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Abstract: The model-based control of building energy sys-
tems (BES) is a hard task, since the system identification is
very labor-intensive. This results in inexact models, which
are subject to parameter uncertainties. Additionally, distur-
bances like solar radiation have a great impact on the sys-
tem dynamics. In this paper we used stochastic model pre-
dictive control (SMPC) to account for parameter and distur-
bance uncertainties. The disturbances are modeled as time-
dependent Gaussian Processes (GP), which are known as
Latent-Force Models (LFM). The proposed approach is eval-
uated for two different BES using experimentally obtained
data. The results show that the LFM-SMPC results in the
lowest discomfort with a reasonable higher energy con-
sumption compared to a constant disturbance prediction.

Keywords: stochastic model predictive control; optimal
control; building energy systems; stochastic optimization;
temporal Gaussian process regression; latent force model

Zusammenfassung: Die modellbasierte Regelung von
Gebaudeenergiesystemen (BES) ist eine anspruchsvolle
Aufgabe, da die Systemidentifikation sehr arbeitsintensiv
ist. Dies fithrt zu ungenauen Modellen, die mit
Parameterunsicherheiten behaftet sind. Auflerdem
haben Stoérungen, wie die Sonneneinstrahlung, einen
grofien Einfluss auf die Systemdynamik. In dieser Arbeit
wird eine stochastische modellpradiktive Regelung (SMPC)
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verwendet, um die Unsicherheiten der Parameter und
Storungen zu berticksichtigen. Die Stérungen werden
als zeitabhdngige Gaufiprozesse (GP) modelliert, die als
Latente-Kraft Modelle (LFM) bezeichnet werden. Der
vorgeschlagene Ansatz wird fiir zwei verschiedene BES
anhand experimentell gewonnener Daten hewertet. Die
Ergebnisse zeigen, dass das LFM-SMPC im Vergleich
zu einer Kkonstanten Storungsvorhersage zu einem
geringeren Diskomfort bei einem angemessen hoheren
Energieverbrauch fiihrt.

Schlagwérter: stochastische modellpradiktive Regelung;
Optimale Regelung; Gebdudeenergiesysteme; Stochastische
Optimierung;  zeitabhdngige  Gaufdprozessregression;
Latente-Kraft Modelle

1 Introduction

Buildings are responsible for approximately 30 % of global
energy consumption [1], with a significant portion dedi-
cated to Heating, Ventilation, and Air Conditioning (HVAC)
to maintain occupant thermal comfort. In building energy
systems (BES), rule-based controllers (RB) [2] are predomi-
nantly used to set the demand and supply points. These con-
trollers often lack insight into the dynamic behavior of the
BES, limiting their ability to leverage thermal dynamics for
efficient control. Additionally, HVAC systems are frequently
oversized to ensure occupant comfort [3]. Consequently,
predictive control strategies have significant potential to
lower energy consumption. However, maintaining thermal
comfort is essential, which can counteract energy efficiency
since energy is required to adjust indoor temperatures.

A widely researched alternative to RB control is model
predictive control (MPC). Ititeratively solves an optimal con-
trol problem (OCP) over a time horizon, predicting future
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states using a model of the system dynamics, while account-
ing for constraints and disturbances. Using an accurate
model is crucial for the control performance but the iden-
tification of the system dynamics is a major problem for
BES [4]. Additionally, uncertainties in the disturbances, the
model parameters and the structure arise, e.g. the number
of states or the functional form of the heat transfer between
rooms. A promising approach to accurately capture these
uncertainties is stochastic model predictive control (SMPC).
Disturbances like solar radiation or ambient temperature
have a great impact on the temperature inside the building.
Thus, including predictions for such disturbances is cru-
cial for the performance of the MPC. These predictions can
either be retrieved from local weather forecasting services
or have to be made with on-site measurements.

