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Abstract: The model-based control of building energy sys-

tems (BES) is a hard task, since the system identification is

very labor-intensive. This results in inexact models, which

are subject to parameter uncertainties. Additionally, distur-

bances like solar radiation have a great impact on the sys-

tem dynamics. In this paper we used stochastic model pre-

dictive control (SMPC) to account for parameter and distur-

bance uncertainties. The disturbances are modeled as time-

dependent Gaussian Processes (GP), which are known as

Latent-Force Models (LFM). The proposed approach is eval-

uated for two different BES using experimentally obtained

data. The results show that the LFM-SMPC results in the

lowest discomfort with a reasonable higher energy con-

sumption compared to a constant disturbance prediction.

Keywords: stochastic model predictive control; optimal

control; building energy systems; stochastic optimization;

temporal Gaussian process regression; latent force model

Zusammenfassung: Die modellbasierte Regelung von

Gebäudeenergiesystemen (BES) ist eine anspruchsvolle

Aufgabe, da die Systemidentifikation sehr arbeitsintensiv

ist. Dies führt zu ungenauen Modellen, die mit

Parameterunsicherheiten behaftet sind. Außerdem

haben Störungen, wie die Sonneneinstrahlung, einen

großen Einfluss auf die Systemdynamik. In dieser Arbeit

wird eine stochastische modellprädiktive Regelung (SMPC)

*Corresponding author: Thore Wietzke, Chair of Automatic Control,

Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Ger-

many, E-mail: thore.wietzke@fau.de

Daniel Landgraf and Knut Graichen, Chair of Automatic Control,

Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Ger-

many, E-mail: daniel.dl.landgraf@fau.de (D. Landgraf),

knut.graichen@fau.de (K. Graichen)

verwendet, um die Unsicherheiten der Parameter und

Störungen zu berücksichtigen. Die Störungen werden

als zeitabhängige Gaußprozesse (GP) modelliert, die als

Latente-Kraft Modelle (LFM) bezeichnet werden. Der

vorgeschlagene Ansatz wird für zwei verschiedene BES

anhand experimentell gewonnener Daten bewertet. Die

Ergebnisse zeigen, dass das LFM-SMPC im Vergleich

zu einer konstanten Störungsvorhersage zu einem

geringeren Diskomfort bei einem angemessen höheren

Energieverbrauch führt.

Schlagwörter: stochastische modellprädiktive Regelung;

Optimale Regelung; Gebäudeenergiesysteme; Stochastische

Optimierung; zeitabhängige Gaußprozessregression;

Latente-Kraft Modelle

1 Introduction

Buildings are responsible for approximately 30 % of global

energy consumption [1], with a significant portion dedi-

cated to Heating, Ventilation, and Air Conditioning (HVAC)

to maintain occupant thermal comfort. In building energy

systems (BES), rule-based controllers (RB) [2] are predomi-

nantly used to set the demand and supply points. These con-

trollers often lack insight into the dynamic behavior of the

BES, limiting their ability to leverage thermal dynamics for

efficient control. Additionally, HVAC systems are frequently

oversized to ensure occupant comfort [3]. Consequently,

predictive control strategies have significant potential to

lower energy consumption. However, maintaining thermal

comfort is essential, which can counteract energy efficiency

since energy is required to adjust indoor temperatures.

A widely researched alternative to RB control is model

predictive control (MPC). It iteratively solves anoptimal con-

trol problem (OCP) over a time horizon, predicting future
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states using a model of the system dynamics, while account-

ing for constraints and disturbances. Using an accurate

model is crucial for the control performance but the iden-

tification of the system dynamics is a major problem for

BES [4]. Additionally, uncertainties in the disturbances, the

model parameters and the structure arise, e.g. the number

of states or the functional form of the heat transfer between

rooms. A promising approach to accurately capture these

uncertainties is stochastic model predictive control (SMPC).

Disturbances like solar radiation or ambient temperature

have a great impact on the temperature inside the building.

Thus, including predictions for such disturbances is cru-

cial for the performance of the MPC. These predictions can

either be retrieved from local weather forecasting services

or have to be made with on-site measurements.

