
at–Automatisierungstechnik 2025; 73(9): 669–678

Methods

Christoph Wree and Rando Raßmann*

Methodology for optimizing convolutional neural
networks for fast production processes

Methode zur Optimierung von Convolutional Neural Networks für schnelle Produktionsprozesse

https://doi.org/10.1515/auto-2024-0155

Received November 8, 2024; accepted May 7, 2025

Abstract: An individualized production is needed to man-

ufacture products with a batch size of up to 1 at low costs.

To ensure that the individual steps in the production pro-

cess are executed for each individual product, the products

have to be classified beforehand. For complex problems,

machine vision can be used in conjunction with machine

learning (ML) to classify the individual components. Here,

models of Convolutional Neural Networks (CNNs) in par-

ticular achieve high classification accuracies. However, they

require high computational cost, which makes it more chal-

lenging to execute CNNs in real-time within a PLC runtime

environment and synchronize them with motion control

tasks. In this paper, a methodology is presented using a

production-oriented application example to minimize the

inference time of a CNN models for image classification

whilemaximizing the classification accuracy. The presented

methodology demonstrates how computationally cost inten-

sive CNNs can be optimized for real-time image recognition

in coordination with machine and motion control tasks.

The execution times as well as the achieved accuracies of

the CNNs are measured. The results show that the CNNs

trained on a synthetic CAD dataset are able to reliably clas-

sify individual products with an accuracy of 100 % in less

than 185 μs (with an image size of 39 × 26 × 1 pixel).

Keywords: individualized production; convolutional neural

networks; hyper-parameter optimization

Zusammenfassung: Eine individualisierte Produktion

wird benötigt, um Produkte mit einer Losgröße von bis zu

1 zu geringen Kosten herzustellen zu können. Damit die

*Corresponding author: Rando Raßmann, Department of Computer

Science and Electrical Engineering, University of Applied Sciences Kiel,

Grenzstr. 5, 24149 Kiel, Germany, E-mail: rando.rassmann@fh-kiel.de

Christoph Wree, Department of Computer Science and Electrical Engi-

neering, University of Applied Sciences Kiel, Grenzstr. 5, 24149 Kiel,

Germany, E-mail: christoph.wree@fh-kiel.de

jeweiligen Schritte im Produktionsprozess ausgeführt

werden, müssen die Produkte zuvor entsprechend klas-

sifiziert werden. Bei komplexen Problemen kann maschi-

nelle Bildverarbeitung in Verbindung mit maschinellem

Lernen, insbesondere durch die Verwendung von Con-

volutional Neural Networks (CNNs), hohe Genauigkeiten

erzielen. CNNs sind jedoch sehr rechenintensiv, was die

Integration in eine Echtzeitumgebung innerhalb einer

SPS erschwert. In diesem Beitrag wird eine Methode zur

Minimierung der Inferenzzeit von CNN-Modellen für

die Bildklassifizierung bei gleichzeitiger Maximierung

der Genauigkeit vorgestellt. Die Ergebnisse zeigen, dass

CNNs, die auf einem synthetischen CAD-Datensatz trainiert

wurden, individualisierte Produkte mit 100 % Genauigkeit

in weniger als 185 μs klassifizieren können (bei einer

Bildgröße von 39 × 26 × 1 Pixel).

Schlagwörter: Individualisierte Produktion; Convolutional

Neural Networks; Hyperparameter-Optimierung

1 Introduction

To cope with the diverse customers’ needs in a competi-

tive market, manufactures have to increase the flexibility

of their production lines. Therefore, currently, the trend in

manufacturing systems is towards an individualized pro-

duction. Individualized production refers to manufacturing

systems that can produce products for a single customer up

to a batch size of 1 at low cost [1]–[3]. Different sub-variants

of the same product can be manufactured on the same

production system. To ensure that each variant’s individual

manufacturing steps are executed, they have to be classified

in advance. Figure 1 illustrates a schematic representation

of such an individual production system, where the individ-

ual products must be classified according to the sequence of

the customer’s order.