A suitable approach for predicting such disturbances
are Latent Force Models (LFM) [5], which are based on
Gaussian Processes (GP), so an uncertainty quantification is
available [6]. Their main advantage is the state-space refor-
mulation of the underlying GP, leveraging a linear time-
complexity for predictions via the Kalman Filter [7]. LFMs
have been applied as data-driven approach for disturbance
models, which are crucial for model-based control. In [8] a
LQR approach was used to control a mass-spring-damper
system and showed superior performance, if an LFM was
used. The extension to linear SMPC was proposed in [9]
which additionally considered input and state constraints.
Since many systems are nonlinear in nature [10], showed the
application to nonlinear MPC with a better performance of
the LFM. In [11] an LFM in combination with MPC was used
to predict the occupancy and to control the BES. Another
direction without LFMs but with linear SMPC was used in
[12] and showed superior performance of the SMPC.

The novelty of this work is the application of nonlinear
SMPC and Latent Force Models to BES. To this end, two
BES models are used for evaluation: a baseline parametric
model with known parameters and a second model devel-
oped in EnergyPlus [13], a white-box modeling software.
The LFM is used to predict the solar radiation which is one
of the major disturbances in BES. Finally, the models are
compared based on their levels of constraint violation and
energy consumption.

The paper is structured as follows. Section 2 outlines
the state-space representation of LFMs and SMPC for non-
linear systems. Section 3 describes the concepts and models
of BES and the modeling of solar radiation. In Section 4,
the application of SMPC to BES using LFMs is evaluated.
Sections 5 concludes the paper and provides an outlook on
future work.
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2 LFM-based stochastic model
predictive control

LFMs are combinations of first-principle models and GPs,
where thelatter are used as data-based models for unknown
parts of the system dynamics. The posterior distribution
of the GPs could be inferred by Gaussian process regres-
sion, but the required computational effort increases cubi-
cally with the number of data points [14]. An alternative
approach is to transform the GP prior to a linear state-space
model, which allows to apply the Kalman filter equations
for state estimation, which is outlined in Section 2.1. The
variance of the GPs introduces uncertainty to the system
that must be considered by the controller. A suitable control
method for stochastic systems is SMPC, which is described
in Section 2.2.

2.1 State-space transformation of latent
force models

Consider the continuous-time stochastic system
dx = f(x, u,d)dt + B, dw, @

with state x € R, control input u € R, disturbance d €
RN, system dynamics function f, a vector of stochastically
independent Wiener processes w, € RV», and a diffusion
matrix B, € R¥*Nw_The disturbance d cannot be measured
directly, butitis assumed that each element can be modeled
as a time-dependent GP

d(t) ~ CP(my(0), k(t,t')) Vie{l, ..,N;} (@

with a mean function my(f) and a kernel k(t, ). In the
following, m;(t) = 0 is assumed without loss of generality
[6].

GPs are not suitable for the control of systems with
short sampling times due to the large computational effort.
Therefore, an alternative approach is proposed in [7], where
the GPs are reformulated as linear state-space models, for
which the state can be estimated using the Kalman filter.
In contrast to Gaussian Processes, the iterative procedure of
the Kalman filter does not require saving large data sets and
the computation time is time-independent. Provided that
the spectral density of the kernel is of the form

constant

S@)= —— oo
polynomial in @

©)]

the i-th element of the disturbance vector (2) can be modeled
by the system [7]
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with an internal state z; € RY:, a Wiener process Wy,
parameters of the system matrix a = [a;, ..., ay ], and the
diffusion parameter . The number of internal states N, as
well as the parameters a and ¢ depend on the kernel k,(t, t').

A class of kernels that satisfies condition (3) is the
Matérn kernel

ky(t,t') = o; o (ﬁé) K<\/Z_WS> ©)

MT(v) l l

with § = |t — t’|, hyperparameters O'IZW and [, Bessel func-
tion of second kind K, gamma function I', and parameter
v = 0.5+ nwith n € Ny [7]. Some kernels that do not fulfill
condition (3) can be approximated by a state-space repre-
sentation (4). For example, the periodic kernel

s 02 t—t'
2 sin ((007>

. 6)

kp(t,t') = 6% exp| —

with hyperparameters af,, ,, and [ can be approximated
using a series of stochastic resonators [15]. In the same way
that kernels can be combined with each other, the state-
space representations of the GP priors can be combined as
well. The quasi-periodic kernel kg, (t, t') = ky (¢, t)kp(t, t'),
for instance, can be approximated by the system matrix