A suitable approach for predicting such disturbances

are Latent Force Models (LFM) [5], which are based on

Gaussian Processes (GP), so an uncertainty quantification is

available [6]. Their main advantage is the state-space refor-

mulation of the underlying GP, leveraging a linear time-

complexity for predictions via the Kalman Filter [7]. LFMs

have been applied as data-driven approach for disturbance

models, which are crucial for model-based control. In [8] a

LQR approach was used to control a mass-spring-damper

system and showed superior performance, if an LFM was

used. The extension to linear SMPC was proposed in [9]

which additionally considered input and state constraints.

Sincemany systems arenonlinear innature [10], showed the

application to nonlinear MPC with a better performance of

the LFM. In [11] an LFM in combination with MPC was used

to predict the occupancy and to control the BES. Another

direction without LFMs but with linear SMPC was used in

[12] and showed superior performance of the SMPC.

The novelty of this work is the application of nonlinear

SMPC and Latent Force Models to BES. To this end, two

BES models are used for evaluation: a baseline parametric

model with known parameters and a second model devel-

oped in EnergyPlus [13], a white-box modeling software.

The LFM is used to predict the solar radiation which is one

of the major disturbances in BES. Finally, the models are

compared based on their levels of constraint violation and

energy consumption.

The paper is structured as follows. Section 2 outlines

the state-space representation of LFMs and SMPC for non-

linear systems. Section 3 describes the concepts and models

of BES and the modeling of solar radiation. In Section 4,

the application of SMPC to BES using LFMs is evaluated.

Sections 5 concludes the paper and provides an outlook on

future work.

2 LFM-based stochastic model

predictive control

LFMs are combinations of first-principle models and GPs,

where the latter are used as data-basedmodels for unknown

parts of the system dynamics. The posterior distribution

of the GPs could be inferred by Gaussian process regres-

sion, but the required computational effort increases cubi-

cally with the number of data points [14]. An alternative

approach is to transform the GP prior to a linear state-space

model, which allows to apply the Kalman filter equations

for state estimation, which is outlined in Section 2.1. The

variance of the GPs introduces uncertainty to the system

that must be considered by the controller. A suitable control

method for stochastic systems is SMPC, which is described

in Section 2.2.

2.1 State-space transformation of latent
force models

Consider the continuous-time stochastic system

dx = f (x, u,d) dt + Bx d𝒘x (1)

with state x ∈ ℝNx , control input u ∈ ℝNu , disturbance d ∈
ℝNd , system dynamics function f , a vector of stochastically

independent Wiener processes 𝒘x ∈ ℝN𝑤 , and a diffusion

matrixBx ∈ ℝNx×N𝑤 . The disturbanced cannot bemeasured

directly, but it is assumed that each element can bemodeled

as a time-dependent GP

di(t) ∼ (mi(t), ki(t, t
′ )) ∀i ∈ {1, … , Nd} (2)

with a mean function mi(t) and a kernel ki(t, t
′). In the

following, mi(t) = 0 is assumed without loss of generality

[6].

GPs are not suitable for the control of systems with

short sampling times due to the large computational effort.

Therefore, an alternative approach is proposed in [7], where

the GPs are reformulated as linear state-space models, for

which the state can be estimated using the Kalman filter.

In contrast to Gaussian Processes, the iterative procedure of

the Kalman filter does not require saving large data sets and

the computation time is time-independent. Provided that

the spectral density of the kernel is of the form

S(𝜔) = constant

polynomial in 𝜔2
, (3)

the i-th element of the disturbance vector (2) can bemodeled

by the system [7]
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with an internal state zi ∈ ℝNz , a Wiener process 𝑤z,i,

parameters of the system matrix a = [a1,… , aNz
], and the

diffusion parameter 𝜎. The number of internal states Nz as

well as the parametersa and𝜎 depend on the kernel ki(t, t
′).

