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Abstract: Data-driven predictive control (DPC), using lin-
ear combinations of recorded trajectory data, has recently
emerged as a popular alternative to traditional model pre-
dictive control (MPC). Without an explicitly enforced pre-
diction model, the effects of commonly used regularization
terms — and the resulting predictions — can be opaque.
This opacity may lead to practical challenges, such as
reliance on empirical tuning of regularization parameters
based on closed-loop performance, and potentially mislead-
ing heuristic interpretations of norm-based regularizations.
However, by examining the structure of the underlying
optimal control problem (OCP), more precise and insight-
ful interpretations of regularization effects can be derived.
In this paper, we demonstrate how to analyze the predic-
tive behavior of DPC through implicit predictors and the
trajectory-specific effects of quadratic regularization. We
further extend these results to cover typical DPC modifi-
cations, including DPC for affine systems, offset regulariza-
tions, slack variables, and terminal constraints. Addition-
ally, we provide a simple but general result on (recursive)
feasibility in DPC. This work aims to enhance the explain-
ability and reliability of DPC by providing a deeper under-
standing of these regularization mechanisms.
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Zusammenfassung: Datengetriebene prédiktive Rege-
lung (DPC), welche im Gegensatz zur klassischen Modell-
pradiktiven Regelung (MPC) prédizierte Trajektorien
durch Linearkombinationen aufgezeichneter Datentra-
jektorien generiert, hat sich als populdre Alternative
etabliert. Durch das Fehlen eines expliziten Pradiktions-
modells sind die Effekte der verwendeten Regularisie-
rungen und deren Auswirkungen auf das Pradiktions-
verhalten héufig schwer durchschaubar. Dies kann
zu praktischen Herausforderungen wie empirisches
Auslegen von Regularisierungsparametern und moglicher-
weise irrefithrenden Interpretationen von Norm-
basierten Regularisierungen fithren. In dieser Arbeit
analysieren wir die Struktur des DPC unterliegenden
Optimalsteuerungsproblems (OCP) und verschaffen so
Einsichten in das implizite Pradiktionsverhalten und
die Trajektorien-spezifischen Effekte von quadratischer
Regularisierung. Diese Resultate erweitern wir auf affine
DPC Ansatze, Offset-Regularisierungen, Schlupfvariablen
und Terminalbeschrdnkungen. Dieser Beitrag zielt darauf
ab, die Erklarbarkeit von DPC durch ein tieferes Verstandnis
der Regularisierungsmechanismen zu verbessern.

Schlagwérter: Datengetriebene Regelung; pradiktive Rege-
lung; parametrische Optimierung; Erklarbarkeit

1 Introduction

Data-driven predictive control (DPC, [1]-[3]), utilizing linear
combinations of recorded trajectory data to make predic-
tions, rather than relying on an explicit system model, has
recently emerged as a popular alternative to classical model
predictive control (MPC, [4]). This control paradigm exem-
plifies a direct data-driven control scheme, contrasting with
indirect (model-based) methods, as visualized in Figure 1.
Originally, DPC is theoretically grounded in a result from
behavioral system theory [5], known as the Willems’ Fun-
damental Lemma. Furthermore, DPC yields an exact system
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Figure 1: Direct data-driven control schemes aim to design control
directly from data. This is in contrast to the indirect (i.e., model-based)
data-driven control design paradigm. Here, we aim for an indirect
viewpoint (highlighted in blue) on the predictions made by direct
schemes via implicit predictors.

representation and equivalence to MPC if the underlying
system is deterministic LTI [2], [6]. While this exactness
extends to certain classes of deterministic nonlinear sys-
tems [6], [7], it is typically lost in realistic cases involving
noise, disturbances, and general nonlinearities. To address
this, regularization terms are often added to the DPC objec-
tive function [2], initially motivated by their relation to
distributional robustness [8]. Since then, regularized DPC
schemes have shown promising performance, and further
theoretical justification via robustness and stability results
[1], [9]-[11]. However, the heuristic nature of regularizations
often obscures their direct impact on the synthesis of pre-
dicted system trajectories from data, and since DPC operates
without an explicitly enforced prediction model, the precise
influence of regularizations on the resulting predictions can
be challenging to discern. Therefore, our aim is to provide
a deeper analysis that clarifies the interaction of control
objective, constraints, and regularizations in DPC. Specif-
ically, we propose two tools for this analysis, namely the
trajectory-specific effect of regularizations (see Definition 1)
and implicit predictors (see Definition 2), first introduced
in [12]. The former reformulates regularization costs, trans-
lating their effect from auxiliary variables to the actual
predicted system variables. The latter yields a model-based
perspective on DPC by generating prediction mappings
that align with DPC’s actual predictions (see Figure 1). We
demonstrate the use of these analysis tools by summarizing
previous results from [12]-[14] and extend them towards
common modifications in DPC. The paper is organized as
follows. First, in Section 2 we summarize fundamentals on
direct data-driven predictions and regularized DPC, and dis-
cuss a numerical example, which is used for visualization
throughout the paper. In Section 3, we further motivate our
approach and explain its underlying assumptions. Section 4
presents the trajectory-specific effect of regularization and
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summarizes related findings from [12]-[14]. In Section 5,
we introduce implicit predictors and demonstrate their use
by summarizing results from [12]-[14]. Section 6 expands
these results to common DPC modifications, including affine
systems, offset regularization, slack variables, and (termi-
nal) equality constraints, and provides a general feasibility
result. Finally, we conclude our work in Section 7 and pre-
view future applications for our proposed analysis tools.

2 Preliminaries and running
example

2.1 Fundamentals of direct data-driven
predictions

Instead of utilizing a discrete-time state-space model with
input u € R™, state x € R", and output y € R? as in tradi-
tional MPC, predictions in DPC are realized based on previ-
ously collected trajectory data (uV,y), ..., (v9,y?) €
R™ x RPL via linear combinations

<ugen) (u(1)> (u(f)>
=\ g Jut-+{ a,=Da. (@
Ygen y y

Here, the dimensions of the data matrix D € RLm+px2
and generator vector a € R” are specified by the length L
of recorded (and generated) trajectories and the number
¢ of data trajectories used for predictions. Furthermore,
we refer to a pair (u,y) as an input/output-sequence (I/0-
sequence), and use roman notation to distinguish individ-
ual variables like u, y from their associated sequences u,y.
Assuming exact data generated by an LTI system, which can
be described, e.g., by the state-space representation

x(k +1) = Ax(k) + Bu(k) (2a)

y(k) = Cx(k) + Du(k), (2b)

and assuming L is greater than the lag : of the system, the
image R(D) is equivalent to the set of all possible system
trajectories (of length L) if and only if [15]

rank(D) = Lm + n. 3

Note that the lag : is an integer invariant [5] of the
system, i.e., invariant with respect to the considered re-
presentation. In context of the state-space representation
(2), it is also known as its observability index, which is
defined as the smallest integer 1, for which rank(O,) =
rank(0,,,) with
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is satisfied. The generalized persistency of excitation con-
dition (3) provides the theoretical foundation for the linear
combinations (1), since

u u
( gen) € R(D) < 3asuch that < gen) =Da. (4)

Ygen Yeen

Representing system trajectories in this way is also
known as an image representation of the system, as opposed
to, e.g., a state-space representation (2). A popular suffi-
cient condition for data to satisfy (3) is known as Willems’
Fundamental Lemma [5], which has become synonymous
with using image representations. We note that, contrary
to the Fundamental Lemma, the generalized persistency of
excitation condition (3) is both sufficient and necessary, and
neither requires controllability nor a Hankel structure for
the data matrix. To include the current initial condition
of the system as a starting point for predicted trajectories,
the generated I/O-sequence is typically partitioned into a
past section (u,,y,) and a future section (uy,y,) with N,
respectively N ; time-steps yielding

u U Y
us Uy Yy Y,

The past section of a predicted trajectory is then forced
to match the I/0-data & recorded in the most recent N, time-
steps during closed-loop operation, i.e., the constraints

= (5r)= (e
Yp Y,
force any predicted trajectory to start with the most recently
witnessed behavior of the system. Note that & is a (non-
minimal) state of the LTI system (2), if N, is chosen greater
or equal to its lag ;. From now on, we omit the “future”
subscript from ugyy, U f, and Yf, since their “past” coun-

terparts are already incorporated in W and &, eliminating
any risk of confusion. For more concise notation, we also

define
(o) =(0) == ()
AL ,Z= , and w:= .
U u y

Additionally, with a slight abuse of notation, we rede-
T
fine D:= (ZT YT> . The latter is simply a block-row
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permuted version of the original data matrix introduced
in (1), used to facilitate the corresponding partitioning of
Uge, Ygen iNto &, u,y. To summarize these new notations,
W contains data columns for the state &, U contains data
columns for the future input sequence u, and ¥ contains
data columns for the future output sequence y. Further-
more, Z contains data for the state-input sequence z, and
D contains data for the state-input-output sequence w.

