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Abstract: Data-driven predictive control (DPC), using lin-

ear combinations of recorded trajectory data, has recently

emerged as a popular alternative to traditional model pre-

dictive control (MPC). Without an explicitly enforced pre-

diction model, the effects of commonly used regularization

terms – and the resulting predictions – can be opaque.

This opacity may lead to practical challenges, such as

reliance on empirical tuning of regularization parameters

based on closed-loop performance, and potentially mislead-

ing heuristic interpretations of norm-based regularizations.

However, by examining the structure of the underlying

optimal control problem (OCP), more precise and insight-

ful interpretations of regularization effects can be derived.

In this paper, we demonstrate how to analyze the predic-

tive behavior of DPC through implicit predictors and the

trajectory-specific effects of quadratic regularization. We

further extend these results to cover typical DPC modifi-

cations, including DPC for affine systems, offset regulariza-

tions, slack variables, and terminal constraints. Addition-

ally, we provide a simple but general result on (recursive)

feasibility in DPC. This work aims to enhance the explain-

ability and reliability of DPC by providing a deeper under-

standing of these regularization mechanisms.
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Zusammenfassung: Datengetriebene prädiktive Rege-

lung (DPC), welche im Gegensatz zur klassischen Modell-

prädiktiven Regelung (MPC) prädizierte Trajektorien

durch Linearkombinationen aufgezeichneter Datentra-

jektorien generiert, hat sich als populäre Alternative

etabliert. Durch das Fehlen eines expliziten Prädiktions-

modells sind die Effekte der verwendeten Regularisie-

rungen und deren Auswirkungen auf das Prädiktions-

verhalten häufig schwer durchschaubar. Dies kann

zu praktischen Herausforderungen wie empirisches

Auslegen von Regularisierungsparametern und möglicher-

weise irreführenden Interpretationen von Norm-

basierten Regularisierungen führen. In dieser Arbeit

analysieren wir die Struktur des DPC unterliegenden

Optimalsteuerungsproblems (OCP) und verschaffen so

Einsichten in das implizite Prädiktionsverhalten und

die Trajektorien-spezifischen Effekte von quadratischer

Regularisierung. Diese Resultate erweitern wir auf affine

DPC Ansätze, Offset-Regularisierungen, Schlupfvariablen

und Terminalbeschränkungen. Dieser Beitrag zielt darauf

ab, die Erklärbarkeit vonDPC durch ein tieferes Verständnis

der Regularisierungsmechanismen zu verbessern.

Schlagwörter: Datengetriebene Regelung; prädiktive Rege-

lung; parametrische Optimierung; Erklärbarkeit

1 Introduction

Data-driven predictive control (DPC, [1]–[3]), utilizing linear

combinations of recorded trajectory data to make predic-

tions, rather than relying on an explicit system model, has

recently emerged as a popular alternative to classical model

predictive control (MPC, [4]). This control paradigm exem-

plifies a direct data-driven control scheme, contrasting with

indirect (model-based) methods, as visualized in Figure 1.

Originally, DPC is theoretically grounded in a result from

behavioral system theory [5], known as the Willems’ Fun-

damental Lemma. Furthermore, DPC yields an exact system
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Figure 1: Direct data-driven control schemes aim to design control

directly from data. This is in contrast to the indirect (i.e., model-based)

data-driven control design paradigm. Here, we aim for an indirect

viewpoint (highlighted in blue) on the predictions made by direct

schemes via implicit predictors.

representation and equivalence to MPC if the underlying

system is deterministic LTI [2], [6]. While this exactness

extends to certain classes of deterministic nonlinear sys-

tems [6], [7], it is typically lost in realistic cases involving

noise, disturbances, and general nonlinearities. To address

this, regularization terms are often added to the DPC objec-

tive function [2], initially motivated by their relation to

distributional robustness [8]. Since then, regularized DPC

schemes have shown promising performance, and further

theoretical justification via robustness and stability results

[1], [9]–[11]. However, the heuristic nature of regularizations

often obscures their direct impact on the synthesis of pre-

dicted system trajectories fromdata, and since DPC operates

without an explicitly enforced predictionmodel, the precise

influence of regularizations on the resulting predictions can

be challenging to discern. Therefore, our aim is to provide

a deeper analysis that clarifies the interaction of control

objective, constraints, and regularizations in DPC. Specif-

ically, we propose two tools for this analysis, namely the

trajectory-specific effect of regularizations (see Definition 1)

and implicit predictors (see Definition 2), first introduced

in [12]. The former reformulates regularization costs, trans-

lating their effect from auxiliary variables to the actual

predicted system variables. The latter yields a model-based

perspective on DPC by generating prediction mappings

that align with DPC’s actual predictions (see Figure 1). We

demonstrate the use of these analysis tools by summarizing

previous results from [12]–[14] and extend them towards

common modifications in DPC. The paper is organized as

follows. First, in Section 2 we summarize fundamentals on

direct data-driven predictions and regularized DPC, and dis-

cuss a numerical example, which is used for visualization

throughout the paper. In Section 3, we further motivate our

approach and explain its underlying assumptions. Section 4

presents the trajectory-specific effect of regularization and

summarizes related findings from [12]–[14]. In Section 5,

we introduce implicit predictors and demonstrate their use

by summarizing results from [12]–[14]. Section 6 expands

these results to commonDPCmodifications, including affine

systems, offset regularization, slack variables, and (termi-

nal) equality constraints, and provides a general feasibility

result. Finally, we conclude our work in Section 7 and pre-

view future applications for our proposed analysis tools.

2 Preliminaries and running

example

2.1 Fundamentals of direct data-driven
predictions

Instead of utilizing a discrete-time state-space model with

input u ∈ ℝm, state x ∈ ℝn, and output y ∈ ℝ p as in tradi-

tional MPC, predictions in DPC are realized based on previ-

ously collected trajectory data
(
u
(1), y(1)

)
,… ,

(
u
(𝓁 ), y(𝓁 )

)
∈

ℝmL ×ℝ pL via linear combinations(
ugen

ygen

)
=

(
u
(1)

y
(1)

)
a1 +…+

(
u
(𝓁 )

y
(𝓁 )

)
a𝓁 = a. (1)

Here, the dimensions of the datamatrix ∈ ℝL(m+ p)×𝓁

and generator vector a ∈ ℝ𝓁 are specified by the length L

of recorded (and generated) trajectories and the number

𝓁 of data trajectories used for predictions. Furthermore,

we refer to a pair
(
u, y

)
as an input/output-sequence (I/O-

sequence), and use roman notation to distinguish individ-

ual variables like u, y from their associated sequences u, y.

Assuming exact data generated by an LTI system, which can

be described, e.g., by the state-space representation

x(k + 1) = Ax(k)+ Bu(k) (2a)

y(k) = Cx(k)+ Du(k), (2b)

and assuming L is greater than the lag 𝜄 of the system, the

image () is equivalent to the set of all possible system

trajectories (of length L) if and only if [15]

rank() = Lm+ n. (3)

Note that the lag 𝜄 is an integer invariant [5] of the

system, i.e., invariant with respect to the considered re-

presentation. In context of the state-space representation

(2), it is also known as its observability index, which is

defined as the smallest integer 𝜄, for which rank
(
𝜄

)
=

rank
(
𝜄+1

)
with
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𝜄 :=

⎛⎜⎜⎜⎜⎜⎝

C

CA

...

CA𝜄−1

⎞⎟⎟⎟⎟⎟⎠
is satisfied. The generalized persistency of excitation con-

dition (3) provides the theoretical foundation for the linear

combinations (1), since(
ugen

ygen

)
∈ () ⟺ ∃a such that

(
ugen

ygen

)
= a. (4)

Representing system trajectories in this way is also

knownas an image representation of the system, as opposed

to, e.g., a state-space representation (2). A popular suffi-

cient condition for data to satisfy (3) is known as Willems’

Fundamental Lemma [5], which has become synonymous

with using image representations. We note that, contrary

to the Fundamental Lemma, the generalized persistency of

excitation condition (3) is both sufficient and necessary, and

neither requires controllability nor a Hankel structure for

the data matrix. To include the current initial condition

of the system as a starting point for predicted trajectories,

the generated I/O-sequence is typically partitioned into a

past section (up, yp) and a future section (u f , y f ) with Np

respectively N f time-steps yielding(
u p

u f

)
= ugen =

(
U p

U f

)
a and

(
y p

y f

)
= ygen =

(
Y p

Y f

)
a.

The past section of a predicted trajectory is then forced

tomatch the I/O-data 𝝃 recorded in themost recentNp time-

steps during closed-loop operation, i.e., the constraints

𝝃 =
(
u p

y p

)
=

(
U p

Y p

)
a = Wa

force any predicted trajectory to startwith themost recently

witnessed behavior of the system. Note that 𝝃 is a (non-

minimal) state of the LTI system (2), if Np is chosen greater

or equal to its lag 𝜄. From now on, we omit the “future”

subscript from u f , y f ,U f , and Y f , since their “past” coun-

terparts are already incorporated in W and 𝝃, eliminating

any risk of confusion. For more concise notation, we also

define

Z :=
(
W

U

)
, z :=

(
𝝃

u

)
, and 𝒘 :=

(
z

y

)
.