A class of kernels that satisfies condition (3) is the

Matérn kernel

kM (t, t
′ ) = 𝜎

2
M

21−𝜈

Γ(𝜈 )

(√
2𝜈𝛿

l

)𝜈

K𝜈

(√
2𝜈𝛿

l

)
(5)

with 𝛿 = |t − t′|, hyperparameters 𝜎2
M
and l, Bessel func-

tion of second kind K𝜈 , gamma function Γ, and parameter
𝜈 = 0.5+ n with n ∈ ℕ0 [7]. Some kernels that do not fulfill

condition (3) can be approximated by a state-space repre-

sentation (4). For example, the periodic kernel

kP(t, t
′ ) = 𝜎

2
P
exp

⎛⎜⎜⎝−
2 sin2

(
𝜔0

t−t′
2

)
l2

⎞⎟⎟⎠ (6)

with hyperparameters 𝜎2
P
, 𝜔0, and l can be approximated

using a series of stochastic resonators [15]. In the same way

that kernels can be combined with each other, the state-

space representations of the GP priors can be combined as

well. The quasi-periodic kernel kQP(t, t
′) = kM (t, t

′)kP(t, t
′),

for instance, can be approximated by the system matrix

FQP = FP ⊗ InM + InP ⊗ FM (7)

with Kronecker product ⊗, identity matrix I , and number

of internal states nM and nP, respectively [15]. If multiple

disturbances affect system (1), eachGP (2) can bemodeled by

a linear time invariant system (4), which can be combined

to the extended system
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)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F

zdt + blkdiag
(
b1,… ,bN𝑤

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Bz

d𝒘z

d = blkdiag
(
cT
1
,… , cT

N𝑤

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cz

za,

(8)

where z = [zT
1
,… , zT

Nd

]T denotes the augmented state vec-

tor, 𝒘z = [𝒘T
z,1
,… ,𝒘T

z,Nd

]T denotes the vector of indepen-

dent Wiener processes, and blkdiag(⋅) denotes the block

diagonal matrix.

2.2 Stochastic model predictive control

The system dynamics (1) involve Wiener processes and

Gaussian Processes that cause uncertainty. Further uncer-

tainty is introduced, if the states of the system cannot be

measured directly but must be estimated. By combining the

system dynamics (1) and the disturbance dynamics (8) to

an extended system, the system state x and the disturbance

state z can be estimated together, for example using the

unscented Kalman filter [16]. Furthermore, a model predic-

tive controller requires predicted trajectories of the distur-

bance. Since (8) is independent of x and u, the mean of

the disturbance state 𝝁z = 𝔼[z] and the covariance matrix
of the disturbance state 𝚺d = Cov[d] can be predicted by

integrating

𝝁̇z = F𝝁z

𝚺̇z = F𝚺zF
T + BzB

T
z
,

(9)

where the initialmean and covariance are given by the state

estimator. These can be used to calculate the mean of the

disturbance 𝝁d = 𝔼
[
d
]
and the covariance matrix of the

disturbance by

𝝁d = Ca𝝁z

𝚺d = Ca𝚺zC
T
a
.

(10)

The estimated state, the predicted disturbance and the

system model (1) can be utilized to construct a stochastic

model predictive controller that solves an optimal control

problem (OCP) in every time step. Since x is a random vari-

able, constraints are formulated as chance constraints that

must be fulfilled with a certain probability. Therefore, the

stochastic OCP

min
u

J = 𝔼
⎡⎢⎢⎣V(x(T ))+

T

∫
0

l(x,u) dt

⎤⎥⎥⎦ (11a)

s. t. dx = f (x,u,d) dt + Bx d𝒘x , x(0) = x0 (11b)

ℙ
[
hi(x, u) ≤ 0

]
≥ 𝛼i (11c)

ℙ
[
hT, j(x(T )) ≤ 0

]
≥ 𝛼T, j (11d)

umin ≤ u ≤ umax (11e)

i ∈ {1,… ,Nh}, j ∈
{
1,… ,NhT

}
is considered with terminal cost function V , integral cost

function l, prediction horizon T , chance constraints hi with

probabilities 𝛼i, and terminal chance constraints hT, j with
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Figure 1: Exemplary control loop for the LFM-SMPC. The observer

provides state estimates for the mechanistic model and the latent states,

which are used to compute the estimated disturbance trajectory d̂ .

probabilities 𝛼T, j. An exemplary control loop is shown in

Figure 1. Here, the Observer estimates themean and covari-

ance of the statesx and the internal states z. The disturbance

prediction is computed by the Disturbance predictor via (9)

and (10).