Remark 1. Although we have introduced the data-driven
predictions in an I/O setting, they can be straightforwardly
modified to a state-space setting [16]. To this end, consider

E=x, R, W2X, € R™,

y=x € R™, and Y &X € R4

leading to a data matrix D of dimensionn + (m + n)N; X ¢.
Our considerations and condition (3) with rank(D) = n +
mN; hold for both settings, and we employ the latter for
visualization of a low dimensional numerical example used

throughout the paper and detailed in Section 2.3.

Notably, in the ideal deterministic LTI setting with con-
dition (3), the data matrix always has the rank deficiency

rank(D) = rank(Z), (5)

such that the image representation (4) implies a unique
(and exact) linear predictor mapping y = §(&, u). However,
this rank deficiency, and with it the unique predictions,
are typically lost in the presence of noise or nonlinearities,
which is visualized in Figure 2. One remedy for this might
be the use of (structured) low-rank approximations [17] for
D, which sometimes even implicitly occurs in DPC schemes,
e.g., in y-DDPC [18] with y; = 0 (see [13]). Specific to the
context of DPC, another remedy is given by the addition of
a regularization term h(a) to the objective function (6a) [1],
[2], which is in the focus of this work.

2.2 Regularized DPC

The optimal control problem (OCP) that is solved for DPC in
every time step can be stated as

{lnyig J(&,u,y) + h(a) (6a)
& w

S.t. ul=|U|a, (6b)
y Y

(wy) eUxy (60)
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(a) Deterministic LTI (b) Noisy LTI
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Figure 2: Visualization of the data matrix D for the low-dimensional
state-space example in Section 2.3. The green marks show data columns
(xg), u, x1") for (a) the ideal deterministic LTI setting and (b) the same
data with added measurement noise. The gray subspaces depict R(D),
showing rank(D) = rank(Z) = 2 in (a) and full rank D with

rank(D) = 3 > rank(Z) = 2in (b).

with control objective J(&,u,y), regularization h(a), and
input-output constraints ° X Y. Conditions for equivalence
of DPC and MPC are well established for some special cases.
In particular, as mentioned in the introduction, the equiva-
lence with MPC for the LTI system (2) holds with exact data
satisfying (3) and setting the regularization to h(a) = 0 [2].
In the presence of noise or nonlinearities, the unregularized
OCP may use the (unrealistic) additional degrees of freedom,
available to it by (5) not being satisfied, to greedily min-
imize the objective function J(&,u,y). Given enough data
(columns), it is established and realistic (see, e.g. [12], [18],
[19], for a discussion) to make the following assumption.

Assumption 1. The data matrix D has full row-rank.

Note that full row-rank of D renders (6b) meaningless
without regularization, since there is an a solving (6b) for
any arbitrary left-hand side trajectory.

2.3 Running numerical example

We emphasize that this work does not propose a new DPC
scheme; rather, it provides tools for analyzing the structure
of the OCPs in existing schemes. Therefore, and in light of
the following discussion in Section 3 regarding point (i),
we do not consider extensive closed-loop simulations to
be the best demonstration of our results. Such simulations
can be found in the works we reference when analyzing
the respective schemes. Instead, we use a low-dimensional
system as a running example to visualize the structure of the
data matrix D itself in Figure 2, and the structure of implicit
predictors in Figures 3 and 4 (see page 373, page 378). Since
using a past I/O sequence as a non-minimal state & yields a
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minimum dimension of (p + m)N p =2, We instead treat the
example system in a state-space setting (see Remark 1). The
data-generating system is LTI with dimensions n=m =1
and parameters (A, B) = (2, —0.5). To generate Figure 2(a),
we drew 500 i.id. samples x\”,u) ~ ;_,;; and computed
the subsequent state x? via (2). For Figure 2(b), we added
ii.d. measurement noise N'(0, 0.01) to each xg), x®. To visu-
alize the implicit predictors and optimal parametric solu-
tions in Figure 3, we chose N, =1 and set up the control
objective (18) with reference x,; = 0, weight @ =1, and
quadratic input costs J,(&,u) = u? The data matrix D is
a block Hankel matrix (see, e.g., [5]), constructed from the
input-state sequence

Xg1 = (—0.1941 0.0048 —0.2145 —0.5427 —1.3683)

ug, = (-0.7859 04483 02274 0.5659),

which was generated by drawing an initial state x, ~
U}y applying the ii.d. input sequence ug’ ~ Uiy Vvia
(2), and then adding i.i.d. measurement noise (0, 0.01)
to the resulting state sequence. To visualize the implicit
predictors in Figure 4, we set N, = 2, with reference X,; =

<0.5 0.5>T, weight Q@ = I,, and arbitrary input costs, using
aregularization weight of A = 1. The data matrix D is again
a block Hankel matrix, constructed from the input-state
sequence

Xz = (xd,1 —3.1384 —5.9759)
ud,2=(ud,2 0.8037 —0.6017>,

where the two additional samples are generated in the same
way as before. These extra samples are needed to allow that
the data matrix D satisfies Assumption 1 for the increased
prediction horizon Ny = 2.

3 Motivation and setting

Looking at recent DPC literature, we have observed the

following two trends:

(1) Regularization weights are typically tuned empiri-
cally, by evaluating closed-loop performance [18], [20],
[21].

(i) Heuristic interpretations of norm-based regulariza-
tions, e.g., h(a) = A||a||§ or h(a) = Alla||,, are (mostly
unchanged) transferred to DPC [1], [20].

We acknowledge that both observations are grounded in
intuitive and practically valid heuristics. However, (i) only
offers a quantitative indicator of control performance being
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improved/diminished by regularizations. It may obscure
the underlying qualitative interactions between constraints,
control objective, and regularization that led to this effect.
Some of the already established theoretical investigations
in these qualitative effects include the interpretation of
DPC with regularization as a convex relaxation of other
(indirect) schemes [20] or in the context of distributional
robustness [8], and our work aims to add on to these.

Regarding (ii), such interpretations may be unspecific
in the context of predictive control and might even be mis-
leading. For example, it is claimed in [22] for regulariza-
tion via h(a) = ﬂ||a||§ that too large A deteriorate tracking
performance, since “too small choices of the vector a shift
the input and output to which the closed-loop converges
towards zero”[22, Section 4]. While we agree that tracking
performance is deteriorated, the inputs and outputs are
generally not shifted towards zero by small a for € # 0, since
the chosen optimal a* must also satisfy Wa* = £. Instead,
they are shifted towards a (multistep) predictor §(&, u) and
(multistep) controller G(¢) “favored” by the regularization
h(a). Both can be precisely characterized by our proposed
tools, as demonstrated in Section 4.1 for linear DPC and
Section 6.1 for the affine DPC setting considered in [22].