Fop=F,®I, +1, ®Fy v

with Kronecker product ®, identity matrix I, and number
of internal states ny, and n,, respectively [15]. If multiple
disturbances affect system (1), each GP (2) can be modeled by
a linear time invariant system (4), which can be combined
to the extended system

dz = blkdiag(F;, .., Fy, ) zdt + blkdiag(b;, ..., by ) dw,
. ‘F J . ;;: v
d = blkdiag(c], ... ¢} )z
A z J
@®)
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where z = [ZI,
tor, w, = [wlp ,w; Nd]T denotes the vector of indepen-
dent Wiener processes, and blkdiag(-) denotes the block

diagonal matrix.

,zITVd]T denotes the augmented state vec-

2.2 Stochastic model predictive control

The system dynamics (1) involve Wiener processes and
Gaussian Processes that cause uncertainty. Further uncer-
tainty is introduced, if the states of the system cannot be
measured directly but must be estimated. By combining the
system dynamics (1) and the disturbance dynamics (8) to
an extended system, the system state x and the disturbance
state z can be estimated together, for example using the
unscented Kalman filter [16]. Furthermore, a model predic-
tive controller requires predicted trajectories of the distur-
bance. Since (8) is independent of x and u, the mean of
the disturbance state p, = E[z] and the covariance matrix
of the disturbance state X; = Cov[d] can be predicted by
integrating

#z =F H; )

Y, =FX,F +B,B,
where the initial mean and covariance are given by the state
estimator. These can be used to calculate the mean of the
disturbance u, = E[d| and the covariance matrix of the
disturbance by

Mg = Cop,
X, =CX,C.

The estimated state, the predicted disturbance and the
system model (1) can be utilized to construct a stochastic
model predictive controller that solves an optimal control
problem (OCP) in every time step. Since x is a random vari-
able, constraints are formulated as chance constraints that
must be fulfilled with a certain probability. Therefore, the
stochastic OCP

(10)

T
muin]= E V(x(T))+/l(x, u) de (11a)
0
s.t.dx = f(x,u,d) dt + B, dw,, x(0) =x, (11b)
[P’[hl-(x, u) < O] > a; (11¢)
Plhr ;(x(T)) < 0] > ay (11d)
Upin < U < Uy (11e)

iefl,....N,}, je{l,....Ny }

is considered with terminal cost function V, integral cost
function [, prediction horizon T, chance constraints h; with
probabilities «;, and terminal chance constraints hT,j with
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l

Observer

SMPC

Figure 1: Exemplary control loop for the LFM-SMPC. The observer
provides state estimates for the mechanistic model and the latent states,
which are used to compute the estimated disturbance trajectory d.

probabilities a7 ;. An exemplary control loop is shown in
Figure 1. Here, the Observer estimates the mean and covari-
ance of the states x and the internal states z. The disturbance
prediction is computed by the Disturbance predictor via (9)
and (10).

Solving the stochastic OCP (11) requires the propaga-
tion of the uncertain state x through the potentially non-
linear system dynamics function f. The temporal change
of the probability density function of x can be repre-
sented by a partial differential equation known as the
Fokker-Plank equation [17]. Since solving this equation is
difficult for general functions f, several methods, such as
the unscented transformation, Gaussian quadrature, and
polynomial chaos expansion, have been proposed that
approximate the solution of the Fokker-Plank equation. For
example, the unscented transformation uses sigma-points to
capture the uncertainty. They are computed with

X0 =y (12)

X0 =p + <\/m> 13)

XD = g (W) (14)
1

where pu, and X, denote the mean and covariance of
the state x. The additional parameters «;; and k specify
the spread of the sigma points. To recompute the mean
and covariance, the unscented transformation uses weights
which are applied to the sigma points. These weights are

obtained via
0 __ nx

w =1-—-—* 15
H al,(n +K) a5
w%=w2+(1—a§”+ﬁ) (16)
w = w ! @

W = —————
b2 )
" 207, (N, + )

with the additional parameter f. Additional information
about these methods can be found in [18].