Additionally, with a slight abuse of notation, we rede-

fine  :=
(
Z⊤ Y⊤

)⊤

. The latter is simply a block-row

permuted version of the original data matrix introduced

in (1), used to facilitate the corresponding partitioning of

ugen, ygen into 𝝃,u, y. To summarize these new notations,

W contains data columns for the state 𝝃, U contains data

columns for the future input sequence u, and Y contains

data columns for the future output sequence y. Further-

more, Z contains data for the state-input sequence z, and

 contains data for the state-input-output sequence𝒘.

Remark 1. Although we have introduced the data-driven

predictions in an I/O setting, they can be straightforwardly

modified to a state-space setting [16]. To this end, consider

𝝃 =̂x0 ∈ ℝn, W =̂X0 ∈ ℝn×𝓁,

y =̂x ∈ ℝnNf , and Y =̂X ∈ ℝnNf×𝓁

leading to a datamatrix of dimension n+ (m+ n)N f × 𝓁.
Our considerations and condition (3) with rank() = n+
mNf hold for both settings, and we employ the latter for

visualization of a low dimensional numerical example used

throughout the paper and detailed in Section 2.3.

Notably, in the ideal deterministic LTI setting with con-

dition (3), the data matrix always has the rank deficiency

rank() = rank(Z), (5)

such that the image representation (4) implies a unique

(and exact) linear predictor mapping y = ŷ(𝝃,u). However,

this rank deficiency, and with it the unique predictions,

are typically lost in the presence of noise or nonlinearities,

which is visualized in Figure 2. One remedy for this might

be the use of (structured) low-rank approximations [17] for

, which sometimes even implicitly occurs in DPC schemes,

e.g., in 𝜸-DDPC [18] with 𝜸3 = 0 (see [13]). Specific to the

context of DPC, another remedy is given by the addition of

a regularization term h(a) to the objective function (6a) [1],

[2], which is in the focus of this work.

2.2 Regularized DPC

The optimal control problem (OCP) that is solved for DPC in

every time step can be stated as

min
u,y,a

J(𝝃,u, y)+ h(a) (6a)

s.t.

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
W

U

Y

⎞⎟⎟⎟⎠a, (6b)

(
u, y

)
∈  ×  (6c)
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Figure 2: Visualization of the data matrix for the low-dimensional

state-space example in Section 2.3. The green marks show data columns(
x
( i )

0
,u( i ),x( i )

)
for (a) the ideal deterministic LTI setting and (b) the same

data with added measurement noise. The gray subspaces depict(),

showing rank() = rank(Z) = 2 in (a) and full rank with

rank() = 3 > rank(Z) = 2 in (b).

with control objective J(𝝃,u, y), regularization h(a), and

input-output constraints ×  . Conditions for equivalence

of DPC and MPC are well established for some special cases.

In particular, as mentioned in the introduction, the equiva-

lence with MPC for the LTI system (2) holds with exact data

satisfying (3) and setting the regularization to h(a) = 0 [2].

In the presence of noise or nonlinearities, the unregularized

OCPmayuse the (unrealistic) additional degrees of freedom,

available to it by (5) not being satisfied, to greedily min-

imize the objective function J(𝝃,u, y). Given enough data

(columns), it is established and realistic (see, e.g. [12], [18],

[19], for a discussion) to make the following assumption.

Assumption 1. The data matrix has full row-rank.

Note that full row-rank of  renders (6b) meaningless

without regularization, since there is an a solving (6b) for

any arbitrary left-hand side trajectory.

2.3 Running numerical example

We emphasize that this work does not propose a new DPC

scheme; rather, it provides tools for analyzing the structure

of the OCPs in existing schemes. Therefore, and in light of

the following discussion in Section 3 regarding point (i),

we do not consider extensive closed-loop simulations to

be the best demonstration of our results. Such simulations

can be found in the works we reference when analyzing

the respective schemes. Instead, we use a low-dimensional

systemas a running example to visualize the structure of the

datamatrix itself in Figure 2, and the structure of implicit

predictors in Figures 3 and 4 (see page 373, page 378). Since

using a past I/O sequence as a non-minimal state 𝝃 yields a

minimum dimension of (p+m)Np ≥ 2, we instead treat the

example system in a state-space setting (see Remark 1). The

data-generating system is LTI with dimensions n = m = 1

and parameters (A,B) = (2,−0.5). To generate Figure 2(a),
we drew 500 i.i.d. samples x(i)

0
,u(i) ∼ [−1,1] and computed

the subsequent state x(i) via (2). For Figure 2(b), we added

i.i.d. measurement noise (0, 0.01) to each x(i)
0
,x(i). To visu-

alize the implicit predictors and optimal parametric solu-

tions in Figure 3, we chose N f = 1 and set up the control

objective (18) with reference xref = 0, weight  = 1, and

quadratic input costs J
u
(𝝃,u) = u

2. The data matrix  is

a block Hankel matrix (see, e.g., [5]), constructed from the

input-state sequence

xd,1 =
(
−0.1941 0.0048 −0.2145 −0.5427 −1.3683

)
ud,1 =

(
−0.7859 0.4483 0.2274 0.5659

)
,

which was generated by drawing an initial state x0 ∼
[−1,1], applying the i.i.d. input sequence u(i)

d
∼ [−1,1] via

(2), and then adding i.i.d. measurement noise  (0, 0.01)

to the resulting state sequence. To visualize the implicit

predictors in Figure 4, we set N f = 2, with reference xref =(
0.5 0.5

)⊤

, weight = I2, and arbitrary input costs, using

a regularization weight of 𝜆 = 1. The data matrix is again

a block Hankel matrix, constructed from the input-state

sequence

xd,2 =
(
xd,1 −3.1384 −5.9759

)
ud,2 =

(
ud,2 0.8037 −0.6017

)
,

where the two additional samples are generated in the same

way as before. These extra samples are needed to allow that

the data matrix  satisfies Assumption 1 for the increased

prediction horizon N f = 2.

3 Motivation and setting

Looking at recent DPC literature, we have observed the

following two trends:

(i) Regularization weights are typically tuned empiri-

cally, by evaluating closed-loop performance [18], [20],

[21].

(ii) Heuristic interpretations of norm-based regulariza-

tions, e.g., h(a) = 𝜆‖a‖2
2
or h(a) = 𝜆‖a‖1, are (mostly

unchanged) transferred to DPC [1], [20].

We acknowledge that both observations are grounded in

intuitive and practically valid heuristics. However, (i) only

offers a quantitative indicator of control performance being
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improved/diminished by regularizations. It may obscure

the underlying qualitative interactions between constraints,

control objective, and regularization that led to this effect.

Some of the already established theoretical investigations

in these qualitative effects include the interpretation of

DPC with regularization as a convex relaxation of other

(indirect) schemes [20] or in the context of distributional

robustness [8], and our work aims to add on to these.

Regarding (ii), such interpretations may be unspecific

in the context of predictive control and might even be mis-

leading. For example, it is claimed in [22] for regulariza-

tion via h(a) = 𝜆‖a‖2
2
that too large 𝜆 deteriorate tracking

performance, since “too small choices of the vector a shift

the input and output to which the closed-loop converges

towards zero”[22, Section 4]. While we agree that tracking

performance is deteriorated, the inputs and outputs are

generally not shifted towards zero by smalla for𝝃 ≠ 0, since

the chosen optimal a∗ must also satisfy Wa∗ = 𝝃. Instead,

they are shifted towards a (multistep) predictor ŷ(𝝃,u) and

(multistep) controller û(𝜉 ) “favored” by the regularization

h(a). Both can be precisely characterized by our proposed

tools, as demonstrated in Section 4.1 for linear DPC and

Section 6.1 for the affine DPC setting considered in [22].

The motivation of our work is to provide a structured

analysis that explains the interactions between constraints,

control objectives, and regularization in DPC. Although the

current results focus on analyzing existing schemes rather

than proposing new ones, they offer deeper insights into

these interactions and reveal potential pitfalls. This creates

a foundation for future improvements in DPC schemes.

Furthermore, our analysis is intentionally agnostic to the

specific class of the data-generating system. Rather than

focusing on a particular system type, our setting is tailored

to the structure of data matrices generated by them. This

often reduces to Assumption 1, which is typically (almost

surely) satisfied for both non-deterministic LTI, and non-

deterministic nonlinear systems. On the contrary, in prac-

tical cases, Assumption 1 typically only fails if too little data

are used (i.e.,  is tall) or if the input data lack sufficient

excitation. This generality comes at a price. Without such

assumptions on the true system, one cannot expect to eval-

uate how closely the analyzed predictions match its true

behavior or how the optimal controls generated by DPC

interact in closed-loop. Nonetheless, such assumptions can

be readily added to tailor these results to a specific sys-

tem class, incorporating prior system knowledge. Moreover,

our findings can already help explain certain phenomena

observed when applying DPC in closed-loop, such as those

seen in [20, Figure 2], which we discuss in Section 4.2.