The motivation of our work is to provide a structured
analysis that explains the interactions between constraints,
control objectives, and regularization in DPC. Although the
current results focus on analyzing existing schemes rather
than proposing new ones, they offer deeper insights into
these interactions and reveal potential pitfalls. This creates
a foundation for future improvements in DPC schemes.
Furthermore, our analysis is intentionally agnostic to the
specific class of the data-generating system. Rather than
focusing on a particular system type, our setting is tailored
to the structure of data matrices generated by them. This
often reduces to Assumption 1, which is typically (almost
surely) satisfied for both non-deterministic LTI, and non-
deterministic nonlinear systems. On the contrary, in prac-
tical cases, Assumption 1 typically only fails if too little data
are used (i.e., D is tall) or if the input data lack sufficient
excitation. This generality comes at a price. Without such
assumptions on the true system, one cannot expect to eval-
uate how closely the analyzed predictions match its true
behavior or how the optimal controls generated by DPC
interact in closed-loop. Nonetheless, such assumptions can
be readily added to tailor these results to a specific sys-
tem class, incorporating prior system knowledge. Moreover,
our findings can already help explain certain phenomena
observed when applying DPC in closed-loop, such as those
seen in [20, Figure 2], which we discuss in Section 4.2.
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Our analysis relies on two key conceptual tools. One is
given by the novel concept of implicit predictors (depicted
in Figure 1 and specified in Definition 2 further below),
which aims to describe the predictive behavior of OCPs that
may not have an explicitly enforced prediction model. The
introduction of implicit predictors in [12] has also led to a
parametric characterization of regularization costs in terms
of their trajectory-specific effects (formalized in Definition 1).
Since then, similar analyses have appeared in [13], [14], [19],
[23], offering useful generalizations and intuitive interpre-
tations of the underlying structures. Due to its independent
value beyond implicit predictors, we treat this as a separate,
second tool.

We first introduce the trajectory-specific effect of reg-
ularizations in Section 4, since it facilitates the following
introduction of implicit predictors in Section 5. As an exem-
plary demonstration of these tools, we summarize results
from [12]-[14] for their use in DPC with quadratic regular-
ization in Sections 4.1, 4.2, and 5.1. We then extend these
results in Section 6 by analyzing the effects of common
modifications to the DPC problem. These analyses cover the
extension to affine DPC in Section 6.1, the inclusion of an
offset in the regularization in Section 6.2, the inclusion of
slack variables in Section 6.3, and the inclusion of addi-
tional (terminal) equality constraints in Section 6.4. While
not technically a modification to DPC, we also give two short
but very general results on (recursive) feasibility in DPC in
Section 6.5.

4 Trajectory-specific effect of
regularization

In the ideal deterministic LTI setting without regularization,
the variable a is only used in (6b) as an expression for the
image representation introduced in (4), i.e.,

¢ ¢
u|€RD) < dasuchthat|u|=Da. ()

y y

However, adding a regularization h(a) introduces
another meaning to a, which is not based on the image
representation and the underlying behavioral system the-
ory but on heuristics. Intuitively, h(a) adds a price tag to
every a, which is also transferred to the trajectory tuple
(£,u,y) generated by Da. Note that, if D is wide, there
might be multiple a generating the same trajectory and thus
multiple price tags associated with it. However, since we are
optimizing over a in (6), it is natural to only consider the
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lowest cost associated with any trajectory. This is formally
captured by the following definition.

Definition 1. We call the solution h*(&, u, y) to the optimiza-
tion problem

h*(&,u,y):=ha*(&, u,y) = main h(a) (8a)
g (w

s.t. u|=|U]a (8h)
y Y

the trajectory-specific effect of the regularization h(a) given
the data D.

Importantly, note that (€, u, y) appear as parameters in
(1) and not as optimization variables. Therefore, additional
constraints such as (6¢) are irrelevant. That is, h*(&, u,y)
is valid for all (&, u,y) satisfying (7), and therefore also for
those, which additionally need to satisfy (6c). The relevance
of h*(&, u, y) to the DPC problem comes from the fact that (1)
naturally appears as an inner optimization problem in (6).
That is, (6) is equivalent to

n]}iyn](.f, u,y)+h* (& u,y) (9a)
¢

s.t. ul| e R(D), (9b)
y

(wy) eUxy. (90

Note that we have deliberately replaced (6b) via (7) to
highlight the fact that a can be fully eliminated, since it is
just an auxiliary variable, after all. That is, the image repre-
sentation (7) acts just as before, but the additional heuristic
costs introduced by h(a) (with which we started this section)
are now fully explained by their trajectory-specific effect
h*(&,u,y). This allows for much more intuitive interpreta-
tions, which we demonstrate by summarizing results from
[12]-[14] on the trajectory-specific effect of quadratic reg-
ularization h(a) = A||a||§ in Section 4.1, and its projection-
based variant h(a) = A||IL, a ||§ in Section 4.2, where we also
discuss its link to y-DDPC [18]. One may notice that, due to
its popularity and its conformity for analytic solutions, all
results in this paper focus on (projection-based) quadratic
regularization. However, we want to emphasize the gen-
erality of Definition 1, which is suited for any choice of
regularization h(a). In particular, similar analyses of
trajectory-specific effects for 1-norm h(a) = A||al|, [2] or
general p-norm h(a) = 4lal|, [20] regularizations should
be equally insightful, but are still an open problem.
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4.1 Trajectory-specific effect of quadratic
regularization

It was first shown in [12] with additional details in [13, Prop.
1] that, under Assumption 1, the trajectory-specific effect of
quadratic regularization h(a) = /1||a||§ is given by

M€ wyll; = Ally - fis(€.wlly, -~ (102)
+allu = Ag(E)Il,  (10b)
+ANENE (10¢)

(ww?)

Here, §,(€,u) and G, ¢(&) are the (multistep) predic-
tor/controller “favored” by the regularization, as initially
mentioned in Section 3. The regularization pushes predicted
y and u towards them, which is visualized in Figure 3
for the low-dimensional state-space example discussed in
Section 2.3. By parametrically solving (1) and decomposing
block-matrix expressions (see [12] for details), one can show
that both are given by linear mappings, which can be repre-
sented as

Yis(6, w) =G5z (11
U5(8) =K ¢ (12)
via the least-squares solutions
Gs:= argmin||¥Y — GZ||2 = YZ* (13a)
G
K s:= argmin||U — KW|2 = UW*, (13b)
K

where ||.||p denotes the Frobenius norm. Note that §, (£, u)
is equivalent to the subspace predictor used as an equality
constraint in subspace predictive control (SPC, [24]). The
involved weighing matrices are given by

Qreg:(EyE; )_1 and Rreg::<EuEI )_1, (14)

where
E,:=Y—-GZ and E,:=U-K W

are the residual matrices associated with the least-square
problems (13), and the inverses exist under Assumption 1.
Therefore, Q. and R,,, can be interpreted as inverses of
scaled (because they are not normalized w.r.t. the amount
of data columns ¢) empirical second moment matrices for
the output prediction error Ey and “input prediction error”
E,, of the least-squares solutions G;g, K; 5 based on the data
D. Hence, quadratic regularization h(a) = /l||a||§ pushes
y and u towards the least-squares estimates ¥;s(&, u) and
0, 5(&). It does so more (less) harshly in directions, where the
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latter are believed to be more (less) accurate, based on the
available data. The same second moment (or covariance)-
based interpretation appears in [19], with the distinction
that the state-input dependent part in [19, Eq. (21)] is not yet
decomposed into the two terms (10b) and (10c), similar to
[12]. However [19], also shows that the results naturally gen-
eralize to rank-deficient data matrices, i.e., D not satisfying
Assumption 1, by simply using the Moore—Penrose inverse
in (14). In that case, deviations e, =y — §;5(&,u) are not
penalized in singular directions of EyE; , 1.e., directions in
which no deviation from ¥, ;(£, u) has been observed in the
data matrix D. However, due to (7), one can show that y may
not deviate at all in these directions. That is, in unexplored
directions of the state-input-output space, the penalization
of deviations in (10) is replaced with hard constraints, since
deviations from it are not possible in R(D). The same con-
siderations apply for deviations e, = u — #;5(&) if Z does
not have full row-rank.