Solving the stochastic OCP (11) requires the propaga-

tion of the uncertain state x through the potentially non-

linear system dynamics function f . The temporal change

of the probability density function of x can be repre-

sented by a partial differential equation known as the

Fokker-Plank equation [17]. Since solving this equation is

difficult for general functions f , several methods, such as

the unscented transformation, Gaussian quadrature, and

polynomial chaos expansion, have been proposed that

approximate the solution of the Fokker-Plank equation. For

example, the unscented transformationuses sigma-points to

capture the uncertainty. They are computed with

x(0) = 𝝁x (12)

x(i) = 𝝁x +
(√

𝛼2
UT
(nx + 𝜅 )𝚺x

)
i

(13)

x(nx+i) = 𝝁x −
(√

𝛼2
UT
(nx + 𝜅 )𝚺x

)
i

(14)

where 𝝁x and 𝚺x denote the mean and covariance of

the state x. The additional parameters 𝛼UT and 𝜅 specify

the spread of the sigma points. To recompute the mean

and covariance, the unscented transformation uses weights

which are applied to the sigma points. These weights are

obtained via

𝑤
0
𝜇
= 1− nx

𝛼2
UT
(nx + 𝜅 )

(15)

𝑤
0
Σ = 𝑤

0
𝜇
+
(
1− 𝛼

2
UT

+ 𝛽
)

(16)

𝑤
i

𝜇
= 𝑤

i

Σ = 1

2𝛼2
UT
(nx + 𝜅 )

(17)

with the additional parameter 𝛽 . Additional information

about these methods can be found in [18].

Overall, tracking the covariance for the stochastic OCP

results at least in a computational demand of 
(
n2
x

)
. The

chance constraints (11c) and (11d) can be approximated as

well by

𝔼
[
hi(x, u)

]
≤ z(𝛼i )

√
Var

[
hi(x, u)

]
(18)

𝔼
[
hT, j(x, u)

]
≤ z(𝛼T, j )

√
Var

[
hT, j(x, u)

]
, (19)

where z(𝛼i) and z(𝛼T, j) are coefficients that can be chosen

according to Chebyshev’s inequality [19].

3 Building energy systems

Building Energy Systems are complex systemswhich consist

of a demand and producer side. The producers are Heating,

Ventilation and Air Conditioning (HVAC) equipment which

provide e.g. cold air and warmwater. The demand side con-

sists of thermal zones,which represent areas of similar ther-

mal properties and disturbance influence. For example, the

rooms at the south side of a building would be grouped as

one thermal zone. A popular approach tomodeling dynamic

heat transfer is the use of RC thermal networks (see, e.g.

[20]–[22]).

In this work, only the demand side is considered. The

used RC-model for one thermal zone is given in Figure 2. The

temperatures of the zone, the exterior wall, the radiator, the

neighbor zones and the ambient temperature are denoted

as Tz, T𝑤, Tr, Ti and Ta, respectively. Additional heat sources

like solar radiation or from the HVAC-equipment are omit-

ted in the network for a better overview. The resulting

dynamics are given by

CzṪz =
T𝑤 − Tz

Rz

+ Tr − Tz

Rr

+ Ti − Tz

Ri

+ Q̇a + Q̇sol (20a)

C𝑤Ṫ𝑤 = Tz − T𝑤

Rz

+ Ta − T𝑤

R𝑤

(20b)

CrṪr =
Tz − Tr

Rr

+ Q̇𝑤 (20c)

with the ventilation heat gain

Q̇a = caṁa(TS,a − Tz ) (21)

and the hot water heat flow

Q̇𝑤 = c𝑤ṁ𝑤(TS,𝑤 − Tr ), (22)

Figure 2: RC-model representing the thermal dynamics of one zone.
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where c
∗
are the specific heat capacities of air and water,

the air and water mass flow ṁ
∗
and the supply tempera-

tures TS,∗. The remaining quantity Q̇sol is the heat gain from

solar radiation.

Reformulating (20) into (1) results in the state vector

x =
[
Tz, T𝑤, Tr

]T
, control vector u =

[
ṁa, ṁ𝑤

]T
and the dis-

turbance vector d =
[
Ta, Q̇sol

]T
for every zone. Couplings

with other zones can be considered as states, if the neighbor

zone is included in the systemdynamics. Otherwise, they act

like a disturbance since they are not controllable.

