outputs are then restructured to match the state-space rep-

resentation, as shown in Figure 4. The network receives

the data for one time step dk =
[
x⊤
k
, uk,p

⊤
k

]⊤
and predicts

the changes in the inside temperature and humidity for

the next timestep yk = Δxk . Therefore, the prediction and

the simulation model f p(dk) and f s(dk) are represented as

f (dk,W , b) with the learned parameterization W , b based

on different sampling times and network sizes. During the

training of the respective NN, this output is compared to the

actual values in the training dataset.

In contrast to the standard NN approaches, the pro-

posed models of the greenhouse climate are in the form of a

state space representation, and only the update of the state

is modeled by the NN, as introduced in (1). The training was

conducted in an open-loop setup, where the NNwas trained

using data from the dataset at each time step. The input

of the NN is data from a single timestep, and the output

is the state of the next time step, e.g., inside temperature

and humidity. The chosen NNs for the predictive and sim-

ulation models are both feedforward networks composed

of fully connected layers. The choice of activation functions

𝜶 j for each layer j should reflect the expected nonlinear

dynamics. The predictive network is used in the gradient-

based optimization of theMPC approach andmust therefore

remain differentiable, making the commonly used ReLU

activation 𝛼(z) = max(0, z) unsuitable. Instead, the smooth

approximation softplus activation 𝛼(x) = log
(
1+ exp(x)

)
is

used [35].

The presented identification method is applicable to

all kinds of greenhouses if sufficient data is available, as it

purely relies on the given data for a specific greenhouse.

3.2 Greenhouse climate control

Relying solely on the opening and closing of windows to

track the desired indoor temperature and humidity refer-

ence simultaneously is a challenging task. This difficulty

arises in particular because the single decision variable, the

ratio atwhich the vents are open, has a significant impact on

the humidity and the temperature, and the required control

action for successful tracking of temperature and humidity

is often in conflict. In order to obtain the best possible results

for this trade-off in greenhouse climate control, optimal con-

trol is used, i.e., MPC, in combination with the NN models,

as described in (1). Therefore, the proposed NPC problem

is a specific adaptation of the general MPC framework, as

described in Section 2.2.1, tailored to the specific needs of

greenhouse climate control and is defined as follows

U∗ = argmin
U

J(Uk,Xk ) (3a)

s.t. x̂i+1|k = x̂i|k + f p(x̂i|k, ûi|k, p̂i|k ), i∈ [0,N − 1] (3b)

ûi|k ∈  i∈ [0,N−1] (3c)

g(ûi|k, p̂i|k ) = 0 i∈ [0,N−1] (3d)

x̂0|k = xk, (3e)

û−1|k = uk−1. (3f)

The optimization is based on the current measure-

ment of the state xk defined in (3e). Based on this mea-

surement, the state trajectory is predicted with the learned

predictive model (1), and the input trajectory results from

minimizing the cost function J. The cost function J in (6)

will be explained in Section 3.2.2. It contains a smoothing

part, therefore it also requires the previous input, defined

in the problem in (3f). The weather data p̂i|k are chosen

from the weather forecast. The constraints on the inputs,

introduced in (3c) and (3d), will be further specified in

Section 3.2.1.

3.2.1 Constraints

When managing temperature and humidity in the green-

house, operational restrictions must be included as con-

straints in the optimization process to ensure safe and real-

istic control inputs. In the optimization problem presented

’
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in (3), these constraints are introduced as hard constraints

for inputs and states.

Vent openings are constrained to a feasible range

of 0 %–100 %. Therefore, in the optimization the

input is bounded by a hard constraint ûi|k ∈  , for

all i ∈ [0,N − 1] with  = {u ∈ ℝ ∣ umin ≤ u ≤ umax}
with umin = 0, umax = 100.

In order to protect the greenhouse from structural dam-

ages, the vent position must be zero, i.e., closed vents, if

the wind exceeds an upper bound, modeled by the hard

constraint

g(ûi|k, p̂i|k ) = ûi|k max(𝑣wind,i − 𝑣wind,max, 0) = 0. (4)

The function g(ûi|k, p̂i|k ) is zero if either the wind is below
the threshold value 𝑣wind,max or the vent position is 0 %.

The equality constraint (4) is linear in the input, since

the remainder of the equations is constant. It depends on

predicted wind data, which is known from the weather

forcast.