When discussing the role of these cost terms, first note
that the last cost term (10c) is irrelevant to the OCP, since & is
a parameter determined in closed-loop and not an optimiza-
tion variable. Regarding the usefulness of (10a), we believe
that y being pushed towards the least-squares (multistep)
predictor ¥, ;(€, u) in (10a) is quite intuitive. However, while
¥1.5(&,u) is conceptually not a bad choice for a predictor, it
should be noted that (without further modifications such
as in [25]) it is typically neither causal nor time-invariant.
Furthermore, although it is conceptually nice to include
additional statistical information via Q. and R, this
information is utilized very greedily in DPC. That is, since
the optimal solution is a trade-off between control objective
and regularization cost, the DPC cost objective (6a) promotes
deviations from ¥, (&€, w) primarily in uncertain directions
in order to achieve lower costs for the control objective
J(&,u,y). We believe that it remains an interesting avenue
for future research to explore under what conditions penal-
izing predictions y towards a (potentially well- or ill-suited)
predictor §(&, u), as in (10a), outperforms enforcing it as an
equality constraint y = §(&, u). While the intuition behind
penalizing the input u towards 1@ ¢(£) in the same fashion
may not be immediately clear, it was shown in the y-DDPC
setting that a cost term equivalent to (10b) (proven in [12])
can indeed be utilized to increase DPC performance [26].
Furthermore, a functionally similar input penalty appears
in another framework focused on minimizing the final con-
trol error (FCE) [27]. Intuitively, the performance improve-
ment can be explained by the term (10b) pushing the
chosen input u towards the best-explored region of the
state-input-space, i.e., where the most confident predictions
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can be made based on the available data. For a more pre-
cise quantification of the relation between prediction error
variance and ||y, ||2, we refer to [26].

Finally, we want to highlight the discrepancy between
(10a) and (10Db) in terms of proper tuning for A. The output-
related cost term (10a) needs a large weight A because,
without the previously discussed rank deficiency (5), it is the
sole factor keeping output predictions y from being greed-
ily and unrealistically (i.e., without considering the data in
D) pushed toward the minimum of the control objective
J(&,u,y). This effect is visualized in Figure 3(a). On the other
hand, the input-related cost term (10b) may not have a large
weight 4, since this would favor always sticking to the “best-
explored” choice @i;5(&) over choosing an input sequence u
that benefits the control objective J(&, u,y), which is visual-
ized in Figure 3(d) and (e). These considerations highlight
the need for isolation of the individual cost terms. In the
following section, we present two modified DPC schemes
in which, as revealed through an analysis of the trajectory-
specific effect of regularization, this isolation of regulariza-
tion cost terms naturally occurs.

4.2 Isolating trajectory-specific effects via
projections or y-DDPC

In [20], the orthogonal projection matrices
M:=z*Z and I, :=1-1I

were introduced to yield a regularization h(a) = A||II la||§
for which the closed-loop behavior is consistent with the
subspace predictor as 4 — oco. While it is noted that norm-
based regularizers such as h(a) = A||a||§ “are not consis-
tent and bias the optimal solution” [20, Section IV.C], the
nature of this bias is not further explored. In [12], this
nature is uncovered by showing that (under Assumption 1)
the trajectory-specific effect of projection-based quadratic
regularization h(a) = A||I1 la||§ is given by

AT a* (&, w,y)ll; = Ally = Fis(& Wil - (5)

Since ||a||? = |[IIall + ||IT  al|3, we also immediately
see that the remaining cost terms (10b) and (10c) are asso-
ciated with II. That is, (under Assumption 1) the trajectory-
specific effect of projection-based quadratic regularization
h(a) = A||Hal}is given by

AMa* (&, w5 = Allu— a5+ gl e
Teg <WWT)
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This separation explains the observations in [20,
Figure 2]. There, the performance of h(a)= /l||a||§
deteriorates for A — co since the chosen input u is
aggressively pushed towards @;4(€), while neglecting the
control objective J(&, u,y). In contrast, the projection-based
regularization h(a) = A||II la||§ avoids this problem by
fully dropping the input-related term (10b). However, the
“closed-loop view” (discussed in Section 3) in [20, Figure 2]
hides the fact that two functionally very different cost
terms (10a) and (10b) are responsible for the observed
performance. Furthermore [20], only considers the two
options of either using both (10a) and (10b) with the
same weight A via h(a) = A||a||?, or only using (10a) via
h(a) = A|II J_a||§. However, an individually weighted mix
of the two terms may provide the best of both worlds, which
is coincidentally explored in the regularization schemes
proposed for y-DDPC [18].

In y-DDPC, the constraint (6b) and variable a are
replaced via LQ decomposition as

wy (L, 0 0 o0 @
vl=|L, L, 0 ol |
Y Ly Ly Ly 0 %
Q,
41 o
yi= Y2 _ Q, a
Y3 Qs
Vi Q,

where the diagonal blocks L; for i€ {1,2,3} are non-
singular (under Assumption 1) and the matrices Q; have
orthonormal rows. Furthermore, Q, and y, are typically
omitted, since they do not affect the generated trajec-
tory. The idea behind y-DDPC can be summarized as re-
parameterizing the OCP with a lower dimensional variable
y, and decoupling the matching of the initial condition &,
since y, = Ll‘llf is uniquely determined [18]. The proposed
regularization strategies for y-DDPC are based on a mix of
quadratic regularization ii(y) = 4, ]|y, 12+ Asll;lI3, or con-
straining y, = 0 and using only h(y) = /12||y2||§ [23], [26].
The connection between this regularization of y-variables
and projection-based regularization of a was revealed in
[13] by analyzing their trajectory-specific effect.

Corollary 1. ([13]) Under Assumption 1, regularization of the
y-variables can be equivalently expressed by the trajectory-

specific effect

DE GRUYTER OLDENBOURG

Iy I3 = ”5”2(er)*’

2 IS 2
1y2ll3 = o= du5(&)I%

I7sll; = Ily = $15(&, u)HZQreg'

We note that the difference in notation w.rt. to
Definition 1 only comes from the fact that (y;,7,,73)
are uniquely determined by (&,u,y), and therefore
yi(&,u,y) = y;. From Corollary 1, we can see that both the
projection-based regularization and the regularization of
y; isolate specific terms of the trajectory-specific effect of
standard quadratic regularization. Their relation can be
summarized as follows

ITL, a* (£l IMa* (w2
A\ A\
r N 2 Y r R 2 Z
Iy = 5isl8 wll, + = s, + 181
. J/ A J/
' '
Il 12 Iy, 12 ——
o e Iyl
_ * 2
- ”a (5’ uvy)llz

As a guideline for practitioners, we advocate to use
a mixed regularization h(a) = A,||Iall3 + A;||TT all’ (or,
equivalently in the y-DDPC framework h(y) = Azlly2||§ +
Asllys ||§). This approach generalizes both the quadratic reg-
ularization h(a) = A|la|)?, and the purely projection based
h(a) = A|II a5 by choosing A = 4, = A3 or A = A3, 4, =
0, respectively. To avoid output predictions blindly follow-
ing the control objective, A, should be chosen verylarge, and
(except for potential numerical solver instabilities) there
are no adverse effects to be expected even for 4; — co0. On
the contrary, 4, should be chosen very carefully to avoid the
inputs blindly following the least-squares controller @;;(&).
While A, =0 (recovering the projecion-based regulariza-
tion h(a) = /13||l'[la||§) can be considered a safe choice
in this regard, it also foregoes the potential performance
improvements associated with proper tuning of this term.
Here, we refer to [26] for more specific tuning guidelines.
Finally, as also observed in [19], adding or removing trajec-
tory columns from D after the tuning requires a re-scaling
of all regularization weights
”ﬂnew

inew — 7
old

A A i,old

to retain a quantitatively similar effect, since Qg R, are
not normalized w.r.t. the number of trajectory columns.
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(a) A=10""* (b)yA=10"2 (c) A= 10° (d) A =10 (e) %ps(x0,u) and s (x)
1 1 1 1 1
X0 0 0 0 0
1 1A 1T 1A T 1
1 0 1 0 1 0 Ty 0 Ty 0

0 0 0

(x0, 1)

Figure 3: Implicit predictor, optimal parametric solutions, and least-squares mappings for the DPC problem discussed in Section 2.3 (a-d). The
optimal parametric DPC solutions (x,, u*(x,), X*(x,)) for the different regularizations h(a) = A||a||§ (orange) and h(a) = Alll'[la”% (green) naturally
evolve on the implicit predictor X,p.(X,, u) (gray). (e) Visualization of the least-square solutions X; s(x,, w) (gray) and @; 5(x,). The latter is shown via

the tuple (Xo, B g(X,), Rps(Xo, i 5(X,))) (orange).