Our analysis relies on two key conceptual tools. One is

given by the novel concept of implicit predictors (depicted

in Figure 1 and specified in Definition 2 further below),

which aims to describe the predictive behavior of OCPs that

may not have an explicitly enforced prediction model. The

introduction of implicit predictors in [12] has also led to a

parametric characterization of regularization costs in terms

of their trajectory-specific effects (formalized inDefinition 1).

Since then, similar analyses have appeared in [13], [14], [19],

[23], offering useful generalizations and intuitive interpre-

tations of the underlying structures. Due to its independent

value beyond implicit predictors, we treat this as a separate,

second tool.

We first introduce the trajectory-specific effect of reg-

ularizations in Section 4, since it facilitates the following

introduction of implicit predictors in Section 5. As an exem-

plary demonstration of these tools, we summarize results

from [12]–[14] for their use in DPC with quadratic regular-

ization in Sections 4.1, 4.2, and 5.1. We then extend these

results in Section 6 by analyzing the effects of common

modifications to the DPC problem. These analyses cover the

extension to affine DPC in Section 6.1, the inclusion of an

offset in the regularization in Section 6.2, the inclusion of

slack variables in Section 6.3, and the inclusion of addi-

tional (terminal) equality constraints in Section 6.4. While

not technically amodification to DPC, we also give two short

but very general results on (recursive) feasibility in DPC in

Section 6.5.

4 Trajectory-specific effect of

regularization

In the ideal deterministic LTI settingwithout regularization,

the variable a is only used in (6b) as an expression for the

image representation introduced in (4), i.e.,

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ ∈ () ⟺ ∃a such that

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ = a. (7)

However, adding a regularization h(a) introduces

another meaning to a, which is not based on the image

representation and the underlying behavioral system the-

ory but on heuristics. Intuitively, h(a) adds a price tag to

every a, which is also transferred to the trajectory tuple

(𝜉,u, y) generated by a. Note that, if  is wide, there

might bemultiple a generating the same trajectory and thus

multiple price tags associated with it. However, since we are

optimizing over a in (6), it is natural to only consider the
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lowest cost associated with any trajectory. This is formally

captured by the following definition.

Definition 1. We call the solution h∗(𝝃,u, y) to the optimiza-

tion problem

h∗(𝝃,u, y) := h(a∗(𝝃,u, y)) =min
a

h(a) (8a)

s.t.

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
W

U

Y

⎞⎟⎟⎟⎠a (8b)

the trajectory-specific effect of the regularization h(a) given

the data.

Importantly, note that (𝝃,u, y) appear as parameters in

(1) and not as optimization variables. Therefore, additional

constraints such as (6c) are irrelevant. That is, h∗(𝝃,u, y)

is valid for all (𝝃,u, y) satisfying (7), and therefore also for

those, which additionally need to satisfy (6c). The relevance

of h∗(𝝃,u, y) to the DPC problem comes from the fact that (1)

naturally appears as an inner optimization problem in (6).

That is, (6) is equivalent to

min
u,y

J(𝝃,u, y)+ h∗(𝝃,u, y) (9a)

s.t.

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ ∈ (), (9b)

(
u, y

)
∈  ×  . (9c)

Note that we have deliberately replaced (6b) via (7) to

highlight the fact that a can be fully eliminated, since it is

just an auxiliary variable, after all. That is, the image repre-

sentation (7) acts just as before, but the additional heuristic

costs introduced by h(a) (withwhichwe started this section)

are now fully explained by their trajectory-specific effect

h∗(𝝃,u, y). This allows for much more intuitive interpreta-

tions, which we demonstrate by summarizing results from

[12]–[14] on the trajectory-specific effect of quadratic reg-

ularization h(a) = 𝜆‖a‖2
2
in Section 4.1, and its projection-

based variant h(a) = 𝜆‖𝚷⊥a‖22 in Section 4.2, wherewe also
discuss its link to 𝜸-DDPC [18]. One may notice that, due to

its popularity and its conformity for analytic solutions, all

results in this paper focus on (projection-based) quadratic

regularization. However, we want to emphasize the gen-

erality of Definition 1, which is suited for any choice of

regularization h(a). In particular, similar analyses of

trajectory-specific effects for 1-norm h(a) = 𝜆‖a‖1 [2] or

general p-norm h(a) = 𝜆‖a‖p [20] regularizations should

be equally insightful, but are still an open problem.

4.1 Trajectory-specific effect of quadratic
regularization

It was first shown in [12] with additional details in [13, Prop.

1] that, under Assumption 1, the trajectory-specific effect of

quadratic regularization h(a) = 𝜆‖a‖2
2
is given by

𝜆‖a∗(𝝃,u, y)‖2
2
= 𝜆‖y− ŷLS(𝝃,u)‖2reg

(10a)

+𝜆‖u− ûLS(𝝃 )‖2reg
(10b)

+𝜆‖𝝃‖2(
WW⊤

)−1 . (10c)

Here, ŷLS(𝝃,u) and ûLS(𝝃 ) are the (multistep) predic-

tor/controller “favored” by the regularization, as initially

mentioned in Section 3. The regularization pushes predicted

y and u towards them, which is visualized in Figure 3

for the low-dimensional state-space example discussed in

Section 2.3. By parametrically solving (1) and decomposing

block-matrix expressions (see [12] for details), one can show

that both are given by linear mappings, which can be repre-

sented as

ŷLS(𝝃,u) :=GLSz (11)

ûLS(𝝃 ) :=KLS𝝃 (12)

via the least-squares solutions

GLS := argmin
G

‖Y − GZ‖2
F
= YZ+ (13a)

KLS := argmin
K

‖U − KW‖2
F
= UW+, (13b)

where ‖.‖F denotes the Frobenius norm. Note that ŷLS(𝝃,u)
is equivalent to the subspace predictor used as an equality

constraint in subspace predictive control (SPC, [24]). The

involved weighing matrices are given by

reg :=
(
E
y
E⊤
y

)−1
and reg :=

(
E
u
E⊤
u

)−1
, (14)

where

E
y
:=Y − GLSZ and E

u
:=U − KLSW

are the residual matrices associated with the least-square

problems (13), and the inverses exist under Assumption 1.

Therefore, reg and reg can be interpreted as inverses of

scaled (because they are not normalized w.r.t. the amount

of data columns 𝓁) empirical second moment matrices for
the output prediction error E

y
and “input prediction error”

E
u
of the least-squares solutions GLS,KLS based on the data

. Hence, quadratic regularization h(a) = 𝜆‖a‖2
2
pushes

y and u towards the least-squares estimates ŷLS(𝝃,u) and

ûLS(𝝃 ). It does somore (less) harshly in directions,where the
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latter are believed to be more (less) accurate, based on the

available data. The same second moment (or covariance)-

based interpretation appears in [19], with the distinction

that the state-input dependent part in [19, Eq. (21)] is not yet

decomposed into the two terms (10b) and (10c), similar to

[12]. However [19], also shows that the results naturally gen-

eralize to rank-deficient data matrices, i.e., not satisfying

Assumption 1, by simply using the Moore–Penrose inverse

in (14). In that case, deviations e
y
= y− ŷLS(𝝃,u) are not

penalized in singular directions of E
y
E⊤
y
, i.e., directions in

which no deviation from ŷLS(𝝃,u) has been observed in the

datamatrix. However, due to (7), one can show that ymay

not deviate at all in these directions. That is, in unexplored

directions of the state-input-output space, the penalization

of deviations in (10) is replaced with hard constraints, since

deviations from it are not possible in (). The same con-

siderations apply for deviations e
u
= u− ûLS(𝝃 ) if Z does

not have full row-rank.

When discussing the role of these cost terms, first note

that the last cost term (10c) is irrelevant to the OCP, since 𝝃 is

a parameter determined in closed-loop and not an optimiza-

tion variable. Regarding the usefulness of (10a), we believe

that y being pushed towards the least-squares (multistep)

predictor ŷLS(𝝃,u) in (10a) is quite intuitive. However, while

ŷLS(𝝃,u) is conceptually not a bad choice for a predictor, it

should be noted that (without further modifications such

as in [25]) it is typically neither causal nor time-invariant.