Due to the poor insulation of a greenhouse, the indoor

climate often closely follows the external weather condi-

tions, making it difficult to keep the greenhouse tempera-

ture and humidity hard-constrained. There is no guaran-

tee that the external conditions will not enter phases that

are highly unfavorable for plant growth. Enforcing hard

constraints on system states is therefore impractical, since

constraint satisfaction cannot be guaranteed. To ensure

that the constraints are mostly satisfied, state constraints

are included in the optimization problem only as soft con-

straints that penalize too large and too small temperature

and humidity. Thus, the term

max(x̂i|k − xmax,i, xmin,i − x̂i|k, 0) (5)

is included in the cost function with appropriate weights

(detailed in the following Section 3.2.2), where xmax,i ∈ ℝn

is the upper bound on the states, and xmin,i ∈ ℝn is the

lower bound. The maximum in (5) is zero if all con-

straints are satisfied. This formulation introduces a penalty

into the objective function when states exceed their speci-

fied bounds, encouraging compliance with the constraints

while allowing some flexibility in response to external

disturbances.

3.2.2 Cost function

The control goal for the greenhouse climate is defined

by the cost function (6) over the prediction horizon N . It

includes reference tracking, soft constraints, and a term that

smoothens the control signal over time.

J(Uk,Xk ) =
N∑
i=0

⎡⎢⎢⎢⎢⎣
‖‖‖x̂i|k − xref,k+i

‖‖‖
2

Qk+i
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Tracking

+ ‖‖‖max(x̂i|k − xmax,k+i, xmin,k+i − x̂i|k, 0)‖‖‖
2

S
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Soft Constraints

⎤⎥⎥⎥⎥⎦
+

N−1∑
i=0

R
(
ûi−1|k − ûi|k

)2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

Smoothing

(6)

The cost function penalizes larger deviation from

the reference temperature and reference humidity xref ,

which are given as kth element of the reference trajectory

xref,k ∈ ℝn. For more details on the environmental con-

trol of greenhouses, see [36]. The deviation from the ref-

erence is weighted by a positive definite weighting matrix

Qk ∈ ℝn×n, which switches between two realizations: one

for day and one for night. Additionally, the violation of the

state constraint is considered by incorporating (5) in the

cost function weighted with the positive definite weight

S ∈ ℝn×n. To prevent excessive wear on actuators and to

reduce abrupt input changes, the cost function penalizes

deviations between successive inputs (i.e., control signal

increments), weighted by the positive value R ∈ ℝ. This
smoothing term limits motor stress and improves energy

efficiency.

3.2.3 Adaption to day and night

Greenhouse conditions are strongly influenced by exter-

nal weather, which fluctuates significantly, particularly

between day and night. A significant contributing factor is

the fact that greenhouses typically have only minor insula-

tion, which allows sunlight to heat themduring the day. This

thin insulation, however, results in rapid cooling when out-

side temperatures drop, making it difficult to sustain day-

time temperature levels overnight. The reference trajectory

is designed based on the knowledge of the farmers. Since

photosynthesis ceases without sunlight, and most plants do

not require high temperatures at night, it is more efficient

to lower the reference temperature during the night.

In order to achieve this, instead of a constant refer-

ence a sinusoidal temperature reference is used, setting
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a higher target during the day and a lower one at night.

This approach minimizes large setpoint deviations at night

and enhances controller performance, aligning it with plant

requirements. For humidity, a constant tracking point is set

at 70 % because the crop loses water if the humidity is too

low and is at risk of disease if it is too high, regardless of

day or night. However, the control priorities are adjusted

by weighting temperature regulation more heavily during

the day, when it is crucial, and focusing more on humidity

control at night.

4 Results and discussion

The proposed method is evaluated using a simulation with

weather data. Instead of deploying the controller in a physi-

cal greenhouse, it is tested on a simulation where the green-

house dynamics are represented by f s. For offline training,

the neural networks were run on a high-performance com-

puter with 8 Tesla P100-PCIE-16GB GPUs and 2 AMD EPYC

7542 32-Core CPUs. The online control algorithm, including

the optimization process, was run on a standard laptopwith

an 8-core AMD Ryzen 5 PRO 3500U processor.

First, in Section 4.1, the outputs of the greenhouse cli-

mate model are presented to demonstrate its accuracy and

suitability for control purposes. Following in Section 4.2, the

performance of the proposed controller is discussed when

applied to the simulated greenhouse environment.