Overall, tracking the covariance for the stochastic OCP
results at least in a computational demand of @(n2). The
chance constraints (11c) and (11d) can be approximated as
well by
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E[h(x, w)] < z(a;)/Var[h(x, w)] (18)
E[hr ;(x, w)] < z(ar )4/ Var[hy ;(x, W], (19)

where z(a;) and z(ay ;) are coefficients that can be chosen
according to Chebyshev’s inequality [19].

3 Building energy systems

Building Energy Systems are complex systems which consist
of a demand and producer side. The producers are Heating,
Ventilation and Air Conditioning (HVAC) equipment which
provide e.g. cold air and warm water. The demand side con-
sists of thermal zones, which represent areas of similar ther-
mal properties and disturbance influence. For example, the
rooms at the south side of a building would be grouped as
one thermal zone. A popular approach to modeling dynamic
heat transfer is the use of RC thermal networks (see, e.g.
[20]-[22)).

In this work, only the demand side is considered. The
used RC-model for one thermal zone is given in Figure 2. The
temperatures of the zone, the exterior wall, the radiator, the
neighbor zones and the ambient temperature are denoted
asT,, T, T, T;and T, respectively. Additional heat sources
like solar radiation or from the HVAC-equipment are omit-
ted in the network for a better overview. The resulting
dynamics are given by

~-T, T,-T, T,—T

C,T,= sz Z 4 er Z 4 R Z+Q,+0, (200
CwTw _ T, ;ZTW n TaR—wTw (20b)
¢TI, = TZR;rTf +Q, (20¢)
with the ventilation heat gain
Qu = Cay(Ts o — T,) (21)
and the hot water heat flow
Qu = €My (Tsp = Tp), (22)

ICw ICZ I(/‘T

Figure 2: RC-model representing the thermal dynamics of one zone.
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where c,, are the specific heat capacities of air and water,
the air and water mass flow r, and the supply tempera-
tures T . The remaining quantity Qs is the heat gain from
solar radiation.

Reformulating (20) into (1) results in the state vector
x=|T,T,.T,] " control vector u = [, r'nw]T and the dis-
turbance vector d = [T, Qsol]T for every zone. Couplings
with other zones can be considered as states, if the neighbor
zone isincluded in the system dynamics. Otherwise, they act
like a disturbance since they are not controllable.

3.1 Modeling solar radiation

Solar radiation has a major impact on the temperature
inside buildings. Thus, considering the heat gain from radi-
ation is a great opportunity to reduce the energy demand.
Computing the aforementioned heat gain introduces several
sources of uncertainty, starting at the radiation measure-
ments. The required quantities are Direct Normal Irradia-
tion (DNI), Diffuse Horizontal Irradiation (DHI) and Global
Horizontal Irradiation (GHI). DNI is the radiation on a sur-
face normal to the sun. It is measured with a solar tracker
and a pyrheliometer which is labor-intensive. DHI is the
diffuse, reflected radiation from the surrounding. Here, a
pyranometer can be used with a shading device to block the
direct sun beam. GHI is the global radiation and is measured
with a pyranometer placed horizontally on a surface [23],
[24]. These measured variables are related with

Iour = Ipng €08(2) + Iy (23)

where zis the sun zenith angle [25]. Since GHI is significantly
easier to obtain, the majority of on-site measurements are
GHI and no information about DNI and DHI is available.
Many correlations exist to obtain estimates for DNI and DHI
from GHI. A comparison can be found in [25].