Possible methods for classifying individual products

or workpieces can be based on reading RFID tags [3] or

barcodes [4]. However, it is difficult to attach RFID tags or

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2024-0155
mailto:rando.rassmann@fh-kiel.de
mailto:christoph.wree@fh-kiel.de

670 — C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes

Figure 1: Manufactured products are collected in an input storage. From the input storage the individual products are placed onto a transport system.

MV and the IE are used to classify the products. Depending on the classification, the PLC initiates the next production step, e.g. sorting the ordered

products for packaging or routing the products to the next machining station.

barcodes to the product during the manufacturing process.

In addition, such identifiers could be damaged or occluded

during a production step. Another approach is to use image

analysis methods (machine vision) for classification [5]. In

recent years, machine learning (ML) algorithms have been

successfully applied in the field of computer vision to solve

complex classification problems [2], [6], [7]. ML based vision

systems can reduce the programming effort and improve

the efficiency of a system [2]. For conventional machine

vision the image processing system can be implemented on

an external computer [5], on an intelligent camera [5] or

within a PLC runtime environment hosted on an industrial

PC (soft-PLC) [8].

One key question for using ML in an industrial envi-

ronment is, where the inference engine is executed. The

inference engine can be implemented in a cloud (option 1)

with highest computational resources [9] or on an edge

server (option 2) with high computational resources [2],

[10], [11]. It is also possible to execute the ML models on a

separate controller (option 3), which interacts with the PLC

[12] or to execute the MLmodel directly within the PLC con-

troller (option 4), within the PLC runtime [8]. For the latter

two possibilities the computational resources are limited.

The integration of CNN models for manufacturing systems

and real-time applications has been discussed in various

investigations [10], [13]–[15]. All four options have different

advantages and disadvantages, which are summarized in

Table 1.

In order to achieve higher accuracies, there is a com-

mon trend towards deeper and more complex model archi-

tectures based on CNNs for computer vision solutions [6],

[16]. Modern CNNs models for image classification are able

to classify complex data with hundreds of different objects

from different perspectives and with varying backgrounds.

This results in higher computational cost for the state-of-

the-art models for both training and inference. In dynamic

processes with high throughput rates and in conjunction

with motion control, there is only a short time window

between the acquisition of the sensor signal for classifica-

tion and the execution of the following actuator command

based on the classification result. It is crucial to obtain the

classification results in the shortest possible time, so that

there is sufficient time for the calculation of the subsequent

positioning command for the actuators. In terms of using a

cloud or edge computing, a long latency in the communica-

tion could be problematic. In addition, the unavailability of

Table 1: Comparison of different integration strategies for inference engines for individual production systems.

Requirement Cloud (1) Edge-computing (2) External controller (3) PLC (4)

Computational resources ++ + − −
Less/no additional interfaces −− − + ++
Fast response timea −− − + ++
Reliability − − + +
Less complexity for IT − − + +
Simple synchronization to other tasks − − − ++
Reduced network traffic load −− − + ++

afor applications with response times in a microsecond range. Requirements satisfied:++, excellent;+, well;−, acceptable;−−, insufficient.

C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes — 671

the service could also be a problem if the inference engine

is located in a cloud or on an edge device [9].

Different studies have investigatedhowmodels of CNNs

for image classification can improve industrial processes. In

[2] a CNN-based sorting system for a flexible manufacturing

system is proposed. The applications of automated systems

for quality inspection with CNNs are presented in [10]. All

these approaches are using a camera system which sends

the image to an edge-server where the inference engine is

located. Subsequently the results are transmitted to a PLC

to set the following actuator command, based on the results.

Both the inference of themodel and inference pipelinemust

be optimized to meet the real-time constraints. In [17] an

architecture is presented that allows the use of a GPUwithin

the real-time environment of a soft-PLC.

However, a dedicated GPU is expensive. It is not always

possible to add a GPU into an existing industrial PC (IPC).

Moreover, within a production system the computational

power of a GPU is not always needed to solve a problem

applying ML. If the image processing and the inference of

theMLmodels is implemented on the same controller as the

machine control and the motion control, the different tasks

can be efficiently synchronized with each other, and latency

times as well as additional interfaces can be reduced. The

integration of all tasks into one central system avoids also

separate subsystems, guarantees full transparency overall

processing steps and reduces the complexity to implement

IT-security.