Remark 2. Technically, the data matrix D is already nor-
malized w.rt. \/; in the y-DDPC framework, such that the
aforementioned re-scaling is not necessary. For clarity of
presentation and direct comparison to the projection-based
regularization, we have omitted this normalization. Note
that all considerations remain valid with(out) normaliza-
tion, since it does not change the image representation (7)
and the same effect in terms of quadratic regularization can
be achieved by rescaling weights A; with .

5 Implicit predictors in regularized
DPC

Although the absence of the rank deficiency (5) allows
for non-unique output predictions, and Assumption 1 even
allows for any triple (£, u,y) to be generated from D via
linear combinations, one can still observe certain patterns
in the optimal solutions (y*(&), u*(&€), &) to (6). In particular,
it seems that the output predictions implicitly follow a (mul-
tistep) predictor mapping y* = y(&,u*(£)), even though
such a mapping is not explicitly enforced as an equality
constraint in (6). These considerations led to the following
notion of implicit predictors introduced in [12].

Definition 2. ([12]) We call §(&, u) an implicit predictor for
an OCP if including the constraint y = (&, u) does not alter
the (set of) minimizers (u*, y*) and the optimal value.

Hence, an implicit predictor §ppc(&,u) for the DPC
problem (6) can be interpreted as a model that generates
the output predictions y based on (£, u) consistent with the
solutions to (6), even though such a model is never explicitly
enforced. It is meant as a descriptive object (not prescrip-
tive, since it is not enforced in (6)), which can be studied to

explain the predictive behavior of DPC schemes and make
improvements, accordingly. The interaction of this inter-
pretation with the direct and indirect data-driven control
paradigms is visualized in Figure 1. While Definition 2 is
more conceptional than constructive, a valid implicit pre-
dictor for the DPC problem (6) can be constructed by solving
the optimization problem

Vopc(€, u) = argmin min (&, u,y) + h(a) (16a)
y a
& w
S.t. ul=|U]a, (16b)
y Y
yE . (16¢)

In contrast to (1), we now treat (§,u) as parameters
and optimize over (a,y). Hence, additional set constraints
u € U can be dropped while y € Y still need to be con-
sidered. However, similar to (1), note that (16) is an inner
optimization problem to (6) and thus its parametric solution
Yopc(€, w) naturally satisfies Definition 2.

In the presence of the rank deficiency (5), §ppc(€, ) is
fully determined by the image representation (16b). Further-
more, it reveals the unique linear predictor mapping implic-
itly within the data matrix D, which can be specified as
Vopc(€, 1) = §15(&, u). Note that this is precisely the setting
and results considered in [28]. That is, in the deterministic
LTI case [28, Thm. 1], the rank deficiency (5) naturally occurs,
as discussed in Section 2.1. Notably, in the non-deterministic
setting, [28, Thm. 2], considers a data matrix D which has so
few columns # that the rank deficiency (5) is also satisfied,
ie.,

¢ =rank(Z) >

rank(D) = rank(Z). an

However, in these two settings, the predictor §,4(&, u)
somewhat loses its meaning as a least squares estimate (13a),
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as it consistently yields zero residual (E; = 0). That is, in
the presence of rank deficiency (5), the linear system of
equations (7) can be solved algebraically for an exact and
unique linear mapping §(&, u), and using the least squares
solution is merely one way of doing so. In other words [28],
is often cited when arguing for equivalence between SPC
and DPC. However, this equivalence only occurs if there is
an exact linear output predictor mapping within the data
D, since both methods manage to find it. Any alternative
method that successfully identifies this exact linear map-
ping and employs it for predictive control would also be
considered equivalent.

In the absence of the rank-deficiency (5), i.e., in a realis-
tic (non-deterministic) setting with more data columns than
in (17), the additional degrees of freedom lead to output pre-
dictions deviating from ¥, (&€, ). Although it was shown in
[20] that the optimal solution of DPC with projection-based
quadratic regularization h(a) = A|/II lall% is consistent with
SPC for A — oo (and therefore §ppc(£,u) = §,5(&, ) in that
case), a similar characterization of predictive behavior for
h(a) = /1||a||§ or finite 4 is not discussed in [20]. Precisely
this kind of characterization of predictive behavior for finite
A is possible using the concept of implicit predictors and
results for (projection-based) quadratic regularization are
given in [12], [14], which will be summarized in the following
section. Although we focus on DPC with these two kinds of
quadratic regularization, we want to emphasize the general-
ity of Definition 2, which is suited for any kind of predictive
control scheme.

An implicit predictor for DPC with quadratic
regularization

In the following, we assume that the control objective is a
quadratic output-tracking formulation

JEw,y) = Iy = Vyerlly + Ju(&,0) (18)
with reference y,;, positive semidefinite weighing matrix
Q, and arbitrary input control objective [, (€, u). We further
assume that no additional output constraints are present,
ie., ¥ = RPNr. For some general observations on the effect
of output constraints, see [12, Section IIL.C], and specific
results regarding (terminal) equality constraints and gen-
eral feasibility are given in Sections 6.4 and 6.5, respectively.
In [12, Thm 3, 4], results for an implicit predictor with refer-
ence y,.; = 0 are given, which were later extended to possi-
bly nonzero reference in [14, Thm. 2]. Under Assumption 1,
solving (16) comes down to solving the unconstrained opti-
mization problem

DE GRUYTER OLDENBOURG

Yppc(€,u) = argmin|ly — YrefHZQ + h*(€,u,y).
y

Furthermore, since the trajectory-specific cost of
h(a) = Alla||; and h(a) = A|IL a|? only differ in terms
independent of y (see (10) and (15)), it turns out that
the predictive behavior of both DPC schemes can be
characterized by the same implicit predictor

Yppc(§,w) = (lQreg + Q)_l)» Qreg Y156, 0) (19

+ (/lgreg + Q)_lg Vet

Note that the involved inverse exists because Q,,, is
positive definite (under Assumption 1) and Q is positive
semidefinite. Structurally, (19) can be seen as a (matrix-
yweighed sum, shifting output predictions towards y,.; and
Y15, w), depending on the weights @ and 1Q,,, respec-
tively. This structure is visualized in Figure 3 for the low-
dimensional state-space example discussed in Section 2.3.
The predictions blindly follow y,; (independent of &, u) for
A =0 and tend towards ¥, ;(&,u) for A — co. Furthermore,
Vopc(&, w) is generally non-causal and time-variant (which
cannot be observed in Figure 3 due to the limited prediction
horizon Ny = 1). For finite 4 and y,¢ # 0, it is also an affine
predictor (otherwise linear), regardless of the true system
class generating the data. This last point highlights the inter-
pretation of implicit predictors being “the predictive behav-
ior implicitly attributed to the data-generating system by the
DPC scheme” [12], which may not necessarily match the true
system if the scheme is poorly chosen.