3.1 Modeling solar radiation

Solar radiation has a major impact on the temperature

inside buildings. Thus, considering the heat gain from radi-

ation is a great opportunity to reduce the energy demand.

Computing the aforementionedheat gain introduces several

sources of uncertainty, starting at the radiation measure-

ments. The required quantities are Direct Normal Irradia-

tion (DNI), Diffuse Horizontal Irradiation (DHI) and Global

Horizontal Irradiation (GHI). DNI is the radiation on a sur-

face normal to the sun. It is measured with a solar tracker

and a pyrheliometer which is labor-intensive. DHI is the

diffuse, reflected radiation from the surrounding. Here, a

pyranometer can be used with a shading device to block the

direct sun beam. GHI is the global radiation and ismeasured

with a pyranometer placed horizontally on a surface [23],

[24]. These measured variables are related with

IGHI = IDNI cos(z)+ IDHI (23)

where z is the sun zenith angle [25]. SinceGHI is significantly

easier to obtain, the majority of on-site measurements are

GHI and no information about DNI and DHI is available.

Many correlations exist to obtain estimates for DNI and DHI

from GHI. A comparison can be found in [25].

The tilted irradiation It in
W

m2 on a 90◦ surface, e.g.

exterior walls, can be computed with

It = IDNI cos(𝜃 )+ IDHIRd + IGHI𝜌Rr (24)

with the angle 𝜃 as the sun altitude, Rd as the diffuse trans-

position factor of ground reflection, 𝜌 for the foreground

albedo and Rr as the transposition factor for ground reflec-

tion. Under the isotropic assumption, the transposition fac-

tors Rr and Rd can be computed with

Rr = Rd =
1− cos(s)

2
, (25)

where s is the tilt angle of the surface. Note that for Rd this

is a rather strong assumption which is outlined in [25].

With the tilted irradiation It, one can compute the

heat gain Q̇sol. The physically correct equations are more

involved, which can be seen in [26]. Since the radiation is

used as a disturbance in SMPC, a simple approximationwith

Q̇sol = ItAwinRwin (26)

is used, where Awin is the window surface area with the

reflection factorRwin. Note that the explicit timedependence

of (24) and (26) was dropped for brevity.

4 Evaluation

In this section, we evaluate the application of LFMs and

SMPC to Building Energy Systems, where solar radiation is

considered as a disturbance.

4.1 Use cases

Two BES are taken into account: An example building

in EnergyPlus and a parametric model of a floor at the

Bosch Research Campus in Renningen, Germany. Ideal

HVAC equipment was used for both use cases, since only

the energy demand of the zones were of interest. The dif-

ferences are outlined in the following.

4.1.1 EnergyPlus model

EnergyPlus is a widely adopted BES simulation software

used by engineers to e.g. estimate and configure the HVAC

equipment [13]. It provides a complex calculation of the

thermal properties of a building, including the various

disturbances and interactions with the HVAC components.

EnergyPlus supplies typical weather data for different

regions on earth, which are used during simulation. Thus,

it is a white-box modelling approach for BES.

For the simulations in EnergyPlus, the building in

Figure 3 is considered. It consists of three adjacent zones,

the south, hallway and north zone, where the south and

north zones are offices. For the control, every zone is mod-

eled by (20)with identified values for the heat capacities and

resistances from simulated data. As said before, EnergyPlus

provides typical weather data for different climate zones.

Here, typical data fromMunich was used. Through the typi-

cal weather data, values for DNI, DHI and GHI are available

for computing the heat gain through solar radiation.

4.1.2 Renningen office floor

The Renningen model is based on the floor plan shown

in Figure 4. It also uses the model in (20) without explicit

zone couplings and identified parameters from real world
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Figure 3: 3D view of the example building in EnergyPlus.

measurements. These measurements include weather data,

where only the ambient temperature and GHI are available.

From all available zones, only 9, 10, 21 and 23 are used,

since 11, 12 and 13 are not subject to solar radiation. Zone 22

and 24 are not used since the thermal characteristics match

zone 23 and 21, respectively. From this real world example

information about the used RB controller is available, which

is used for comparison in the evaluation. It consists out

of two PI-Controllers, one for the radiator and one for the

ventilation. The setpoint changes between night and day are

smoothed with a ramp, so no abrupt changes occur, like in

[4].