The tilted irradiation I, in % on a 90° surface, e.g.
exterior walls, can be computed with

I, = Iy €08(6) + IRy + IR, (24)

with the angle 0 as the sun altitude, R, as the diffuse trans-
position factor of ground reflection, p for the foreground
albedo and R, as the transposition factor for ground reflec-
tion. Under the isotropic assumption, the transposition fac-
tors R, and R, can be computed with

(25)

where s is the tilt angle of the surface. Note that for R, this

is a rather strong assumption which is outlined in [25].
With the tilted irradiation I,, one can compute the

heat gain Q. The physically correct equations are more
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involved, which can be seen in [26]. Since the radiation is
used as a disturbance in SMPC, a simple approximation with

Qsol = LAyinRyin (26)

is used, where A,;, is the window surface area with the
reflection factor R,,;,. Note that the explicit time dependence
of (24) and (26) was dropped for brevity.

4 Evaluation

In this section, we evaluate the application of LFMs and
SMPC to Building Energy Systems, where solar radiation is
considered as a disturbance.

4.1 Use cases

Two BES are taken into account: An example building
in EnergyPlus and a parametric model of a floor at the
Bosch Research Campus in Renningen, Germany. Ideal
HVAC equipment was used for both use cases, since only
the energy demand of the zones were of interest. The dif-
ferences are outlined in the following.

4.1.1 EnergyPlus model

EnergyPlus is a widely adopted BES simulation software
used by engineers to e.g. estimate and configure the HVAC
equipment [13]. It provides a complex calculation of the
thermal properties of a building, including the various
disturbances and interactions with the HVAC components.
EnergyPlus supplies typical weather data for different
regions on earth, which are used during simulation. Thus,
it is a white-box modelling approach for BES.

For the simulations in EnergyPlus, the building in
Figure 3 is considered. It consists of three adjacent zones,
the south, hallway and north zone, where the south and
north zones are offices. For the control, every zone is mod-
eled by (20) with identified values for the heat capacities and
resistances from simulated data. As said before, EnergyPlus
provides typical weather data for different climate zones.
Here, typical data from Munich was used. Through the typi-
cal weather data, values for DNI, DHI and GHI are available
for computing the heat gain through solar radiation.

4.1.2 Renningen office floor

The Renningen model is based on the floor plan shown
in Figure 4. It also uses the model in (20) without explicit
zone couplings and identified parameters from real world
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Figure 3: 3D view of the example building in EnergyPlus.

measurements. These measurements include weather data,
where only the ambient temperature and GHI are available.
From all available zones, only 9, 10, 21 and 23 are used,
since 11, 12 and 13 are not subject to solar radiation. Zone 22
and 24 are not used since the thermal characteristics match
zone 23 and 21, respectively. From this real world example
information about the used RB controller is available, which
is used for comparison in the evaluation. It consists out
of two PI-Controllers, one for the radiator and one for the
ventilation. The setpoint changes between night and day are
smoothed with a ramp, so no abrupt changes occur, like in

[4].

4.2 Solar radiation prediction

From the building perspective, solar radiation, like ambient
temperature, is a time dependent disturbance. As seen in
Section 3.1, DNI, DHI and GHI are required for computing
the heat gain Q. For Renningen only GHI is available, thus
a correlation according to Orgill et al. [27] is used to compute
DHI and (23) for computing DNI.

The computed heat gain for one zone in Renningen can
be seen in Figure 5. Here, the signal properties of the dis-
turbance are evident. A daily periodic trend with variations
can be seen with a rough shape. Thus, a combination of a
periodic and a Matérn kernel, a quasi-periodic kernel, is a
suitable choice. For the Matérn kernel, v = % isused because
of the roughness. The periodic kernel is approximated with
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Figure 5: Computed heat gain through solar radiation with @ = 1.

internal 22 states, which is the same for the used quasi-
periodic kernel.

4.3 SMPC settings

The stochastic model predictive controller is implemented
using the framework GRAMPC-S [28]. GRAMPC-S provides
several approximation methods to propagate the uncertain-
ties of the predicted states. In our evaluation, the unscented
transformation with ay; = 0.1, § =2 and k =1 is used to
track the variance of the system dynamics. A diffusion term
of 1IE-5K is added to both systems for the uncertainty
propagation which resembles uncertain system dynamics.
The parameters for the MPC models were identified from
simulation data.