Due to thementioned reasons, for dynamic processes in

conjunctionwithmotion control und short response times it

is preferable to integrate the inference engine direct into a

soft-PLC, instead off using an external controller, an edge-

device or a cloud. Integrating ML based models into the

real-time environment of a PLC or an external controller

is challenging because the developed models need to have

a deterministic runtime behavior and the computational

resources are limited. Recent works [8], [12] have demon-

strated that it is possible to integrateMultilayer Perceptrons

(MLPs) and Convolutional Neural Networks (CNNs) into the

real-time environment of a (soft-)PLC for simple classifica-

tion problems. However the computational cost for CNN

models are too high with inference times of 350 ms [12] and

41 ms [18], in order to use them in dynamic applications in

conjunction with motion control with typical PLC task cycle

times of 1–2 ms [13].

To execute the CNNs models in less than 1 ms directly

on a soft-PLC, the computational cost of the model architec-

tures has to be reduced, while maintaining a high accuracy.

The field of application of ML models for image classifi-

cation for manufacturing applications differs substantially

from the field of application of modern ML image classi-

fication models such as YOLO. In manufacturing systems

all processing steps are well known and controlled. There

are no or less interfering effects or changes in the image

acquisition process. In addition, the models do not need to

be able to identify so many different and complex objects.

Thus, the conditions of the industrial environment simplify

the problem to be solved. This can be utilized to reduced

computational cost of the models while maintaining a high

accuracy.

In this paper an approach for integrating CNN mod-

els for image classification into a soft-PLC in conjunction

withmotion control for an individualized production is pre-

sented. The applied methodology for minimizing the exe-

cution time and maximizing the accuracy, through hyper-

parameter optimization is explained. The CNN optimization

is based on the Non-Dominated Sorting Genetic Algorithm

II (NSGA-II) [19]. In order to train the models without the

availability of a dataset from the production system, this

work investigates whether a synthetic dataset can be used

for the training. The final model selection is built on the

requiredfloating-point operations (FLOPs) and the achieved

accuracy.

The rest of the paper is organized as follows. In

Section 2, the production system of the applied use case

and the used methodology for optimizing the model archi-

tectures are explained. The results of the optimization

process, as well as the required execution times and the

achieved accuracies on the production systemare presented

in Section 3. Section 4 discusses the results, followed by

Section 5, which concludes the study.

2 Methodology

2.1 Methodology for determining an
appropriate model architecture

The computational cost aswell as the accuracy of themodels

to classify the products are substantially influenced by the

hyper-parameters of the model architectures (e.g. the input

image size as well as the numbers, dimensions, and types

of the hidden layers). The hyper-parameters of the training

itself, such as learning rate or batch size, also affect the final

model accuracy. A direct measurement of the required exe-

cution time of the CNNs during the training is not possible in

the user mode of a Windows operating system. In addition,

in the later production system, the models are executed

in a single task on a CPU of a soft-SPS with less computer

resources, while during the training process the models are

executed on an GPU on a workstation. In order to estimate

672 — C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes

the required execution time, the number of floating-point

operations can be used as an indirectmetric, to compare the

different model architectures among each other [16]. How-

ever, it should be noted that there is no linear relationship

between the number of FLOPs and the required execution

time.

To identify every product correctly, an accuracy of

100 % is required. Thus, the question arises whether the

computational cost of the network architecture can be

reduced while maintaining an accuracy of 100 %. Figure 2

plots the theoretical accuracy vs. the computational cost for

a classification problem which is be optimized by maximiz-

ing the accuracy and minimizing the execution time.

Model 1 represents the simplest architecture with only

one input neuron that is directly connected to the output

vector without any hidden layers. Due to the simple archi-

tecture, the computational cost for the model are low but

the model is not able to learn, so it is not able to achieve a

high accuracy. By e.g. increasing the size of the input layer

or by adding hidden layers, more trainable parameters are

available in the model. The computational cost of the model

increases and thus, the accuracy of the model may also be

raised. So, with increasing the computational cost, models

with higher accuracies can be achieved. Model 2 has the

lowest computational cost for a certain accuracy. Model 3

has the lowest computational cost to achieve an accuracy

of 100 %. This model is the model with the optimal model

architecture and has to be identified. Models 4, 5, 7 and

8 have higher computational cost but do not achieve high

accuracies due to the selected hyper-parameters. Models 6

and 9 achieve an accuracy of 100 % but have higher compu-

tational cost, which leads to a higher execution time.