6 Effects of modifications in DPC

While the previous section introduced the tools, namely
trajectory-specific effect of regularization and implicit pre-
dictors, and exemplified them via results from [12]-[14],
we now extend these results towards some common mod-
ifications in DPC. We analyze the extension to affine DPC
in Section 6.1, the inclusion of an offset in the regular-
ization in Section 6.2, the inclusion of slack variables in
Section 6.3, and the inclusion of additional (terminal) equal-
ity constraints in Section 6.4. Finally, we also give two
brief results on (recursive) feasibility for regularized DPC in
Section 6.5.

6.1 DPC for affine systems

While standard (linear) DPC can yield exact predictions for
deterministic LTI systems (see the discussion in Section 2.1),
exact extensions to particular classes of nonlinear systems
have been proposed, e.g., in [6], [7], [22]. Among these, we
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want to briefly discuss the case of affine time-invariant (ATI)
systems

x(k +1) = Ax(k) + Bu(k) + e (20a)

y(k) = Cx(k) + Du(k) +r (20Db)

proposed in [22], which is also used for other nonlinear
systems with continuously updated trajectory data in order
to approximate alocal (affine) linearization of the nonlinear
system for predictions as in [10], [22]. Similarly to how tra-
jectories of LTI systems (2) can be generated by linear com-
binations, trajectories of ATI systems (20) can be generated
by affine combinations of trajectory data. That is, in addition
to (1), generated trajectories must also satisfy

a=1a=1 @

M-

Il
—

I:

Intuitively, this condition can be explained by noting
that the effect of e, r is present exactly once in each data
trajectory and, accordingly, should be present exactly once
in the generated trajectory. Assuming exact data generated
by an ATI system, the affine hull aff(D) of data columns in
D is equivalent to the set of all possible system trajectories

iff [29]
1T
rank( "’) =Lm+n+1
D

However, in the presence of noise and (other) nonlin-
earities, the same discussions as in Section 2.1 apply, i.e., the
unique and exact predictions are no longer possible. Accord-
ingly, our analysis is not confined to affine DPC applied to
data from ATI systems (20), but rather extends to affine DPC
with data generated by any system, including the nonlinear
tracking case in [10]. To understand the features of affine
DPC in the presence of such realistic data, we extend our
results from the linear DPC case. As discussed in [19, Section
II] and, in particular, [19, Rem. 4], many analysis results for
linear DPC also apply to such nonlinear systems, which are
linear in known (nonlinear) transformations of the state,
input, and output. This also applies to the affine DPC scheme

(22)

y T
at hand, where we can simply consider &:= (1 §T> to

. T
be a nonlinear transformation of €, and W := <1f WT>
contains the corresponding data. Similarly, we define

Z:= (‘f) and Z:= (W)
u U

for the transformed state-input data. Instead of the lin-
ear least-squares estimates ¥, (&, u), i 5(€), consider their
affine counterparts

Yars(E. W) := Gy o7 = GursZ + 8
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U 5(8) 1=K & = Ky & + Ky
with
Gars :=arg(1;*nin||Y -GZ|ti=YZ" = (gALS GALS)

Kys:=argmin||U - KW|2 = UW* = (kALS KALS),
K

and the corresponding residual matrices

~ ~

ﬁy;=y—éAL52 and E,:=U-KyW.

The analysis of affine DPC with regularizations in terms
of their trajectory-specific effect and implicit predictors
then follows accordingly. In the following, we present the
case of (projection-based) quadratic regularization.

Proposition 1. For affine DPC, the trajectory-specific effect of
h(a) = Allal|; is given by

Alla”@w Il = Ally = JusE Wiy, @3a)
2

+A|u = s (&) (23b)

(23¢)

v (12
o

with weighing matrices

“ v v -1 v v -1
Qreg:=<EyEyT) and Rregzz(EuEuT) .
Proof. The proof follows analogously to the linear DPC
case. O

The interpretation of these cost terms also directly
follows from the discussion below (10). Importantly, note
that instead of the least-squares estimates for a linear pre-
dictor/controller ¥;(&,u), G () the regularization now
favors the least-squares estimates for the affine predic-
tor/controller §,;c(&,u),0,;5(&) and shifts the predicted
trajectory towards them. Similarly to (15), the effect of the
cost terms (23b) and (23c) can be eliminated by considering a
projection-based quadratic regularization h(a) = A ||ﬁ lall%
with

M:=Z7*7Z and I, :=I-1I

Finally, the analysis of predictive behavior via implicit
predictors follows accordingly.
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Proposition 2. Consider affine DPC with quadratic output-
tracking objective (18), (projection-based) quadratic regular-
ization h(a) = Alla|)% or h(a) = AL, a||2, and without addi-
tional output constraints. Under Assumption 1,

v -1
Yappc(&, ) = (Q + ﬁQreg) AQ Y ars(&sw) (24

. -1
+ (Q + AQreg) QYref
is an implicit predictor for this problem.

Proof. The proof follows analogously to the linear DPC
case from the trajectory-specific effect of regularization
in (23). O

Again, the interpretation of this predictor follows from
the linear DPC case discussed below (19).

6.2 Regularization with offset

Some DPC schemes, in which the tracking of a non-zero
equilibrium is desired, modify the regularization by includ-
ing an offset, i.e., h(a) = h(a — @) [10], [30]. Although this
adjustment is based on the assumption that the original reg-
ularization shifts predicted trajectories toward zero (see our
discussion in Section 3), it introduces some interesting fea-
tures, which can be analyzed via its trajectory-specific effect.
Although [30] considers various norm choices, we focus on
the quadratic regularization h(a) = A||a — ﬁllg used in both
[101, [30]. Additionally, while the results in [10] are framed
for an affine DPC setting, our analysis will focus on lin-
ear DPC as in [30]. Note that these results can be readily
extended to the affine case, as discussed in Section 6.1.
Analogously to how a generates the trajectory w = Da, we
denote the trajectory generated by a as w := Da, and simi-
larly with Z, u, y, €. Furthermore, we denote the difference
between the two as

Aw:=Da-Da=w —w,
and similarly with Az, Au, Ay, A€.

Theorem 1. Consider the DPC problem (6) with quadratic
offset-regularization h(a) = Alla — ﬁll%. Under Assumption 1,
the trajectory-specific effect of this regularization is given by
Ala*(&,w,y) - all; = AllAy — §;5(AE, AlJI)IIZQTeg (25a)
+AlAu -0 (ADIE  (25h)

+21A8)

) (25¢)
(ww?)
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With Q,, and R, as defined in (14).

Proof. For a given tuple (€,u,y, a), one can check that the
parametric optimal solution to (1) is given by

a‘(§,n,y,a)=D*w+ (I-D*D)a
A&y, @ - al = AAw’ (DDT) " Aw.

Except for the translation into A-coordinates, this
expression is equivalent to the one obtained in [12, Section
II.A], and the same block-matrix decomposition steps of
(DDT) ™" lead to (25). 0

Hence, an offset by a in the regularization simply trans-
lates to the same trajectory-specific effect with an offset
w for the considered trajectory. Note that (25) can also be
equivalently expressed as

Mla* (€ wy, @) —all; = Ally - §i5(&,w) — (i —Yis (E’ﬁ> )Hzgmg
+ Al = 858 - (T ty5(8) )1,

+AlIE — €I "y
(w,w})

While the third cost term is always irrelevant, we can
see that the first two terms also may have no additional
effect (compared to the usual quadratic regularization) if
the trajectory w adheres to

(26)

y=9i5(8). or w=iy(E).

respectively. Similarly to (15), the effect of the cost terms
(25b) and (25c¢) can be eliminated by considering a
projection-based quadratic regularization. On that note, we
briefly remark that both

ha)= A (a—a)l?=Ai(a'Ma-2all,a+a Il a)

or h(a) = Al a—a|?=A(a'Ma-2all,a+a"a),

yield the same effect, since they only differ in a constant
term unrelated to a. Furthermore, using the first term of the
alternative cost expression (26), we can also state an implicit
predictor as follows.