The temperature of each zone is subject to the con-
straints

T,—T, if T, > T,
0, otherwise

where T, is the upper and T; the lower bound. The
bounds are found in Table 1 which specify the comfort
range during the day and energy efficiency for the night.
Lower temperatures can result in condensation and thus
yield mold, which is undesired. For the SMPC, Gaussian
chance constraint approximations with the probabilities

ST - B G- i bt e

it - - e ! |

} 10E%T11 L il S ,.%/:3'7_% S {5y ma

\ H 25 :  —1.‘ S Sl R, e .
ragps P g =

el o B [ s A g Fa i

S = _ -
e il sl 3l 25 | WERE- 5, 0P | | Frall ira =
A== i ':f % S5 = 23 & 7
R el 21 ] ~122 5 % A= 24 i
b B a e AR A=, JRRE 4 T = IIEE) Lige) =il = —

B e e e I, I -y O [ 1Ty | T | ope— — — e

Figure 4: Zone layout of the floor at the Bosch research campus in Renningen.
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Table 1: Constraints for Comfort and Economy mode.

Time 6amto 6 pm 6 pmto6am
T, 24°C 28°C
T, 21°C 17°C

a € {95 %,80 %,50 %} are used. Note that for a Gaussian
chance constraint the 50 % case is equivalent to a determin-
istic MPC [18] since the quantity z(«;) is equal to zero. Spec-
ifying the comfort range as chance constraints is sensible,
since small constraint violations are tolerable. The integral
cost function is given by
() = ) R (28)
1

for every control input u; to ensure energy efficiency.

The solar radiation is considered in two different ways:
As a constant disturbance and with an LFM. An SMPC
without disturbance knowledge is used as a baseline. Com-
bined with the different probabilities of constraint fulfill-
ment, 9 different controllers are considered and simulated
for a whole year. They are compared based on the zones’
energy demand and thermal comfort levels. The discomfort
is assessed with the integrated constraint violation given in
Kh. The different settings of the SMPC such as sample time
and prediction horizon are shown in Table 2.

4.4 Renningen results

The results for Renningen are given in Figure 6. Addition-
ally, a time series plot is shown in Figure 7 which shows
the SMPC with a = 95 % with a constant disturbance pre-
diction. Overall for « = 95 % result in the highest energy

consumption followed by a« = 80 % and a = 50 %. When
Zone 9 Zone 10
é 80 i [ ¥ | | ] 30 | | .
£ 00 1 20f |
540} ° o i .
s 20| 4 10 1
A 0 e I — 0 | | |
1 1.2 14 06 0.8 1

Energy in MWh Energy in MWh
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looking at the discomfort, « = 95 % achieve the lowest fol-
lowed again by @ =80 % and a = 50 %. Including a con-
stant disturbance prediction reduces both energy demand
and discomfort, except for zone 21. Here a small increase in
Energy consumption occurs. With the constant disturbance
prediction, @ = 50 % results in the lowest energy consump-
tion for each zone. For « = 95 % in the zones 9 and 10, this
effectively results in no discomfort. The effect for zone 21
and 23 is much smaller than expected. Further investigation
shows, that the ventilation for these zones is at its upper
control limit. This can also be seen in Figure 7. The influence
of the solar radiation is greater, since the windows of zone
21 and 23 are facing south. Nevertheless, the discomfort is at
least halved with the constant disturbance prediction.

Using an LFM to stochastically predict the solar heat
gain results in a higher or comparable energy consumption
for the zones. For zone 9 and 10 this results in a marginally
higher energy consumption than the constant prediction. In
zone 21 and 23, the discomfort for « € {95 %, 80 %, 50 %}
is about 30 Kh lower than the constant disturbance pre-
diction. On the other hand, the energy consumption is
200-300 kW h higher.

Comparing with the RB controller, the SMPC at least
reduces the energy demand for every zone. Including dis-
turbance information leads to an additional reduction in
discomfort.

Table 2: MPC settings for EnergyPlus and Renningen.