2.2 Description of the production system
demonstrator used for the experiments

In this practical application example, cuboids representing

hydraulic blocks shall be classified by using CNNs instead

Figure 3: Demonstrating an individualized production using ML for

classifying products.

of machine vision. The hydraulic blocks differ in number,

position, depth, diameter and type of their holes (see input

storage in Figure 3). It is evident that solving this kind

of problem with conventional machine vision techniques

would be a time-consuming process and requires expert

knowledge.

To measure the execution times of the trained models

within an industrial controller, the models are integrated

into a soft-PLC of a production system demonstrator. The

production system is shown in Figure 3 and is structured as

follows: Individual products are located in an input storage.

In this application example, the hydraulic blocks can be

stacked in randomorder and can be rotated 180◦ around the

z-axis. A delta robot picks the individual products (hydraulic

blocks) from the input storage and places them on the trans-

port system. The transport system moves the individual

products to different stations and allows to determine the

position of the products at any time. The production sys-

tem consists of three stations in total, two machine mod-

ules and a camera system. The camera system is operated

with an LED ring light to reduce the influence of changing

light conditions. The image is captured while the product

is travelling at 4 m/s on the transport system. The prod-

uct only requires 25 ms to reach the robot’s pick position.

From there, depending on the classification result, the robot

Figure 2: Accuracy (%) vs. computational cost (FLOPs) for different model architectures for solving an image classification problem.

C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes — 673

places the product at the individual storage location.The

control of the machine, the control of the transport system,

the control of the delta robot, the image acquisition and pre-

processing, and the inference of the CNNs are executed on

different tasks, but in the same runtime environment. The

production system is operatedwith a TwinCAT runtime run-

ning on a conventional Beckhoff Industrial PC (IPC) C6920

with an Intel® i7-4700EQ 2.4 GHz processorwith four cores.

A detailed description of the production system’s structure

can be found in [8].

2.3 Dataset generation to classify the
hydraulic blocks

For solving classification problems based on ML, a dataset

is needed to develop such a model, and the data quantity

has to match the problem complexity. For image classifi-

cation problems, the dataset has to contain data tuples of

input images and corresponding class labels. Among other

things, images already captured from the production system

may be used for this purpose. However, this method could

not be applied to new products since this data is not yet

available. In this case, the development of the models can

only start after the production system has been put into

operation. In addition, recording and labeling the data is a

time-consuming and resource-intensive process.

To solve this problem, a synthetic dataset is generated

using the CAD models of the individual products. The pro-

cess for generating the data is carried out as follows: A total

of 10 different 3D models of the hydraulic blocks are gener-

ated. Next, the top view of each hydraulic block is created,

so that the initial dataset consists of 10 images, one image

per class (see Figure 4a). By applying data augmentation

methods, the dataset size is increased. The generation of the

synthetic images is divided into two steps. First, 20 images

per class are generated by randomly rotating the original

image by ± 3◦ and randomly shifting it by ± 50 pixels on the

x- and y-axes. Second, 1000 images per class are generated

by randomly changing the 20 images in brightness, contrast,

and elastic deformation (see Figure 4b). The final dataset for

developing the CNNs consists of 10,000 grayscale images in

total, each with a shape of 300 × 200 pixels (1000 images

per class). This dataset is split up into two subsets, one for

training and one for validation,with 7000 and 3000 samples,

respectively. A synthetic dataset is beneficial, because the

model development can start once the CADdrafts of the indi-

vidual products are available. There is no need to wait for

hundreds of prototypes of each product to start respective

development process.

In addition, a holdout dataset consisting of 200 images

in total is generated to assess whether the model can gen-

eralize well on unseen data (see Figure 4c). For this pur-

pose, a prototype for each of the 10 individual products is

generated. For example, this can be done by using rapid

prototyping technologies such as 3D printing. Subsequently,

20 images with varying lighting conditions are taken of each

individual product with a smart phone camera. The images

for the test dataset (Figure 4d) used for the final evaluation

of the models is generated with the camera system of the

production system.