4.1 Data and modeling results

The predictive model f p is a fully connected NN with

Lp = 2 layers with rp = 64 neurons and a sampling time

Tp = 10 min. The p in the subscript, indicates the hyper-

parameter of the predictive model. The deeper and more

accurate simulation network f s consists of Ls = 4 layers

with rs = 208 neurons each and the real-time sampling time

of Ts = 30 s, where the s in the subscript denotes param-

eter of the simulation model. This finer sampling interval

is chosen as it aligns with the original 30 s sampling of the

data, providing a more precise system model than that of

the predictive network needed for the controller. In order to

prevent overfitting, several regularization techniques were

applied, including k-fold cross-validation (k = 5), dropout

[37], learning rate reduction on plateaus, and weight decay.

Training and validation losses were continuously moni-

tored to detect early signs of overfitting, but no such issues

were observed in the selected models. Further increas-

ing the network size did not yield significant performance

improvements. Both networks were trained using the mean

squared error (MSE) loss with the Adam [38] optimizer. All

Table 1: Evaluation metrics for the neural networks on test data for a

one-step prediction.

NN Prediction Simulation

Temp.

in K

Hum.

in %pt

Temp.

in K

Hum.

in %pt

Mean absolute error 0.080 4.002 0.048 4.442

Standard deviation 0.100 4.895 0.067 5.838

Maximum error 0.238 14.988 0.198 16.255

Variance of error 0.010 21.570 0.003 33.924

hyperparameters, including the number of layers, neurons

per layer, learning rate, weight decay, and dropout rate,

were optimized using Optuna [39], which efficiently iden-

tified the best-performing configurations. This automated

approach provides a more systematic and scalable opti-

mization process compared to manual tuning. The selected

hyperparameters include a weight decay of 6.71 × 10−6 for

the predictive network and 1.95 × 10−6 for the simulation

network, along with dropout rates of 0.1 and 0.125, respec-

tively. The learning rates were set to 2.2 × 10−4 for the pre-

dictive network and 1.4 × 10−3 for the simulation network.

The predictive network was trained for 850 epochs, while

the simulation network underwent 750 epochs of training.

The networks were trained on the dataset presented

in Figure 3, as explained in Section 3.1. The metrics for the

test of both NNs are given in Table 1, which summarizes

the mean, maximum, and variance of the absolute predic-

tion errors for temperature and humidity. These metrics

are computed solely for a one-step prediction, as the net-

works were trained to predict the state in the next time-

step based on the current state and the current input.

Both networks demonstrate strong performance, with the

prediction network achieving low mean absolute errors

of 0.080 K and 4.002 %pt for temperature and humidity,

respectively, where%pt denotes percentage points. The sim-

ulation network also performs well, with minimal errors in

both temperature (0.048 K) and humidity (4.442 %pt), indi-

cating effective generalization to the test data.

Figure 5 presents results for test data. In the temper-

ature and humidity plots, the gray line represents mea-

sured data, while the black and orange lines correspond

to predictions from the NNs. Given the correct data from

prior time steps, both networks closely match the actual

dynamics for the next step. These results confirm that the

model has effectively learned the training data, ensuring

a highly accurate one-step prediction, which is an essen-

tial foundation for reliable multi-step forecasts and control

applications. Since, in practice, predictions cannot rely on

real measurements of the states for future time steps, the
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Figure 5: Model evaluation on test data. The test includes the

performance of the model on days 3–6, with corresponding weather

conditions and the vent inputs used during this period.

performance of the network is also evaluated over longer

horizons without measurement updates. This is especially

relevant for the prediction network that will be used in the

NPC controller. However, in this work, the control method

will be tested in a closed-loop simulationwith the simulation

network, making the accuracy of the simulation network

relevant as well.

Figure 6 shows this evaluation for both networks.

Both networks effectively capture the dynamics over the

extended prediction horizon, although they both show

slight deviations from the real data. On average, the sim-

ulation network remains closer to the actual temperature

values than the predictive network, making it more suit-

able choice for control evaluation purposes. For humid-

ity, both networks perform similarly well. The general

dynamics of temperature and humidity are predicted cor-

rectly; however, absolute errors can be relatively large

at certain moments, exceeding 5 K for temperature and

20 %pt for humidity. Unlike typical cases where predic-

tion errors accumulate over time, Figure 6 shows that the

errors do not propagate indefinitely. This stability can be

attributed to external weather conditions, which act as

stabilizing factors for temperature and humidity, prevent-

ing uncontrolled error growth. This qualitative evaluation

highlights that the networks do not merely memorize the

Figure 6: Model prediction performance on test data. In the comparison,

the networks predict states over days 3–6 without updates from real

measurements, relying solely on their own state predictions at each time

step.

training data but generalize well over longer prediction

horizons.