Furthermore, although it is conceptually nice to include

additional statistical information via reg and reg, this

information is utilized very greedily in DPC. That is, since

the optimal solution is a trade-off between control objective

and regularization cost, theDPC cost objective (6a) promotes

deviations from ŷLS(𝝃,u) primarily in uncertain directions

in order to achieve lower costs for the control objective

J(𝝃,u, y). We believe that it remains an interesting avenue

for future research to explore under what conditions penal-

izing predictions y towards a (potentially well- or ill-suited)

predictor ŷ(𝝃,u), as in (10a), outperforms enforcing it as an

equality constraint y = ŷ(𝝃,u). While the intuition behind

penalizing the input u towards ûLS(𝝃 ) in the same fashion

may not be immediately clear, it was shown in the 𝜸-DDPC

setting that a cost term equivalent to (10b) (proven in [12])

can indeed be utilized to increase DPC performance [26].

Furthermore, a functionally similar input penalty appears

in another framework focused on minimizing the final con-

trol error (FCE) [27]. Intuitively, the performance improve-

ment can be explained by the term (10b) pushing the

chosen input u towards the best-explored region of the

state-input-space, i.e., where the most confident predictions

can be made based on the available data. For a more pre-

cise quantification of the relation between prediction error

variance and ‖𝜸2‖22, we refer to [26].
Finally, we want to highlight the discrepancy between

(10a) and (10b) in terms of proper tuning for 𝜆. The output-

related cost term (10a) needs a large weight 𝜆 because,

without the previously discussed rank deficiency (5), it is the

sole factor keeping output predictions y from being greed-

ily and unrealistically (i.e., without considering the data in

) pushed toward the minimum of the control objective

J(𝝃,u, y). This effect is visualized in Figure 3(a). On the other

hand, the input-related cost term (10b) may not have a large

weight 𝜆, since this would favor always sticking to the “best-

explored” choice ûLS(𝝃 ) over choosing an input sequence u

that benefits the control objective J(𝝃,u, y), which is visual-

ized in Figure 3(d) and (e). These considerations highlight

the need for isolation of the individual cost terms. In the

following section, we present two modified DPC schemes

in which, as revealed through an analysis of the trajectory-

specific effect of regularization, this isolation of regulariza-

tion cost terms naturally occurs.

4.2 Isolating trajectory-specific effects via
projections or 𝜸-DDPC

In [20], the orthogonal projection matrices

𝚷 :=Z+Z and 𝚷⊥ := I −𝚷

were introduced to yield a regularization h(a) = 𝜆‖𝚷⊥a‖22
for which the closed-loop behavior is consistent with the

subspace predictor as 𝜆→∞. While it is noted that norm-

based regularizers such as h(a) = 𝜆‖a‖2
2
“are not consis-

tent and bias the optimal solution” [20, Section IV.C], the

nature of this bias is not further explored. In [12], this

nature is uncovered by showing that (under Assumption 1)

the trajectory-specific effect of projection-based quadratic

regularization h(a) = 𝜆‖𝚷⊥a‖22 is given by
𝜆‖𝚷⊥a

∗(𝝃,u, y)‖2
2
= 𝜆‖y− ŷLS(𝝃,u)‖2reg

. (15)

Since ‖a‖2
2
= ‖𝚷a‖2

2
+ ‖𝚷⊥a‖22, we also immediately

see that the remaining cost terms (10b) and (10c) are asso-

ciated with𝚷. That is, (under Assumption 1) the trajectory-

specific effect of projection-based quadratic regularization

h(a) = 𝜆‖𝚷a‖2
2
is given by

𝜆‖𝚷a∗(𝝃,u, y)‖2
2
= 𝜆‖u− ûLS(𝝃 )‖2reg

+ 𝜆‖𝝃‖2(
WW⊤

)−1 .
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This separation explains the observations in [20,

Figure 2]. There, the performance of h(a) = 𝜆‖a‖2
2

deteriorates for 𝜆→∞ since the chosen input u is

aggressively pushed towards ûLS(𝝃 ), while neglecting the

control objective J(𝝃,u, y). In contrast, the projection-based

regularization h(a) = 𝜆‖𝚷⊥a‖22 avoids this problem by

fully dropping the input-related term (10b). However, the

“closed-loop view” (discussed in Section 3) in [20, Figure 2]

hides the fact that two functionally very different cost

terms (10a) and (10b) are responsible for the observed

performance. Furthermore [20], only considers the two

options of either using both (10a) and (10b) with the

same weight 𝜆 via h(a) = 𝜆‖a‖2
2
, or only using (10a) via

h(a) = 𝜆‖𝚷⊥a‖22. However, an individually weighted mix

of the two termsmay provide the best of both worlds, which

is coincidentally explored in the regularization schemes

proposed for 𝜸-DDPC [18].

In 𝜸-DDPC, the constraint (6b) and variable a are

replaced via LQ decomposition as⎛⎜⎜⎜⎝
W

U

Y

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

Q1

Q2

Q3

Q4

⎞⎟⎟⎟⎟⎟⎠
,

𝜸 :=

⎛⎜⎜⎜⎜⎜⎝

𝜸1

𝜸2

𝜸3

𝜸4

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Q1

Q2

Q3

Q4

⎞⎟⎟⎟⎟⎟⎠
a,

where the diagonal blocks Lii for i ∈ {1, 2, 3} are non-

singular (under Assumption 1) and the matrices Qi have

orthonormal rows. Furthermore, Q4 and 𝜸4 are typically

omitted, since they do not affect the generated trajec-

tory. The idea behind 𝜸-DDPC can be summarized as re-

parameterizing the OCP with a lower dimensional variable

𝜸, and decoupling the matching of the initial condition 𝝃,

since 𝜸1 = L−1
11
𝝃 is uniquely determined [18]. The proposed

regularization strategies for 𝜸-DDPC are based on a mix of

quadratic regularization h̃(𝜸 ) = 𝜆2‖𝜸2‖22 + 𝜆3‖𝜸3‖22, or con-
straining 𝜸3 = 0 and using only h̃(𝜸 ) = 𝜆2‖𝜸2‖22 [23], [26].
The connection between this regularization of 𝜸-variables

and projection-based regularization of a was revealed in

[13] by analyzing their trajectory-specific effect.

Corollary 1. ([13]) Under Assumption 1, regularization of the

𝜸-variables can be equivalently expressed by the trajectory-

specific effect

‖𝜸1‖22 = ‖𝝃‖2(
WW⊤

)−1 ,
‖𝜸2‖22 = ‖u− ûLS(𝝃 )‖2reg

,

‖𝜸3‖22 = ‖y− ŷLS(𝝃,u)‖2reg
.

We note that the difference in notation w.r.t. to

Definition 1 only comes from the fact that (𝜸1, 𝜸2, 𝜸3)

are uniquely determined by (𝝃,u, y), and therefore

𝜸∗
i
(𝝃,u, y) = 𝜸 i. From Corollary 1, we can see that both the

projection-based regularization and the regularization of

𝜸 i isolate specific terms of the trajectory-specific effect of

standard quadratic regularization. Their relation can be

summarized as follows

‖𝚷⊥a
∗(𝝃,u,y)‖2

2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞‖y− ŷLS(𝝃,u)‖2reg

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟‖𝜸3‖22
+

‖𝚷a∗(𝝃,u,y)‖2
2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞‖u− ûLS(𝝃 )‖2reg

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟‖𝜸2‖22
+ ‖𝝃‖2(

WW⊤
)−1

⏟⏞⏞⏞⏟⏞⏞⏞⏟‖𝜸1‖22
= ‖a∗(𝝃,u, y)‖2

2
.

As a guideline for practitioners, we advocate to use

a mixed regularization h(a) = 𝜆2‖𝚷a‖2
2
+ 𝜆3‖𝚷⊥a‖22 (or,

equivalently in the 𝜸-DDPC framework h̃(𝜸 ) = 𝜆2‖𝜸2‖22 +
𝜆3‖𝜸3‖22). This approach generalizes both the quadratic reg-
ularization h(a) = 𝜆‖a‖2

2
, and the purely projection based

h(a) = 𝜆‖𝚷⊥a‖22 by choosing 𝜆 = 𝜆2 = 𝜆3 or 𝜆 = 𝜆3, 𝜆2 =
0, respectively. To avoid output predictions blindly follow-

ing the control objective,𝜆3 should be chosenvery large, and

(except for potential numerical solver instabilities) there

are no adverse effects to be expected even for 𝜆3 →∞. On

the contrary, 𝜆2 should be chosen very carefully to avoid the

inputs blindly following the least-squares controller ûLS(𝝃 ).

While 𝜆2 = 0 (recovering the projecion-based regulariza-

tion h(a) = 𝜆3‖𝚷⊥a‖22) can be considered a safe choice

in this regard, it also foregoes the potential performance

improvements associated with proper tuning of this term.

Here, we refer to [26] for more specific tuning guidelines.