2.4 Model architecture optimization process

For developingmodels with high performance, the selection

of appropriate hyper-parameters is one of the major chal-

lenges. Common search strategies for hyper-parameter opti-

mization are random search, Bayesian optimization, evo-

lutionary methods e.g. genetic algorithms [20]. Traditional

optimization techniques such as gradient based methods

are not suitable to solve this problem because the hyper-

parameters in the search space are discrete, and the objec-

tive function is not differentiable.

For this practical example the optimization objective of

the hyper-parameter optimization is to find an architecture

s⃗ ∈ S that minimizes the model’s FLOPs while maximizing

the accuracy, where the vector s⃗ represent the decision

variables for the hyper-parameters within a defined search

space S.

Genetic algorithms are well-suited for addressing the

formulated multi-objective optimization problem, where

the objectives are in conflict with each other [20]. They iter-

atively generate new populations using genetic operators

Figure 4: Comparison of a) an image of a hydraulic block CAD model to generate a synthetic development dataset, b) a synthetically generated image

of the hydraulic block in the development dataset, c) image of the manufactured hydraulic block taken with a smartphone camera for the holdout

dataset and d) an image of the hydraulic block to be classified taken by the camera system of the production system (test dataset).

674 — C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes

Table 2: Search space S for the hyper-parameter optimisation based on

the NSGA-II.

Hyper-parameter Search space S

Input-image size 30 × 20 – 300 × 200

Batch normalization True/False

Convolutional-layer:

Number of layers 1–3

Kernel size 1–5

Number of filters 1–64

Activation function Relu, sigmoid, tanh

Pooling-layer:

Pooling True/False

Pooling size 2–10

Dense-layer:

Number of layers 0–2

Activation function Relu, sigmoid, tanh

Number of neurons 16–512

Dropout True/False

Dropout rate 0–0.8

such as selection, crossover, andmutation until a predefined

termination criterion is met. Since there is no single best

solution, instead trade-offs between accuracy and inference

time must be identified. This trade-off can be achieved by

identifying non-dominated solutions within the objective

space Y , known as the Pareto-optimal set. A solution vector

y⃗1 dominates a solution vector y⃗2 in Y if there is no other

solution that can improve at least one of the objectives

without degradation any other objective. To find a model

architecture the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) [19] is particularly suitable. One of its key fea-

tures is its ability to return a set of Pareto-optimal solutions,

facilitating informed decision-making for the model selec-

tion process.

The total hyper-parameter optimization process is

implemented in a Python script. For the training of the

models the framework Keras and for the implementation

of the NSGA-II the Python module pymoo [21] are used.

The defined search space S for the hyper-parameter opti-

mization to determine an appropriate model architecture is

shown in Table 2.

For scaling the images to the required input data size,

a bilinear interpolation is applied. Example images for the

minimum input data for the three datasets are shown in

Figure 5.

Figure 6 illustrates the applied optimization process for

identifying model architectures with a high accuracy and

less required FLOPs. Since the size of the input images can

be changed, the 300 × 200 pixels 8 bit grayscale images are

reduced to the new pixel size before each training process.

For the training of the models the synthetic development

dataset is split into a training dataset and a validation

dataset. After the training of each model architecture, the

models are evaluated by determining the achieved accu-

racy on the holdout dataset and the number of required

FLOPs.

2.5 Integration of the CNNs into the
production system

To integrate the models into the runtime environment of

the soft-PLC of the aforementioned production system, a

compiler is required that converts the trained models into

machine-readable code. If a TwinCAT runtime is used, this

can be achieved by using theMATLAB Coder1 in conjunction

with the TE1401 TwinCAT Target for MATLAB.2 The CNNs

trained are imported into MATLAB (R2023a) and called by

MATLAB functions using the “Predict” method. Next, the

MATLAB Coder is used together with the TE1401 TwinCAT

Target for MATLAB to convert the MATLAB functions into a

PLC library. Finally, the PLC library can be used in TwinCAT

Engineering to integrate the generated function blocks into

the PLC project.