Proposition 3. Consider the DPC scheme (6) with quadratic
output-tracking objective (18), (projection-based) quadratic
offset-regularization h(a) = A|la — E||§ or h(a) = A||Il,a —
a|?, and without additional output constraints. Under
Assumption 1,
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Fopcofr(Es W = (AQpeq + Q) ™ A Qpeg T1son (€, W)
+ (AQreg + Q)_1Q Yret-

with

fisonE.W = JisEW+y - 9i5(8T) @)

is an implicit predictor for this problem.

Proof. The proof follows analogously to the linear DPC
case from the trajectory-specific effect of regularization
in (26). U

We want to highlight that §; (&, u) in (27) is an affine
predictor mapping, which simply results from shifting the
linear least-squares predictor ¥;¢(&,u) by a constant term
Yy —¥1s (E, ﬁ), which depends on the discrepancy between
said offset trajectory w and the least-squares predictor.
Other than that, the interpretation of this predictor follows
from the linear DPC case discussed below (19).

6.3 Effect of slack variables in DPC

A common modification to DPC, first introduced in [2], is the
inclusion of a slack variable as follows

llflnyig](rf, u,y) + h(a) + h,(c) (28a)
u, 0 U,
o Y
s.t. =77 a (28h)
u 0 U
0 Y
(wy) €U XY. (28¢)

Here, we briefly decompose the notation from &, W
back to u,,Yp, U P> Yp to show exactly which part the slack
variable o is acting on. The use of slack variables is com-
mon to avoid infeasibility of the initial condition Wa = &
in situations where W does not have full row-rank. That is,
while in the deterministic LTI case & € R(W) is guaranteed
by the system dynamics, even a tiny amount of noise or
nonlinearity may cause a measured initial condition & to
become inconsistent with R(W). Note that some works like
[10] extend the use of slack variables to all output-related
parts of the image representation, i.e., they add another
slack variable to the last block-row of (28b), and our analyses
will naturally extend to those cases as well. In order to
keep the use of o small, another regularization term h(c)
is added to the objective function, where typical choices
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are h,(o) = A5llolly [2] or hy(o) = /10||0'||§ [10], and we
will focus on the latter in combination with quadratic reg-
ularization h(a) = /1||a||§. While adding slack variables is
not strictly necessary in cases where Assumption 1 applies,
we will show an alternative interpretation of slack vari-
ables, which actually helps further justifying Assumption 1,
instead. Consider the re-scaling

for which we have 4,||o||2 = ||||%. Furthermore, we can
rearrange (28b) as

U 0
up b ~

Y j'I w

.|~ a ~

Yol = | Fr A, PN —|v|a=Da
u 6

U 0 Y
y Y 0

and sum up the regularization terms
Aslloll; + Allall; = Allall; := h(@
110 2 2 2- .

Using this re-parameterization, the slack variables can
be interpreted as adding artificial trajectory data columns
in the new augmented data matrix ZN), where W is now
guaranteed to be full row-rank under the usual input per-
sistency of excitation conditions (e.g., the one used in [1,
Thm. 1]), even if W is not. If an additional slack variable
is used for the last block-row of future outputs y (like in
[1], [9]), the same input persistency of excitation conditions
guarantee D to be full row-rank, i.e., Assumption 1 to be
satisfied, even if D is not. Hence, the consideration of slack
variables further increases the scope of cases, where the
(already commonly made) Assumption 1 is justified. Other
than that, all analyses made using the trajectory-specific
effect of regularization and implicit predictors for DPC with
quadratic regularization h(a) = /1||a||§ carry over by sim-
ply considering D instead of D. The same does not apply
to projection-based regularization h(a) = A||II, a||?, since
the combined weight matrix § = diag(II,I) for the result-
ing h(a) = A||Sﬁ||§ has not yet been analyzed in the litera-
ture. For future work, we consider a more general analysis
of quadratic regularization h(a) = /1||Sa||§ with arbitrary
weight matrix S an insightful endeavor.

Regarding the tuning of A, with respect to A, how
prominently the artificial trajectories are used in the result-
ing DPC predictions mainly depends on the ratio A4>" and
its ratio w.rt. the signal power of the data contained in Y,
Empirically, one can also observe an improved conditioning
of the matrix WWw™ compared to WW T for increasing AA
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the quantification of which might also be interesting for
future work. An interesting (and perhaps unexpected) link
shows up in [31], where the authors iteratively optimize
the weight A for A, =1 (see [31, Eq. (33)]) in order to com-
pute an approximation to the maximum-likelihood predic-
tor for data generated by an LTI system with additive output
noise.

6.4 Predictive behavior with (terminal)
equality constraints

In order to provide closed-loop stability guarantees, classi-
cal MPC typically makes use of terminal ingredients (see,
e.g., [32]). Similarly, practical stability for some DPC schemes
like [1], [9], [10] has been proven by employing (among
other modifications) terminal equality constraints for the
last steps of the predicted I/O sequence (see [11] for a tuto-
rial). While we view terminal constraints as the main use
case of our following analysis, the results naturally expand
to other kinds of equality constraints. When analyzing the
effect of additional terminal equality constraints in the DPC
scheme (6), first, let us briefly recall that the trajectory-
specific effect of regularization introduced in Section 4 is
universally unaffected, since it applies to any chosen triple
(&,u,y) satisfying (8b), and thus also the ones satisfying
additional (terminal equality) constraints. Regarding the
characterization of predictive behavior via implicit predic-
tors, similar considerations apply for the effect of additional
constraints on the input sequence u, as already discussed
below (16).

However, the predictive behavior of DPC is significantly
influenced by any kind of output constraints and often
contradicts the unconstrained behavior as observed in [12,
Section III.C]. To simplify upcoming notation, we assume

(X07u1)

Figure 4: Implicit predictor Xppc(X,, u) for the DPC example discussed in
Section 2.3 with prediction horizon Nf = 2 and reference. (a) No terminal
constraints. (b) Terminal constraints. X,.; = (0.5 0.5)". To deal with the
higher dimensionality, the first (green) and second (orange) prediction
step of Xppc (X, u) are visualized individually. Furthermore, we constrain
the second input to u, = 0 and only visualize the first input u,.
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that the terminal output constraints require the predicted
output y to match the reference y,,; over the final n (or any
other amount of) steps of the prediction. This assumption
is made without loss of generality; if the original refer-
ence y,; does not naturally satisfy this condition, we can
simply define a modified reference y,.;, where the last n
steps are adjusted to incorporate the terminal constraints.
Once again, we make use of Assumption 1, which is further
justified by the use of slack variables in [1], [9], as discussed
in Section 6.3. Furthermore, we assume

Q:=diag(Q, ..., Q) with positive definite Q € RP*?,
(29)
which aligns with the setup in [1]. Given these assump-
tions, the following theorem precisely characterizes the
effect of (terminal) output equality constraints on the pre-
dictive behavior of DPC with (projection-based) quadratic
regularization.

Theorem 2. Consider the DPC problem (6) with h(a) =
Allall? or h(a) = A|I al3 and the additional terminal
equality constraint

(0 In)y=(0 In)yref. 30)

Furthermore, consider the block partitioning

() (12)
_ Q1 0 _ Qreg Qreg
Q= 0 ’ Qreg - (21) (22)
9, Qreg Qreg
with Q,, Qﬁ? € R"PX"P gligning with the assumption made
on the structure of Q in (29). Under Assumption 1,
31

Yorc(€, W) = Aver Vrer + Areg Yis(&,w)

with the weights

-1 -1
A oo|@F0R) @ —(ei+ely) Ao
Ter *
0 I
-1 -1
(11) (11) (11) (12)
Ao | (@4 405) A0 (@14 a05) el
reg *
0 0

is an implicit predictor for this problem.