Finally, as also observed in [19], adding or removing trajec-

tory columns from  after the tuning requires a re-scaling

of all regularization weights

𝜆i,new = 𝓁new
𝓁old

𝜆i,old

to retain a quantitatively similar effect, since reg,reg are

not normalized w.r.t. the number of trajectory columns.
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Figure 3: Implicit predictor, optimal parametric solutions, and least-squares mappings for the DPC problem discussed in Section 2.3 (a–d). The

optimal parametric DPC solutions (x0,u
∗(x0), x

∗(x0)) for the different regularizations h(a) = 𝜆‖a‖2
2
(orange) and h(a) = 𝜆‖𝚷⊥a‖22 (green) naturally

evolve on the implicit predictor x̂DPC(x0,u) (gray). (e) Visualization of the least-square solutions x̂LS(x0,u) (gray) and ûLS(x0 ). The latter is shown via

the tuple
(
x0, ûLS(x0 ), x̂LS(x0, ûLS(x0 ))

)
(orange).

Remark 2. Technically, the data matrix  is already nor-

malized w.r.t.
√
𝓁 in the 𝜸-DDPC framework, such that the

aforementioned re-scaling is not necessary. For clarity of

presentation and direct comparison to the projection-based

regularization, we have omitted this normalization. Note

that all considerations remain valid with(out) normaliza-

tion, since it does not change the image representation (7)

and the same effect in terms of quadratic regularization can

be achieved by rescaling weights 𝜆i with 𝓁.

5 Implicit predictors in regularized

DPC

Although the absence of the rank deficiency (5) allows

for non-unique output predictions, and Assumption 1 even

allows for any triple (𝝃,u, y) to be generated from  via

linear combinations, one can still observe certain patterns

in the optimal solutions (y∗(𝝃),u∗(𝝃), 𝝃) to (6). In particular,

it seems that the output predictions implicitly follow a (mul-

tistep) predictor mapping y
∗ = ŷ(𝝃,u∗(𝝃 )), even though

such a mapping is not explicitly enforced as an equality

constraint in (6). These considerations led to the following

notion of implicit predictors introduced in [12].

Definition 2. ([12]) We call ŷ(𝝃,u) an implicit predictor for

an OCP if including the constraint y = ŷ(𝝃,u) does not alter

the (set of) minimizers (u∗, y∗) and the optimal value.

Hence, an implicit predictor ŷDPC(𝝃,u) for the DPC

problem (6) can be interpreted as a model that generates

the output predictions y based on (𝝃,u) consistent with the

solutions to (6), even though such amodel is never explicitly

enforced. It is meant as a descriptive object (not prescrip-

tive, since it is not enforced in (6)), which can be studied to

explain the predictive behavior of DPC schemes and make

improvements, accordingly. The interaction of this inter-

pretation with the direct and indirect data-driven control

paradigms is visualized in Figure 1. While Definition 2 is

more conceptional than constructive, a valid implicit pre-

dictor for the DPC problem (6) can be constructed by solving

the optimization problem

ŷDPC(𝝃,u) = argmin
y

min
a

J(𝝃,u, y)+ h(a) (16a)

s.t.

⎛⎜⎜⎜⎝
𝝃

u

y

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
W

U

Y

⎞⎟⎟⎟⎠a, (16b)

y ∈  . (16c)

In contrast to (1), we now treat (𝝃,u) as parameters

and optimize over (a, y). Hence, additional set constraints

u ∈  can be dropped while y ∈  still need to be con-

sidered. However, similar to (1), note that (16) is an inner

optimization problem to (6) and thus its parametric solution

ŷDPC(𝝃,u) naturally satisfies Definition 2.

In the presence of the rank deficiency (5), ŷDPC(𝝃,u) is

fully determinedby the image representation (16b). Further-

more, it reveals the unique linear predictormapping implic-

itly within the data matrix , which can be specified as

ŷDPC(𝝃,u) = ŷLS(𝝃,u). Note that this is precisely the setting

and results considered in [28]. That is, in the deterministic

LTI case [28, Thm. 1], the rank deficiency (5) naturally occurs,

as discussed in Section 2.1. Notably, in the non-deterministic

setting, [28, Thm. 2], considers a data matrix which has so

few columns 𝓁 that the rank deficiency (5) is also satisfied,

i.e.,

𝓁 = rank(Z) ⇒ rank() = rank(Z). (17)

However, in these two settings, the predictor ŷLS(𝝃,u)

somewhat loses itsmeaning as a least squares estimate (13a),
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as it consistently yields zero residual (E
y
= 0). That is, in

the presence of rank deficiency (5), the linear system of

equations (7) can be solved algebraically for an exact and

unique linear mapping ŷ(𝝃,u), and using the least squares

solution is merely one way of doing so. In other words [28],

is often cited when arguing for equivalence between SPC

and DPC. However, this equivalence only occurs if there is

an exact linear output predictor mapping within the data

, since both methods manage to find it. Any alternative

method that successfully identifies this exact linear map-

ping and employs it for predictive control would also be

considered equivalent.

In the absence of the rank-deficiency (5), i.e., in a realis-

tic (non-deterministic) setting with more data columns than

in (17), the additional degrees of freedom lead to output pre-

dictions deviating from ŷLS(𝝃,u). Although it was shown in

[20] that the optimal solution of DPC with projection-based

quadratic regularizationh(a) = 𝜆‖𝚷⊥a‖22 is consistentwith
SPC for 𝜆→∞ (and therefore ŷDPC(𝝃,u) = ŷLS(𝝃,u) in that

case), a similar characterization of predictive behavior for

h(a) = 𝜆‖a‖2
2
or finite 𝜆 is not discussed in [20]. Precisely

this kind of characterization of predictive behavior for finite

𝜆 is possible using the concept of implicit predictors and

results for (projection-based) quadratic regularization are

given in [12], [14], whichwill be summarized in the following

section. Although we focus on DPC with these two kinds of

quadratic regularization,wewant to emphasize the general-

ity of Definition 2, which is suited for any kind of predictive

control scheme.

An implicit predictor for DPC with quadratic
regularization

In the following, we assume that the control objective is a

quadratic output-tracking formulation

J(𝝃,u, y) = ‖y− yref‖2 + J
u
(𝝃,u) (18)

with reference yref , positive semidefinite weighing matrix

, and arbitrary input control objective J
u
(𝝃,u). We further

assume that no additional output constraints are present,

i.e.,  = ℝ pNf . For some general observations on the effect

of output constraints, see [12, Section III.C], and specific

results regarding (terminal) equality constraints and gen-

eral feasibility are given in Sections 6.4 and 6.5, respectively.

In [12, Thm 3, 4], results for an implicit predictor with refer-

ence yref = 0 are given, which were later extended to possi-

bly nonzero reference in [14, Thm. 2]. Under Assumption 1,

solving (16) comes down to solving the unconstrained opti-

mization problem

ŷDPC(𝝃,u) = argmin
y

‖y− yref‖2 + h∗(𝝃,u, y).

Furthermore, since the trajectory-specific cost of

h(a) = 𝜆‖a‖2
2
and h(a) = 𝜆‖𝚷⊥a‖22 only differ in terms

independent of y (see (10) and (15)), it turns out that

the predictive behavior of both DPC schemes can be

characterized by the same implicit predictor

ŷDPC(𝝃,u) =
(
𝜆reg +

)−1
𝜆reg ŷLS(𝝃,u) (19)

+
(
𝜆reg +

)−1
 yref.

Note that the involved inverse exists because reg is

positive definite (under Assumption 1) and  is positive

semidefinite. Structurally, (19) can be seen as a (matrix-

)weighed sum, shifting output predictions towards yref and

ŷLS(𝝃,u), depending on the weights  and 𝜆reg, respec-

tively. This structure is visualized in Figure 3 for the low-

dimensional state-space example discussed in Section 2.3.

The predictions blindly follow yref (independent of 𝝃,u) for

𝜆 = 0 and tend towards ŷLS(𝝃,u) for 𝜆→∞. Furthermore,

ŷDPC(𝝃,u) is generally non-causal and time-variant (which

cannot be observed in Figure 3 due to the limited prediction

horizon N f = 1). For finite 𝜆 and yref ≠ 0, it is also an affine

predictor (otherwise linear), regardless of the true system

class generating the data. This last point highlights the inter-

pretation of implicit predictors being “the predictive behav-

ior implicitly attributed to the data-generating systemby the

DPC scheme” [12], whichmay not necessarilymatch the true

system if the scheme is poorly chosen.

6 Effects of modifications in DPC

While the previous section introduced the tools, namely

trajectory-specific effect of regularization and implicit pre-

dictors, and exemplified them via results from [12]–[14],

we now extend these results towards some common mod-

ifications in DPC. We analyze the extension to affine DPC

in Section 6.1, the inclusion of an offset in the regular-

ization in Section 6.2, the inclusion of slack variables in

Section 6.3, and the inclusion of additional (terminal) equal-

ity constraints in Section 6.4. Finally, we also give two

brief results on (recursive) feasibility for regularized DPC in

Section 6.5.