4.2 Solar radiation prediction

From the building perspective, solar radiation, like ambient

temperature, is a time dependent disturbance. As seen in

Section 3.1, DNI, DHI and GHI are required for computing

the heat gain Q̇sun. For Renningen only GHI is available, thus

a correlation according toOrgill et al. [27] is used to compute

DHI and (23) for computing DNI.

The computed heat gain for one zone in Renningen can

be seen in Figure 5. Here, the signal properties of the dis-

turbance are evident. A daily periodic trend with variations

can be seen with a rough shape. Thus, a combination of a

periodic and a Matérn kernel, a quasi-periodic kernel, is a

suitable choice. For theMatérn kernel, 𝜈 = 1

2
is usedbecause

of the roughness. The periodic kernel is approximated with

Figure 5: Computed heat gain through solar radiation with 𝛼 = 1.

internal 22 states, which is the same for the used quasi-

periodic kernel.

4.3 SMPC settings

The stochastic model predictive controller is implemented

using the framework GRAMPC-S [28]. GRAMPC-S provides

several approximationmethods to propagate the uncertain-

ties of the predicted states. In our evaluation, the unscented

transformation with 𝛼UT = 0.1, 𝛽 = 2 and 𝜅 = 1 is used to

track the variance of the system dynamics. A diffusion term

of 1E−5 K is added to both systems for the uncertainty

propagation which resembles uncertain system dynamics.

The parameters for the MPC models were identified from

simulation data.

The temperature of each zone is subject to the con-

straints

hi(Ti ) =

⎧⎪⎪⎨⎪⎪⎩
Ti − Tu, if Ti > Tu

Tl − Ti, if Ti < Tl

0, otherwise

(27)

where Tu is the upper and Tl the lower bound. The

bounds are found in Table 1 which specify the comfort

range during the day and energy efficiency for the night.

Lower temperatures can result in condensation and thus

yield mold, which is undesired. For the SMPC, Gaussian

chance constraint approximations with the probabilities

Figure 4: Zone layout of the floor at the Bosch research campus in Renningen.
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Table 1: Constraints for Comfort and Economy mode.

Time 6 am to 6 pm 6 pm to 6 am

Tu 24 ◦C 28 ◦C

Tl 21 ◦C 17 ◦C

𝛼 ∈ {95 %, 80 %, 50 %} are used. Note that for a Gaussian
chance constraint the 50 % case is equivalent to a determin-

istic MPC [18] since the quantity z(𝛼i) is equal to zero. Spec-

ifying the comfort range as chance constraints is sensible,

since small constraint violations are tolerable. The integral

cost function is given by

l(u) =
∑
i

Riu
2
i

(28)

for every control input ui to ensure energy efficiency.

The solar radiation is considered in two different ways:

As a constant disturbance and with an LFM. An SMPC

without disturbance knowledge is used as a baseline. Com-

bined with the different probabilities of constraint fulfill-

ment, 9 different controllers are considered and simulated

for a whole year. They are compared based on the zones’

energy demand and thermal comfort levels. The discomfort

is assessed with the integrated constraint violation given in

K h. The different settings of the SMPC such as sample time

and prediction horizon are shown in Table 2.

4.4 Renningen results

The results for Renningen are given in Figure 6. Addition-

ally, a time series plot is shown in Figure 7 which shows

the SMPC with 𝛼 = 95% with a constant disturbance pre-

diction. Overall for 𝛼 = 95% result in the highest energy

consumption followed by 𝛼 = 80% and 𝛼 = 50%. When

looking at the discomfort, 𝛼 = 95% achieve the lowest fol-

lowed again by 𝛼 = 80% and 𝛼 = 50%. Including a con-

stant disturbance prediction reduces both energy demand

and discomfort, except for zone 21. Here a small increase in

Energy consumption occurs. With the constant disturbance

prediction, 𝛼 = 50% results in the lowest energy consump-

tion for each zone. For 𝛼 = 95% in the zones 9 and 10, this

effectively results in no discomfort. The effect for zone 21

and 23 is much smaller than expected. Further investigation

shows, that the ventilation for these zones is at its upper

control limit. This can also be seen in Figure 7. The influence

of the solar radiation is greater, since the windows of zone

21 and 23 are facing south. Nevertheless, the discomfort is at

least halved with the constant disturbance prediction.