Proof. The proof strategy lies in characterizing the effect of
hard terminal constraints as soft constraints with costs tend-
ing to infinity. Note that this is an exact characterization that
works due to Assumption 1 allowing for any triple (£, u, y) in
(6b) and would be invalid for an indirect (i.e., model-based)
scheme, where the set of feasible (£,u,y) is limited by a
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prediction model enforced as a hard constraint. The result
thus follows by considering Q,, := diag(Q;. qI ) instead of Q
in (19) and taking the limit ¢ — oo. For brevity, we only show
the limit computation

. -1
Aref = qlirg.} (iQreg + Qq) Qqs
and note that
. -1
Areg = qlig (AQreg + Qq) ﬂQreg

follows analogously. From the structure and positive defi-
niteness of Qq we have Q;l = diag(Ql_ 1, q I ), and there-
fore

(AQue; +Q,)'Q
g q q

</1Q;1Qreg + I>_1

-1

-1 (11)
I+9Q, lQreg
q_lﬁQ(ZD

reg

-1 (12)
Ql AQreg
I+q7'Q%

reg

Computing the limit for this expression yields
lim (AQue; +Q,)"'Q,

<I+Q;%Qi?; Q;%Qi?)‘l

0 I
-1 -1
-1 (11) -1 (11) -1 (12)
<I + Ql ﬂQreg > _<I + Ql AQreg ) Ql /IQreg
0 I

-1 -1
(@+i0) & —(e+49) iel

0 I
where we used a well known block-matrix inversion for-
mula in the third step. The computation of A, follows
analogously. O

As expected, the last n steps of the predicted §ppc(€, 1)
fully align with the terminal equality constraints
given by (30), which can be seen from the zero and
identity blocks in the lower block-row of Ay and Apgg.
Furthermore, it is remarkable that the structure of a
(matrix-) weighed sum observed in (19) is preserved
in the upper blocks of Ay and Ay, characterizing
how the trade-off between y,; and §;5(&,u) in the first
Ny — n prediction steps is affected by enforcing equality
to the reference for the last n steps. This trade-off is
visualized in Figure 4 for the low-dimensional state-space
example discussed in Section 2.3. This visualization
also highlights the discrepancy between the effect of
terminal constraints in regularized DPC compared to
model-based schemes, where a predictor is enforced as hard
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constraints y=§(&,u). In the latter, a contradiction
between $(&,u) and the constraint (30) would lead
to infeasibility of the corresponding (&,u). Instead,
regularized DPC not only changes the last n steps of
predictions to match (30), but alters the first N F—n
steps as specified in Theorem 2. While this preserves the
feasibility, which we next discuss in Section 6.5, it may
be an unintuitive and potentially unwanted feature for
practitioners who are unaware of it.

6.5 (Recursive) feasibility in DPC

Recursive feasibility of the closed-loop is an important con-
cept in stabilizing predictive control schemes, and a lot of
focus is placed on either guaranteeing it a priori or certi-
fying it for a given controller [33]. Correspondingly, prac-
tical stability results of DPC schemes also include results
on recursive feasibility (see [1, Section IV.D], [11, Prop. IV.1],
[9, Thm. 14]). Our work emphasizes the analysis of DPC
schemes through the structure of the underlying OCP, with-
out making assumptions about the class of systems gener-
ating the data. While we should not expect in-depth closed-
loop analysis results without making such assumptions, our
approach still reveals broad results on (recursive) feasibility
based on the OCP structure, which seem to be currently
overlooked in the literature. Although the DPC scheme (6)
does not include constraints & € X on the initial state, we
will consider them here to state more nuanced and general
results.

Proposition 4. Consider the DPC scheme (6) with non-empty
constraint sets U", Y, and additional state constraints € € X.
Under Assumption 1, the set of feasible initial states & is
equivalent to X.

Proof. Under Assumption 1, there exists an a satisfying (6b)
for any triple (€, u, y). Hence, for any & € X there also exist
(u, y) satisfying the remaining constraints (6c). O

The following is a simple consequence of this result.

Proposition 5. Consider the DPC scheme (6) with non-empty
constraint sets U",Y, and without additional state con-
straints, i.e, & € R™ PNy Under Assumption 1, the OCP (6)
is always feasible (and hence recursively feasible).

Proof. Simply consider X = R™ PN, in the proof of
Proposition 4. O

Although straightforward and already briefly dis-
cussed in [12, Section III.C], these results have important
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implications. The DPC problem (6) is typically (i.e., under
Assumption 1) always feasible. This feasibility is by design
of the OCP itself, rather than coming from the closed-loop
control or system dynamics. For the schemes in [1], [11],
the use of slack variables on the output variables y, and
y ensures that Assumption 1 holds for the extended data
matrix D (see our discussion in Section 6.3) under typi-
cal input persistency of excitation assumptions [1, Thm. 1].
Similarly, in [9], where slack variables are applied to the
entire trajectory variable w, Assumption 1 is also always
satisfied for D. Consequently, the recursive feasibility anal-
ysis in these schemes could be replaced by Proposition 5.
Finally, we want to highlight the generality of these results.
For example, the considered constraint sets U, Y may also
include terminal equality constraints like the ones discussed
in Section 6.4.

7 Conclusions and outlook

This work discussed the use of trajectory-specific effects
of regularizations (see Definition 1) and implicit predictors
(see Definition 2) as analysis tools to improve explainability
in regularized DPC. The former concretizes the effects of
any regularization h(a) by eliminating auxiliary variables
and reformulating an equivalent cost h*(£, u,y), which is
specific to the trajectory variables (£, u, y), instead. The lat-
ter is a predictor mapping y(&, u), which coincides with the
predictions generated while applying regularized DPC and
thus provides an indirect (i.e., model-based) view on this
direct scheme, as visualized in Figure 1. We first demon-
strated the use of these tools by summarizing results from
[12]-[14] on trajectory-specific effects and implicit predic-
tors for (projection-based) quadratic regularization, and
provided intuitive interpretations of the uncovered effects
in Sections 4 and 5. We then extended these results towards
common modifications in DPC, including DPC for affine sys-
tems, offset regularizations, slack variables, and terminal
constraints. Notably, we showed that slack variables can
be interpreted as introducing artificial data samples in an
augmented data matrix D, which can be analyzed just like
before and is even more likely to satisfy the already com-
mon Assumption 1. For each modification, we computed the
trajectory-specific cost or presented an implicit predictor
if the modification led to a change in the regularization
effect or predictive behavior. A key feature of our results is
modularity, since they can be freely combined. For example,
the nonlinear tracking scheme [10] uses an affine formu-
lation, offset regularization, slack variables, and terminal
equality constraints. Hence, a combination of results from
Sections 6.1-6.4 can be used to explain the interactions
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between control objective, constraints, and regularization
in this scheme. Finally, we gave two brief results on (recur-
sive) feasibility, stating that common DPC formulations are
often feasible by design, hence eliminating the need for a
deeper analysis of recursive feasibility in those cases.

Although this work primarily focused on DPC with
(projection-based) quadratic regularizations, we emphasize
the broadness of our proposed analysis tools, which are (in
principle) applicable to any choice of regularization h(a).
Therefore, similar analyses for more general quadratic reg-
ularization h(a) = /1||Sa||§, 1-norm regularization h(a) =
Allall; (which is sometimes used for nonlinear systems
[2]), or general p-norms h(a) = /1||a||p should yield sim-
ilarly insightful characterizations. Furthermore, similarly
to the relation with y-DDPC presented in Section 4.2, the
trajectory-specific effect of regularizations may uncover
links to other frameworks, such as generalized DPC [34].
Finally, combining the generality of the presented analysis
tools with more specific assumptions and prior knowledge
about the true underlying system could help establish new
robustness and stability results.
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