4.2 Control results

The NPC controller is based on a learned PyTorch model

[40], which is used in the optimal control problem described

in (3). The problem is solvedwith CasADi [41] with the IPOPT

solver. The PyTorch model is translated to CasADi by using

the L4CasADi toolbox [22], [42].

A prediction horizon of N = 30 samples was selected,

and with the controller sampling time Tp = 10 min, this

resulted in a prediction time of 5 h. Note that this prediction

horizonwas selected according to the dynamics of the effect

of natural ventilation on the indoor temperature. In that

sense, natural ventilation is effective to control temperature

during the day, particularly around midday, so the time gap

for this control is usually 5–8 h depending on the season

(i.e., depending on the hours with solar radiation). In addi-

tion, the natural ventilation effect is strongly influenced by

the external weather conditions, especially by wind speed

and the difference of temperature between indoor and out-

door, so it is difficult to know in advance and with certainty

(i.e., even with greater prediction horizons) the values of

these variables. With a 5-h forecast time, it is possible to

react to changes in the weather forecast in sufficient time

while the computing load is still manageable with a time
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step of 10 min. The opening speed of the vents is also taken

into account by the time specification, as it takes approx-

imately 5 min to open all vents from fully closed to fully

open.

The state reference xref contains the reference of the

inside temperature and humidity. The indoor temperature

reference is a sinusoidal function that is 28 ◦C at noon and

18 ◦C at midnight, while the humidity reference is con-

stant at 70 %. The inside temperature bounds are at 5 K

below and above the temperature reference, and the pre-

ferred humidity is in the interval [50 %, 90 %]. The weights

in the cost function (6) are determined empirically, such

that the results reflect the desired behavior. The weights

of the state reference tracking are Qk = diag
(
1 ⋅ 104, 1

)
at

day and Qk = diag
(
1 ⋅ 104, 10

)
at night. During the day,

the primary focus is on maintaining precise temperature

tracking. At night, while the temperature remains essen-

tial, there is an additional emphasis on humidity control

to ensure the humidity stays below a critical value. The

penalties of the soft constraints are weighted with S =
diag

(
1 ⋅ 108, 100

)
. The change of the input is penalized with

R = 0.5. The wind hard constraint ensures that the vents

must be closed when the wind speed exceeds 8 m/s. In

Figure 7: Control results for four sunny days (day 3–7 in the dataset).

Periods, where the wind speed exceeds 8 m/s and windows must be

closed, are marked with gray vertical lines.

both scenarios, the calculations to solve the optimization

problem with the NPC approach take around 0.5 s for each

iteration, which is adequate for working within the 10 min

that are used for the controller sampling time but is also

adequate for working within the 30-s threshold required

for real-time system operation. Note that the optimization

was done on a standard laptop. The weather forecast in

the simulation is based on the data from the real green-

house described in Section 2.1, where zero-mean noise with

a standard deviation of 1 % of the value range is added to

the dataset. This noise reflects the uncertainty in real-world

weather forecasts, ensuring a realistic evaluation of the

NPC.

The control method was tested for two different

weather scenarios. The first scenario, shown in Figures 7

and 9, covers days 3–7 of the dataset and represents a sunny

period. The second scenario, shown in Figure 8, covers days

10–14 and represents a period of cloudy and windy days.

In the sunny weather scenario in Figure 7, a clear

control pattern can be observed: during the day, the vents

open just enough to maintain the reference temperature,

while at night, they remain closed to slow the cooling of the

greenhouse. Also, around the 38-h time step, the vents are

Figure 8: Control results for four days with weather fluctuations (days

10–14 in the dataset). Periods, where the wind speed exceeds 8 m/s and

windows must be closed, are marked with gray vertical lines.
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closed due to high wind speeds. The controller successfully

maintains the temperature within the acceptable range for

almost the entire period, mainly compensating the external

weather disturbances by changing the vents opening. At

daytime, when no saturation of the control signal occurs,

the temperature is less than 3 K and on average 1.1 K away

from the reference. While the nighttime humidity success-

fully remains below themaximum limit, it occasionally falls

below the desired minimum for short intervals during the

day. In those short daytime intervals and according to the

observed vents opening, the controller is giving priority

to regulating the greenhouse temperature since it is more

important for crop growth. In 81.4 % of the time, the humid-

ity is within the bounds.