3 Optimization results

3.1 Results of the optimization process

In total 2400models over 60 generations are examined with

the help of the NSGA-II. Each model is trained on an Nvidia

GeForce RTX 4090 GPU for 100 epochs using Adamas a train-

ing optimizer. The entire optimization process has taken

23 h. Figure 7a illustrates the required number of FLOPs

versus the accuracy for all investigated CNNs, obtained

during the NSGA-II optimization process on the holdout

dataset.

In Figure 7a the required FLOPs and the achieved accu-

racy of all investigated models on the holdout dataset are

shown. The majority of suitable model architectures are

in a range between 0.01 MFLOPs and 100 MFLOPs. It is

1 Release Notes for MATLAB Coder–MATLAB & Simulink–

MathWorks Deutschland. [Online]. Available: https://de.mathworks

.com/help/coder/release-notes.html (accessed: Oct. 13 2024).

2 Beckhoff Automation GmbH & and Co. KG, Hülshorstweg 20

33,415 Verl, TwinCAT 3 Target for MATLAB®. [Online]. Available:

https://www.beckhoff.com/de-de/produkte/automation/twincat/

texxxx-twincat-3-engineering/te1401.html (accessed: Oct. 13 2024).

https://de.mathworks.com/help/coder/release-notes.html
https://de.mathworks.com/help/coder/release-notes.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/texxxx-twincat-3-engineering/te1401.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/texxxx-twincat-3-engineering/te1401.html

C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes — 675

Figure 5: Example images reduced to the minimum size of 30 × 20 pixel of: a) Development dataset, b) holdout dataset, c) test dataset.

Figure 6: Optimization process for identifying a model architecture with a high accuracy and less FLOPs.

Figure 7: Accuracy vs. FLOPs on the holdout dataset a) all investigated CNNs, b) CNNs with 100 % accuracy on the CAD validation dataset.

also evident that models with more than 0.1 MFLOPs are

able to achieve accuracies greater than 99 %. Below 1

MFLOPs the accuracy of the models starts to decrease

slightly. With further reduction of the computational cost

(<0.1 MFLOPs), the loss in performance becomes evenmore

visible.

3.2 Methodology for the model selection

After the optimization process, five CNNs are selected to

implement themon the production system to investigate the

execution time and the accuracy on the production system.

To select the models, the first step is to reduce the number

of potential models by filtering out all models that do not

achieve 100 % accuracy in the CAD validation data set (see

Figure 7b). Second, the first five models that dominate in

terms of accuracy and number of FLOPs are selected (red

points in Figure 7b). The architectures of the selectedmodels

are presented in Figure 8. Table 3 summarizes the achieved

accuracies.

3.3 Investigation of model performances

To investigate the execution times and the accuracies on

the production system, the five selected models are trained

using the CAD-Dataset. Subsequently, the pretrainedmodels

are retrained for a few epochs (<50) on the holdout dataset

(compare Figure 6). Finally, the models are integrated into

the soft PLC with the described methodology in Section 2.5.

After the integration of the selected CNNs, the accuracy

and execution time of the CNNs are investigated (compare

Table 3). The results demonstrate that the CNNs achieve high

accuracies on both the holdout and test datasets.

Model1583 exhibits the fastest execution time of about

185 μs The slowest model is Model1151 with an average exe-
cution time of 10.6 ms.

676 — C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes

Figure 8: Model architecture and the number of FLOPs of the selected models.

Table 3: Accuracies (%) on the used training, validation, holdout and test datasets, that has been used by the NSGA-II optimization algorithm, and the

final test dataset as well as execution times (μs) of the selected models.

Model Accuracy (%) Execution time (𝛍s)
Training Validation Holdout Test

Model 100 100 100 100 10,640

Model 100 100 99.5 100 1278

Model 100 100 99.0 100 433

Model 100 100 97.5 100 237

Model 99.98 100 96.0 100 185

4 Discussion

The results in Table 3 show that the execution times can

be substantially reduced while maintaining a classification

performance of 100 % accuracy on the test dataset. These

results can be explained, because the industrial environ-

ment is well controlled which means that the classification

process is less affected by changes. Based on the evaluation

of the results from Table 3, the following statements can be

made:

– Synthetically generated data from the CAD design

can be used to train models of neural networks that

achieves high accuracies on real data when embedded

into a production system. This is advantageous because

themodels can be developed before commissioning the

production system.