6.1 DPC for affine systems

While standard (linear) DPC can yield exact predictions for

deterministic LTI systems (see the discussion in Section 2.1),

exact extensions to particular classes of nonlinear systems

have been proposed, e.g., in [6], [7], [22]. Among these, we
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want to briefly discuss the case of affine time-invariant (ATI)

systems

x(k + 1) = Ax(k)+ Bu(k)+ e (20a)

y(k) = Cx(k)+ Du(k)+ r (20b)

proposed in [22], which is also used for other nonlinear

systems with continuously updated trajectory data in order

to approximate a local (affine) linearization of the nonlinear

system for predictions as in [10], [22]. Similarly to how tra-

jectories of LTI systems (2) can be generated by linear com-

binations, trajectories of ATI systems (20) can be generated

by affine combinations of trajectory data. That is, in addition

to (1), generated trajectories must also satisfy

𝓁∑
i=1

ai = 1⊤𝓁a = 1. (21)

Intuitively, this condition can be explained by noting

that the effect of e, r is present exactly once in each data

trajectory and, accordingly, should be present exactly once

in the generated trajectory. Assuming exact data generated

by an ATI system, the affine hull aff( ) of data columns in

 is equivalent to the set of all possible system trajectories

iff [29]

rank

(
1⊤𝓁



)
= Lm+ n+ 1. (22)

However, in the presence of noise and (other) nonlin-

earities, the same discussions as in Section 2.1 apply, i.e., the

unique and exact predictions are no longer possible. Accord-

ingly, our analysis is not confined to affine DPC applied to

data from ATI systems (20), but rather extends to affine DPC

with data generated by any system, including the nonlinear

tracking case in [10]. To understand the features of affine

DPC in the presence of such realistic data, we extend our

results from the linear DPC case. As discussed in [19, Section

II] and, in particular, [19, Rem. 4], many analysis results for

linear DPC also apply to such nonlinear systems, which are

linear in known (nonlinear) transformations of the state,

input, and output. This also applies to the affine DPC scheme

at hand, where we can simply consider 𝝃̌ :=
(
1 𝝃⊤

)⊤

to

be a nonlinear transformation of 𝝃, and W̌ :=
(
1𝓁 W⊤

)⊤

contains the corresponding data. Similarly, we define

ž :=
(
𝝃̌

u

)
and Ž :=

(
W̌

U

)
for the transformed state-input data. Instead of the lin-

ear least-squares estimates ŷLS(𝝃,u), ûLS(𝝃 ), consider their

affine counterparts

ŷALS(𝝃,u) := ǦALSž = GALSz+ gALS

ûALS(𝝃 ) := ǨALS𝝃̌ = KALS𝝃 + kALS

with

ǦALS := argmin
G

‖Y − GŽ‖2
F
= YŽ+ =

(
gALS GALS

)
ǨALS := argmin

K

‖U − KW̌‖2
F
= UW̌+ =

(
kALS KALS

)
,

and the corresponding residual matrices

Ě
y
:=Y − ǦALSŽ and Ě

u
:=U − ǨALSW̌ .

The analysis of affineDPCwith regularizations in terms

of their trajectory-specific effect and implicit predictors

then follows accordingly. In the following, we present the

case of (projection-based) quadratic regularization.

Proposition 1. For affine DPC, the trajectory-specific effect of

h(a) = 𝜆‖a‖2
2
is given by

𝜆‖a∗(𝝃,u, y)‖2
2
= 𝜆‖y− ŷALS(𝝃,u)‖2

̌reg

(23a)

+𝜆‖‖‖u− ûALS

(
𝝃
)‖‖‖2̌reg

(23b)

+𝜆‖‖‖𝝃̌‖‖‖2(W̌W̌⊤
)−1 (23c)

with weighing matrices

̌reg :=
(
Ě
y
Ě
y

⊤
)−1

and reg :=
(
Ě
u
Ě
u

⊤
)−1

.

Proof. The proof follows analogously to the linear DPC

case. □

The interpretation of these cost terms also directly

follows from the discussion below (10). Importantly, note

that instead of the least-squares estimates for a linear pre-

dictor/controller ŷLS(𝝃,u), ûLS(𝝃 ) the regularization now

favors the least-squares estimates for the affine predic-

tor/controller ŷALS(𝝃,u), ûALS(𝝃 ) and shifts the predicted

trajectory towards them. Similarly to (15), the effect of the

cost terms (23b) and (23c) can be eliminated by considering a

projection-based quadratic regularization h(a) = 𝜆‖𝚷̌⊥a‖22
with

𝚷̌ := Ž+Ž and 𝚷̌⊥ := I − 𝚷̌.

Finally, the analysis of predictive behavior via implicit

predictors follows accordingly.
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Proposition 2. Consider affine DPC with quadratic output-

tracking objective (18), (projection-based) quadratic regular-

ization h(a) = 𝜆‖a‖2
2
or h(a) = 𝜆‖𝚷̌⊥a‖22, andwithout addi-

tional output constraints. Under Assumption 1,

ŷADPC(𝝃,u) =
(
+ 𝜆̌reg

)−1
𝜆̌regŷALS(𝝃,u) (24)

+
(
+ 𝜆̌reg

)−1
yref

is an implicit predictor for this problem.

Proof. The proof follows analogously to the linear DPC

case from the trajectory-specific effect of regularization

in (23). □

Again, the interpretation of this predictor follows from

the linear DPC case discussed below (19).

6.2 Regularization with offset

Some DPC schemes, in which the tracking of a non-zero

equilibrium is desired, modify the regularization by includ-

ing an offset, i.e., h̃(a) = h(a− a) [10], [30]. Although this

adjustment is based on the assumption that the original reg-

ularization shifts predicted trajectories toward zero (see our

discussion in Section 3), it introduces some interesting fea-

tures,which canbe analyzed via its trajectory-specific effect.

Although [30] considers various norm choices, we focus on

the quadratic regularization h(a) = 𝜆‖a− a‖2
2
used in both

[10], [30]. Additionally, while the results in [10] are framed

for an affine DPC setting, our analysis will focus on lin-

ear DPC as in [30]. Note that these results can be readily

extended to the affine case, as discussed in Section 6.1.

Analogously to how a generates the trajectory𝒘 = a, we

denote the trajectory generated by a as𝒘 :=a, and simi-

larly with z,u, y, 𝝃. Furthermore, we denote the difference

between the two as

Δ𝒘 :=a−a = 𝒘−𝒘,

and similarly withΔz,Δu,Δy,Δ𝝃.

Theorem 1. Consider the DPC problem (6) with quadratic

offset-regularization h(a) = 𝜆‖a− a‖2
2
. Under Assumption 1,

the trajectory-specific effect of this regularization is given by

𝜆‖a∗(𝝃,u, y)− a‖2
2
= 𝜆‖Δy− ŷLS(Δ𝝃,Δu)‖2reg

(25a)

+ 𝜆‖Δu− ûLS(Δ𝝃 )‖2reg
(25b)

+ 𝜆‖Δ𝝃‖2(
WW⊤

)−1 (25c)

withreg andreg as defined in (14).

Proof. For a given tuple (𝝃,u, y,a), one can check that the

parametric optimal solution to (1) is given by

a∗(𝝃,u, y,a) = 
+𝒘+

(
I −

+

)
a

𝜆‖a∗(𝝃,u, y,a)− a‖2
2
= 𝜆Δ𝒘⊤

(


⊤
)−1Δ𝒘.

Except for the translation into Δ-coordinates, this
expression is equivalent to the one obtained in [12, Section

III.A], and the same block-matrix decomposition steps of(


⊤
)−1

lead to (25). □

Hence, an offset by a in the regularization simply trans-

lates to the same trajectory-specific effect with an offset

𝒘 for the considered trajectory. Note that (25) can also be

equivalently expressed as

𝜆‖a∗(𝝃,u, y,a)− a‖2
2
= 𝜆‖y− ŷLS(𝝃,u)−

(
y− ŷLS

(
𝝃,u

))‖2
reg

+ 𝜆‖u− ûLS(𝝃 )−
(
u− ûLS

(
𝝃
))‖2

reg

+ 𝜆‖𝝃 − 𝝃‖2(
W pW

⊤
p

)−1 . (26)

While the third cost term is always irrelevant, we can

see that the first two terms also may have no additional

effect (compared to the usual quadratic regularization) if

the trajectory𝒘 adheres to

y = ŷLS

(
𝝃,u

)
, or u = ûLS

(
𝝃
)
,

respectively. Similarly to (15), the effect of the cost terms

(25b) and (25c) can be eliminated by considering a

projection-based quadratic regularization. On that note, we

briefly remark that both

h(a) = 𝜆‖𝚷⊥

(
a− a

)‖2
2
= 𝜆

(
a⊤𝚷⊥a− 2a𝚷⊥a+ a⊤𝚷⊥a

)
or h(a) = 𝜆‖𝚷⊥a− a‖2

2
= 𝜆

(
a⊤𝚷⊥a− 2a𝚷⊥a+ a⊤a

)
,

yield the same effect, since they only differ in a constant

term unrelated to a. Furthermore, using the first term of the

alternative cost expression (26), we can also state an implicit

predictor as follows.