Using an LFM to stochastically predict the solar heat

gain results in a higher or comparable energy consumption

for the zones. For zone 9 and 10 this results in a marginally

higher energy consumption than the constant prediction. In

zone 21 and 23, the discomfort for 𝛼 ∈ {95 %, 80 %, 50 %}
is about 30 K h lower than the constant disturbance pre-

diction. On the other hand, the energy consumption is

200–300 kW h higher.

Comparing with the RB controller, the SMPC at least

reduces the energy demand for every zone. Including dis-

turbance information leads to an additional reduction in

discomfort.

Table 2:MPC settings for EnergyPlus and Renningen.

EnergyPlus Renningen

dt 5 min 15 min

Thor 2 h 1 h

Rma
10 1

Rm𝑤
50 10

Figure 6: Renningen results for a prediction horizon of 1 h. The RB controller is depicted by .
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Figure 7: Time series result for zone 21 with 𝛼 = 95% and constant

disturbance prediction. The lower plot shows the controls ua ( ) and

u𝑤 ( ). The shaded area depicts the admissible temperature range.

Overall, the LFM results in a lower discomfort at the

price of marginal higher energy consumption compared to

the constant disturbance prediction.When a lowdiscomfort

is desired, the LFM is clearly the best choice. If energy effi-

ciency is the biggest concern, a constant disturbance predic-

tion with 𝛼 = 50% performs best. Note again that for 𝛼 =
50% and a Gaussian constraint approximation, the SMPC

result is equivalent to a deterministic MPC, see Section 4.3.

4.5 EnergyPlus results

The EnergyPlus use case was simulated with a time horizon

of 2 h with the results given in Figure 8. A similar trend like

in the Renningen case can be seen. The constant disturbance

prediction achieves a lower discomfort for 𝛼 = 50% com-

pared to the LFM. In contrast, the energy consumption is

slightly larger. Using an LFM results in a considerably lower

discomfort for 𝛼 = 95% and 𝛼 = 80%with a higher energy

consumption of about 4–8 %.

Figure 8: EnergyPlus results for a prediction horizon of 2 h.

Figure 9: Complementary cumulative distribution of the constraint

violation for 2 h.

To further assess the performance of the SMPC, the

complementary cumulative constraint violation is shown

in Figure 9. For the south, the SMPC without disturbance

information has a significantly greater proportion of high

constraint violations. Including a constant disturbance pre-

diction reduces this probability significantly. This is differ-

ent for the northern zone. Here, the SMPC is grouped in clus-

ters of their chance constraint approximation percentage,

e.g. for 𝛼 = 95% the performance between no disturbance

prediction, constant prediction and LFM is similar. Thus,

the advantage of adding disturbance information is smaller

for the north zone than for the south zone.This meets the

expectation that solar radiation has a lower impact on the

northern zone. Moreover, model uncertainties are more

dominant in the north, resulting in a higher discomfort for

𝛼 = 50%.

5 Conclusions

This paper demonstrates the application of Latent Force

Models (LFM) combined with SMPC to Building Energy Sys-

tems (BES). The LFM-based SMPC achieves the lowest dis-

comfort in most cases. Additionally, the higher energy con-

sumption appears reasonable for the comfort gained.When

parameters are known exactly, a deterministic MPC still

yields the lowest energy consumption.

Comparing deterministic and stochastic MPC, the main

drawback of SMPC is its higher computational demand. To

track uncertainty, at least the covariance of the states must
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be computed, resulting in at least quadratic computational

scaling. This can become intractable, especially for BESwith

a large number of states. The primary advantage of SMPC

over MPC is its stochastic treatment of constraints, leading

to a natural tightening based on present uncertainties.

Future work includes refining the parameter identi-

fication process. Currently, only point estimates with a

Wiener process are used, which does not accurately cap-

ture model uncertainties. Using a maximum a posteriori

estimate would define a prior distribution for the param-

eters, considering their stochastic nature, which could

further reduce discomfort. Another direction is the stochas-

tic treatment of constraints. A heuristic method for con-

straint tightening could be developed to circumvent the

additional computational demand of SMPC.
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