In Figure 8, it is clear that the controller adapts its

behavior based on changing weather conditions. As before,

the vents close when wind speeds exceed 8 m

s
. During

the first night, the outside temperature remains relatively

high, causing the controller to keep the vents open for an

extended period of time, allowing for effective humidity and

temperature tracking. On the third day, however, minimal

sunlight limits the daytimeheating of the greenhouse,which

Figure 9: Control results for four sunny days (day 3–7 in the dataset)

with different temperature reference and zone control of humidity.

Periods, where the wind speed exceeds 8 m/s and windows must be

closed, are marked with gray vertical lines.

means, it does not even reach the reference temperature

when the vents are mostly closed. On the fourth day, as the

weather improves, the greenhouse is maintained in more

optimal conditions. In addition, the effect of natural venti-

lation to compensate for the weather disturbances and to

follow the temperature reference is shown on the second

and fourth day. In particular, on the second day (between

the 33-h and 43-h time steps), the controller significantly

modifies the vents opening when the outside temperature

changes, so that the temperature inside the greenhouse does

not deviate from the reference.

A different setting of NPC is presented in Figure 9.

The temperature reference is kept constant at 25 ◦C for

both day and night, and the cost for humidity deviation is

set to zero. That is, only the humidity soft constraints are

used, without a specific humidity reference. The resulting

temperature trajectory is controlled at the set point when

feasible. On the second day, however, the ventilation open-

ings are temporarily closed due to the wind protection,

which temporarily leads to a higher temperature. At night,

the temperature setpoint cannot be maintained, leading

to a drop in temperature. Therefore, changing references

such as in Figure 7 are beneficial, as they are better to

reach and incorporate the knowledge of realizable tem-

perature trajectories, taking into account the experience of

farmers.

5 Conclusions

A control method for regulating air temperature and rel-

ative humidity in greenhouses was introduced, focusing

solely on the efficient use of natural ventilation. Given the

complexity of modeling the greenhouse climate from first

principles, NPCwas chosen as the control approach because

it combines the benefits of MPC with learning. Feedforward

NNs were used to construct both a predictive and a simula-

tion model for the complex, nonlinear dynamics that define

temperature and humidity inside the greenhouse. These

models were trained and tested on an 81-day dataset from

a Mediterranean greenhouse, yielding a mean test error

of 0.08 K and 0.05 K for temperature, with corresponding

relative humidity errors of 4.0 %pt and 4.4 %pt.

The proposed NPC strategy successfully maintains tem-

perature and humidity within specified ranges, tailored to

the needs of the crops. This is a particularly challenging

control problem, as it requires simultaneous regulation of

both temperature and humidity using a single actuator, the

natural ventilation. The results demonstrate that the system

effectively tracks temperature and humidity setpoints while

incorporating additional safety constraints, such as closing
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the ventswhenwind speed is high to protect the greenhouse

structure. The results showed that the temperature is on

average only 1.1 K away from the reference when the con-

trol signal is not saturated. The humidity stays within the

bounds for 81.4 % of the time.

Data-driven learning approaches like this are highly

versatile and can be applied to greenhouses in various

climates. Furthermore, the NPC strategy requires minimal

parameter tuning, making it a practical solution for agricul-

tural applications.

A limitation of this approach is the need for pre-

recorded data to train the neural network model, which

requires the greenhouse to initially operate under a dif-

ferent controller during data collection. However, this can

be mitigated by starting with a generic climate model that

uses transfer learning [31] to handle the dynamics of a new

greenhouse. This generic model can initially control the

greenhouse, then be gradually refined with online learning

as it adapts to the specific conditions of the greenhouse

environment. As the ultimate goal is to control the green-

house environment based on optimal plant growth, tem-

perature, and humidity setpoints will, in future work, be

determined by an optimization framework that accounts for

crop growth dynamics [43], [44]. Additional variables, such

as wind direction, rainfall detection, and crop growth, will

be incorporated into the dataset to improve the training of

the NN models.
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