Proposition 3. Consider the DPC scheme (6) with quadratic

output-tracking objective (18), (projection-based) quadratic

offset-regularization h(a) = 𝜆‖a− a‖2
2
or h(a) = 𝜆‖𝚷⊥a−

a‖2
2
, and without additional output constraints. Under

Assumption 1,
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ŷDPC,off(𝝃,u) =
(
𝜆reg +

)−1
𝜆reg ŷLS,off(𝝃,u)

+
(
𝜆reg +

)−1
 yref.

with

ŷLS,off(𝝃,u) = ŷLS(𝝃,u)+ y− ŷLS

(
𝝃,u

)
(27)

is an implicit predictor for this problem.

Proof. The proof follows analogously to the linear DPC

case from the trajectory-specific effect of regularization

in (26). □

Wewant to highlight that ŷLS,off(𝝃,u) in (27) is an affine

predictor mapping, which simply results from shifting the

linear least-squares predictor ŷLS(𝝃,u) by a constant term

y− ŷLS

(
𝝃,u

)
, which depends on the discrepancy between

said offset trajectory 𝒘 and the least-squares predictor.

Other than that, the interpretation of this predictor follows

from the linear DPC case discussed below (19).

6.3 Effect of slack variables in DPC

A commonmodification to DPC, first introduced in [2], is the

inclusion of a slack variable as follows

min
u,y,a

J(𝝃,u, y)+ h(a)+ h𝝈(𝝈 ) (28a)

s.t.

⎛⎜⎜⎜⎜⎜⎝

u p

y p

u

y

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

0

𝝈

0

0

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

U p

Y p

U

Y

⎞⎟⎟⎟⎟⎟⎠
a, (28b)

(
u, y

)
∈  ×  . (28c)

Here, we briefly decompose the notation from 𝝃,W

back to up, yp,U p,Y p to show exactly which part the slack

variable 𝝈 is acting on. The use of slack variables is com-

mon to avoid infeasibility of the initial condition Wa = 𝝃

in situations whereW does not have full row-rank. That is,

while in the deterministic LTI case 𝝃 ∈ (W ) is guaranteed

by the system dynamics, even a tiny amount of noise or

nonlinearity may cause a measured initial condition 𝝃 to

become inconsistent with(W ). Note that some works like

[10] extend the use of slack variables to all output-related

parts of the image representation, i.e., they add another

slack variable to the last block-rowof (28b), and our analyses

will naturally extend to those cases as well. In order to

keep the use of 𝝈 small, another regularization term h𝝈(𝝈)

is added to the objective function, where typical choices

are h𝝈(𝝈) = 𝜆𝝈‖𝝈‖1 [2] or h𝝈(𝝈 ) = 𝜆𝝈‖𝝈‖22 [10], and we

will focus on the latter in combination with quadratic reg-

ularization h(a) = 𝜆‖a‖2
2
. While adding slack variables is

not strictly necessary in cases where Assumption 1 applies,

we will show an alternative interpretation of slack vari-

ables, which actually helps further justifying Assumption 1,

instead. Consider the re-scaling

𝝈̃ :=
√

𝜆𝜎
𝜆
𝝈

for which we have 𝜆𝜎‖𝜎‖22 = 𝜆‖𝜎̃‖2
2
. Furthermore, we can

rearrange (28b) as

⎛⎜⎜⎜⎜⎜⎝

u p

y p

u

y

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U p 0

Y p −
√

𝜆

𝜆𝜎
I p⋅N p

U 0

Y 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(
a

𝝈̃

)
=:

⎛⎜⎜⎜⎝
W̃

U

Y

⎞⎟⎟⎟⎠ ã =: ̃ã

and sum up the regularization terms

𝜆𝜎‖𝜎‖22 + 𝜆‖a‖2
2
= 𝜆‖ã‖2

2
:= h(ã).

Using this re-parameterization, the slack variables can

be interpreted as adding artificial trajectory data columns

in the new augmented data matrix ̃, where W̃ is now

guaranteed to be full row-rank under the usual input per-

sistency of excitation conditions (e.g., the one used in [1,

Thm. 1]), even if W is not. If an additional slack variable

is used for the last block-row of future outputs y (like in

[1], [9]), the same input persistency of excitation conditions

guarantee ̃ to be full row-rank, i.e., Assumption 1 to be

satisfied, even if  is not. Hence, the consideration of slack

variables further increases the scope of cases, where the

(already commonly made) Assumption 1 is justified. Other

than that, all analyses made using the trajectory-specific

effect of regularization and implicit predictors for DPC with

quadratic regularization h(a) = 𝜆‖a‖2
2
carry over by sim-

ply considering ̃ instead of . The same does not apply

to projection-based regularization h(a) = 𝜆‖𝚷⊥a‖22, since
the combined weight matrix S = diag

(
𝚷⊥, I

)
for the result-

ing h(ã) = 𝜆‖Sã‖2
2
has not yet been analyzed in the litera-

ture. For future work, we consider a more general analysis

of quadratic regularization h(a) = 𝜆‖Sa‖2
2
with arbitrary

weight matrix S an insightful endeavor.

Regarding the tuning of 𝜆𝝈 with respect to 𝜆, how

prominently the artificial trajectories are used in the result-

ing DPC predictions mainly depends on the ratio 𝜆𝜆−1
𝜎

and

its ratio w.r.t. the signal power of the data contained in Y p.

Empirically, one can also observe an improved conditioning

of thematrix W̃W̃⊤ compared toWW⊤ for increasing 𝜆𝜆−1
𝜎
,
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the quantification of which might also be interesting for

future work. An interesting (and perhaps unexpected) link

shows up in [31], where the authors iteratively optimize

the weight 𝜆 for 𝜆𝜎 = 1 (see [31, Eq. (33)]) in order to com-

pute an approximation to the maximum-likelihood predic-

tor for data generated by an LTI systemwith additive output

noise.

6.4 Predictive behavior with (terminal)
equality constraints

In order to provide closed-loop stability guarantees, classi-

cal MPC typically makes use of terminal ingredients (see,

e.g., [32]). Similarly, practical stability for someDPC schemes

like [1], [9], [10] has been proven by employing (among

other modifications) terminal equality constraints for the

last steps of the predicted I/O sequence (see [11] for a tuto-

rial). While we view terminal constraints as the main use

case of our following analysis, the results naturally expand

to other kinds of equality constraints. When analyzing the

effect of additional terminal equality constraints in the DPC

scheme (6), first, let us briefly recall that the trajectory-

specific effect of regularization introduced in Section 4 is

universally unaffected, since it applies to any chosen triple

(𝝃,u, y) satisfying (8b), and thus also the ones satisfying

additional (terminal equality) constraints. Regarding the

characterization of predictive behavior via implicit predic-

tors, similar considerations apply for the effect of additional

constraints on the input sequence u, as already discussed

below (16).

However, the predictive behavior of DPC is significantly

influenced by any kind of output constraints and often

contradicts the unconstrained behavior as observed in [12,

Section III.C]. To simplify upcoming notation, we assume

Figure 4: Implicit predictor x̂DPC(x0,u) for the DPC example discussed in

Section 2.3 with prediction horizon N f = 2 and reference. (a) No terminal

constraints. (b) Terminal constraints. xref = (0.5 0.5)⊤. To deal with the

higher dimensionality, the first (green) and second (orange) prediction

step of x̂DPC(x0,u) are visualized individually. Furthermore, we constrain

the second input to u2 = 0 and only visualize the first input u1.

that the terminal output constraints require the predicted

output y to match the reference yref over the final n (or any

other amount of) steps of the prediction. This assumption

is made without loss of generality; if the original refer-

ence yref does not naturally satisfy this condition, we can

simply define a modified reference ỹref, where the last n

steps are adjusted to incorporate the terminal constraints.

Once again, we make use of Assumption 1, which is further

justified by the use of slack variables in [1], [9], as discussed

in Section 6.3. Furthermore, we assume

 := diag
(
Q,… ,Q

)
with positive definite Q ∈ ℝ p× p,

(29)

which aligns with the setup in [1]. Given these assump-

tions, the following theorem precisely characterizes the

effect of (terminal) output equality constraints on the pre-

dictive behavior of DPC with (projection-based) quadratic

regularization.

Theorem 2. Consider the DPC problem (6) with h(a) =
𝜆‖a‖2

2
or h(a) = 𝜆‖𝚷⊥a‖22, and the additional terminal

equality constraint(
0 In

)
y =

(
0 In

)
yref. (30)

Furthermore, consider the block partitioning

 =
(
1 0

0 2

)
, reg =

(

(11)
reg


(12)
reg


(21)
reg


(22)
reg

)

with 2,
(22)
reg

∈ ℝn p×n p aligning with the assumption made

on the structure of in (29). Under Assumption 1,

ŷDPC(𝝃,u) = Λref yref +Λreg ŷLS(𝝃,u) (31)

with the weights

Λref :=
⎛⎜⎜⎝
(
1 + 𝜆

(11)
reg

)−1
1 −

(
1 + 𝜆

(11)
reg

)−1
𝜆

(12)
reg

0 I

⎞⎟⎟⎠
Λreg :=

⎛⎜⎜⎝
(
1 + 𝜆

(11)
reg

)−1
𝜆

(11)
reg

(
1 + 𝜆

(11)
reg

)−1
𝜆

(12)
reg

0 0

⎞⎟⎟⎠
is an implicit predictor for this problem.