EnergyPlus Renningen
dt 5 min 15 min
Thor 2h 1h
R, 10 1
Ro, 50 10

Zone 21 Zone 23

F T T T 7 600 +| T T T
800 i o o| 500 = . |
600 |- - 400 ,
400 - — 300 - .

|- — - + 1
200_"‘|x.| | 4 200 | T.l [

95 10 105 11 5658 6 6.26.46.6

Energy in MWh Energy in MWh

LFM, 95%

e Normal, 95% * Normal, 80% + Normal 50%
e Const, 95% = Const, 80% #+ Const 50%
LFM, 80%

LFM 50%

Figure 6: Renningen results for a prediction horizon of 1 h. The RB controller is depicted by e.
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0.8
0.6
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tin d
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T in °C
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T T I S N

m in kg/s

T T

Figure 7: Time series result for zone 21 with @ = 95 % and constant
disturbance prediction. The lower plot shows the controls v, () and
U, (——). The shaded area depicts the admissible temperature range.

Overall, the LFM results in a lower discomfort at the
price of marginal higher energy consumption compared to
the constant disturbance prediction. When a low discomfort
is desired, the LFM is clearly the best choice. If energy effi-
ciency is the biggest concern, a constant disturbance predic-
tion with @ = 50 % performs best. Note again that for a =
50 % and a Gaussian constraint approximation, the SMPC
result is equivalent to a deterministic MPC, see Section 4.3.

4.5 EnergyPlus results

The EnergyPlus use case was simulated with a time horizon
of 2 h with the results given in Figure 8. A similar trend like
in the Renningen case can be seen. The constant disturbance
prediction achieves a lower discomfort for « = 50 % com-
pared to the LFM. In contrast, the energy consumption is
slightly larger. Using an LFM results in a considerably lower
discomfort for « = 95 % and a = 80 % with a higher energy
consumption of about 4-8 %.

I Normal
I Const
[ LFM

w

Energy in MWh
o
=3

95% 80%

Discomfort in Kh

50%

95% 80% 50% 95% 80%

Figure 8: EnergyPlus results for a prediction horizon of 2 h.
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Figure 9: Complementary cumulative distribution of the constraint
violation for 2 h.

To further assess the performance of the SMPC, the
complementary cumulative constraint violation is shown
in Figure 9. For the south, the SMPC without disturbance
information has a significantly greater proportion of high
constraint violations. Including a constant disturbance pre-
diction reduces this probability significantly. This is differ-
ent for the northern zone. Here, the SMPC is grouped in clus-
ters of their chance constraint approximation percentage,
e.g. for @ = 95 % the performance between no disturbance
prediction, constant prediction and LFM is similar. Thus,
the advantage of adding disturbance information is smaller
for the north zone than for the south zone.This meets the
expectation that solar radiation has a lower impact on the
northern zone. Moreover, model uncertainties are more
dominant in the north, resulting in a higher discomfort for
a =50 %.

5 Conclusions

This paper demonstrates the application of Latent Force
Models (LFM) combined with SMPC to Building Energy Sys-
tems (BES). The LFM-based SMPC achieves the lowest dis-
comfort in most cases. Additionally, the higher energy con-
sumption appears reasonable for the comfort gained. When
parameters are known exactly, a deterministic MPC still
yields the lowest energy consumption.

Comparing deterministic and stochastic MPC, the main
drawback of SMPC is its higher computational demand. To
track uncertainty, at least the covariance of the states must
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be computed, resulting in at least quadratic computational
scaling. This can become intractable, especially for BES with
a large number of states. The primary advantage of SMPC
over MPC is its stochastic treatment of constraints, leading
to a natural tightening based on present uncertainties.

Future work includes refining the parameter identi-
fication process. Currently, only point estimates with a
Wiener process are used, which does not accurately cap-
ture model uncertainties. Using a maximum a posteriori
estimate would define a prior distribution for the param-
eters, considering their stochastic nature, which could
further reduce discomfort. Another direction is the stochas-
tic treatment of constraints. A heuristic method for con-
straint tightening could be developed to circumvent the
additional computational demand of SMPC.
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