Proof. The proof strategy lies in characterizing the effect of

hard terminal constraints as soft constraintswith costs tend-

ing to infinity. Note that this is an exact characterization that

works due to Assumption 1 allowing for any triple (𝝃,u, y) in

(6b) and would be invalid for an indirect (i.e., model-based)

scheme, where the set of feasible (𝝃,u, y) is limited by a
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prediction model enforced as a hard constraint. The result

thus follows by consideringq := diag
(
1, qI

)
instead of

in (19) and taking the limit q→∞. For brevity, we only show

the limit computation

Λref = lim
q→∞

(
𝜆reg +q

)−1
q,

and note that

Λreg = lim
q→∞

(
𝜆reg +q

)−1
𝜆reg

follows analogously. From the structure and positive defi-

niteness of q we have 
−1
q

= diag
(


−1
1
, q−1I

)
, and there-

fore(
𝜆reg +q

)−1
q =

(
𝜆

−1
q
reg + I

)−1

=
(
I +

−1
1
𝜆

(11)
reg


−1
1
𝜆

(12)
reg

q−1𝜆(21)
reg

I + q−1𝜆(22)
reg

)−1

.

Computing the limit for this expression yields

lim
q→∞

(
𝜆reg +q

)−1
q

=
(
I +

−1
1
𝜆

(11)
reg


−1
1
𝜆

(12)
reg

0 I

)−1

=
⎛⎜⎜⎝
(
I +

−1
1
𝜆

(11)
reg

)−1
−
(
I +

−1
1
𝜆

(11)
reg

)−1


−1
1
𝜆

(12)
reg

0 I

⎞⎟⎟⎠
=

⎛⎜⎜⎝
(
1 + 𝜆

(11)
reg

)−1
1 −

(
1 + 𝜆

(11)
reg

)−1
𝜆

(12)
reg

0 I

⎞⎟⎟⎠,
where we used a well known block-matrix inversion for-

mula in the third step. The computation of Λreg follows

analogously. □

As expected, the last n steps of the predicted ŷDPC(𝝃,u)

fully align with the terminal equality constraints

given by (30), which can be seen from the zero and

identity blocks in the lower block-row of Λref and Λreg.

Furthermore, it is remarkable that the structure of a

(matrix-) weighed sum observed in (19) is preserved

in the upper blocks of Λref and Λreg, characterizing

how the trade-off between yref and ŷLS(𝝃,u) in the first

N f − n prediction steps is affected by enforcing equality

to the reference for the last n steps. This trade-off is

visualized in Figure 4 for the low-dimensional state-space

example discussed in Section 2.3. This visualization

also highlights the discrepancy between the effect of

terminal constraints in regularized DPC compared to

model-based schemes,where a predictor is enforced as hard

constraints y = ŷ(𝝃,u). In the latter, a contradiction

between ŷ(𝝃,u) and the constraint (30) would lead

to infeasibility of the corresponding (𝝃,u). Instead,

regularized DPC not only changes the last n steps of

predictions to match (30), but alters the first N f − n

steps as specified in Theorem 2. While this preserves the

feasibility, which we next discuss in Section 6.5, it may

be an unintuitive and potentially unwanted feature for

practitioners who are unaware of it.

6.5 (Recursive) feasibility in DPC

Recursive feasibility of the closed-loop is an important con-

cept in stabilizing predictive control schemes, and a lot of

focus is placed on either guaranteeing it a priori or certi-

fying it for a given controller [33]. Correspondingly, prac-

tical stability results of DPC schemes also include results

on recursive feasibility (see [1, Section IV.D], [11, Prop. IV.1],

[9, Thm. 14]). Our work emphasizes the analysis of DPC

schemes through the structure of the underlying OCP, with-

out making assumptions about the class of systems gener-

ating the data. While we should not expect in-depth closed-

loop analysis results without making such assumptions, our

approach still reveals broad results on (recursive) feasibility

based on the OCP structure, which seem to be currently

overlooked in the literature. Although the DPC scheme (6)

does not include constraints 𝝃 ∈  on the initial state, we

will consider them here to state more nuanced and general

results.

Proposition 4. Consider the DPC scheme (6)with non-empty

constraint sets , , and additional state constraints 𝝃 ∈  .

Under Assumption 1, the set of feasible initial states 𝝃 is

equivalent to  .

Proof. Under Assumption 1, there exists an a satisfying (6b)

for any triple (𝝃,u, y). Hence, for any 𝝃 ∈  there also exist

(u, y) satisfying the remaining constraints (6c). □

The following is a simple consequence of this result.

Proposition 5. Consider the DPC scheme (6)with non-empty

constraint sets  , , and without additional state con-

straints, i.e., 𝝃 ∈ ℝ(m+ p)N p . Under Assumption 1, the OCP (6)

is always feasible (and hence recursively feasible).

Proof. Simply consider  = ℝ(m+ p)N p in the proof of

Proposition 4. □

Although straightforward and already briefly dis-

cussed in [12, Section III.C], these results have important
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implications. The DPC problem (6) is typically (i.e., under

Assumption 1) always feasible. This feasibility is by design

of the OCP itself, rather than coming from the closed-loop

control or system dynamics. For the schemes in [1], [11],

the use of slack variables on the output variables yp and

y ensures that Assumption 1 holds for the extended data

matrix ̃ (see our discussion in Section 6.3) under typi-

cal input persistency of excitation assumptions [1, Thm. 1].

Similarly, in [9], where slack variables are applied to the

entire trajectory variable 𝒘, Assumption 1 is also always

satisfied for ̃. Consequently, the recursive feasibility anal-

ysis in these schemes could be replaced by Proposition 5.

Finally, we want to highlight the generality of these results.

For example, the considered constraint sets  , may also

include terminal equality constraints like the ones discussed

in Section 6.4.

7 Conclusions and outlook

This work discussed the use of trajectory-specific effects

of regularizations (see Definition 1) and implicit predictors

(see Definition 2) as analysis tools to improve explainability

in regularized DPC. The former concretizes the effects of

any regularization h(a) by eliminating auxiliary variables

and reformulating an equivalent cost h∗(𝝃,u, y), which is

specific to the trajectory variables (𝝃,u, y), instead. The lat-

ter is a predictor mapping ŷ(𝝃,u), which coincides with the

predictions generated while applying regularized DPC and

thus provides an indirect (i.e., model-based) view on this

direct scheme, as visualized in Figure 1. We first demon-

strated the use of these tools by summarizing results from

[12]–[14] on trajectory-specific effects and implicit predic-

tors for (projection-based) quadratic regularization, and

provided intuitive interpretations of the uncovered effects

in Sections 4 and 5. We then extended these results towards

commonmodifications in DPC, including DPC for affine sys-

tems, offset regularizations, slack variables, and terminal

constraints. Notably, we showed that slack variables can

be interpreted as introducing artificial data samples in an

augmented data matrix ̃, which can be analyzed just like

before and is even more likely to satisfy the already com-

mon Assumption 1. For eachmodification, we computed the

trajectory-specific cost or presented an implicit predictor

if the modification led to a change in the regularization

effect or predictive behavior. A key feature of our results is

modularity, since they can be freely combined. For example,

the nonlinear tracking scheme [10] uses an affine formu-

lation, offset regularization, slack variables, and terminal

equality constraints. Hence, a combination of results from

Sections 6.1–6.4 can be used to explain the interactions

between control objective, constraints, and regularization

in this scheme. Finally, we gave two brief results on (recur-

sive) feasibility, stating that common DPC formulations are

often feasible by design, hence eliminating the need for a

deeper analysis of recursive feasibility in those cases.

Although this work primarily focused on DPC with

(projection-based) quadratic regularizations, we emphasize

the broadness of our proposed analysis tools, which are (in

principle) applicable to any choice of regularization h(a).

Therefore, similar analyses for more general quadratic reg-

ularization h(a) = 𝜆‖Sa‖2
2
, 1-norm regularization h(a) =

𝜆‖a‖1 (which is sometimes used for nonlinear systems

[2]), or general p-norms h(a) = 𝜆‖a‖p should yield sim-

ilarly insightful characterizations. Furthermore, similarly

to the relation with 𝜸-DDPC presented in Section 4.2, the

trajectory-specific effect of regularizations may uncover

links to other frameworks, such as generalized DPC [34].

Finally, combining the generality of the presented analysis

tools with more specific assumptions and prior knowledge

about the true underlying system could help establish new

robustness and stability results.
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