– By additionally considering the required computa-

tional cost in the hyper-parameter optimization, model

architectures with minimal sizes can be identified that

solve the classification problem.

– The knowledge and control of the entire process can be

exploited to simplify both the problem to be solved and

the model architecture.

– The optimization process results in a model architec-

ture with a sub-millisecond execution time of a soft

PLC. The fastest model is 200 times faster than in [18].

Thus, the execution time is substantially lower than

the PLC task cycle time of fast motion control applica-

tions (1–2 ms). This enables the deployment of CNNs for

image classification in conjunction withmotion control

applications with real-time requirements.

5 Conclusions

This paper investigates the optimization of CNN architec-

tures for image classification in an industrial context. The

hyper-parameters of the CNNmodels are optimized for their

accuracy and the FLOPs by using the evolutionary algorithm

NSGA-II. In order to train the models without having access

to a dataset of the real products, a synthetic dataset is cre-

ated and used for training and optimization. The results of

C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes — 677

the presented methodology demonstrate that the proposed

optimization significantly improves both the accuracy and

execution time of the CNNs on the demonstrator production

system. The execution times of the investigated models can

be reduced by a factor 200 from 41 ms to 185 μs, while main-
taining an accuracy of 100 %. The presented approach can

be used to integrate machine learning models directly on

a soft-PLC. This is beneficial because, firstly, no additional

hardware (external controller) is required and, secondly,

there are no latency times or additional interfaces (cloud

and edge computing).

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contribution:All authors have accepted responsibil-

ity for the entire content of thismanuscript and approved its

submission.

Use of Large Language Models, AI and Machine Learning

Tools: None declared.

Conflict of interest: The author states no conflict of interest.

Research funding: None declared.

Data availability: Not applicable.

References

[1] Y. Koren, “The local factory of the future for producing

individualized products,” The Bridge, vol. 2021, no. 51, 2021.

[2] Y. Wang, K. Hong, J. Zou, T. Peng, and H. Yang, “A CNN-based visual

sorting system with cloud-edge computing for flexible

manufacturing systems,” IEEE Trans. Ind. Inf., vol. 16, no. 7,

pp. 4726−4735, 2020,.
[3] R. Y. Zhong, Q. Dai, T. Qu, G. Hu, and G. Q. Huang, “RFID-enabled

real-time manufacturing execution system for mass-customization

production,” Robot. Comput.-Integr. Manuf., vol. 29, no. 2,

pp. 283−292, 2013,.
[4] R.-S. Chen, K. Y. Lu, S. C. W. Yu, H. W. Tzeng, and C. Chang, “A case

study in the design of BTO/CTO shop floor control system,” Inf.

Management, vol. 41, no. 1, pp. 25−37, 2003,.
[5] A. Hornberg, Handbook of Machine and Computer Vision, 2nd ed.,

Berlin, Wiley-VCH, 2017.

[6] S. T. Krishna, et al., “Deep learning and transfer learning

approaches for image classification,” Int. J. Recent Technol. Eng.,

vol. 7, no. 5S4, pp. 427−432, 2019.
[7] N. O’Mahony, et al., “Deep learning vs. Traditional computer

vision,” in Advances in Intelligent Systems and Computing, vol. 943,

Advances in computer vision: Proceedings of the 2019 Computer Vision

Conference (CVC), K. Arai, and S. Kapoor, Eds., Cham, Springer, 2020,

pp. 128−144.
[8] R. Raßmann, et al., “Investigations on real-time image recognition

with convolutional neural networks on industrial controllers,” in

Studies in Computational Intelligence, Service Oriented, Holonic

and Multi-Agent Manufacturing Systems for Industry of the

Future: Proceedings of SOHOMA 2022, 1st ed., T. Borangiu, D.

Trentesaux, and P. Leitão, Eds., Cham, Springer, 2023,

pp. 380−391.
[9] I. Rodriguez-Conde, C. Campos, and F. Fdez-Riverola, “Optimized

convolutional neural network architectures for efficient on-device

vision-based object detection,” (in En;en), Neural Comput. & Applic.,

vol. 34, no. 13, pp. 10469−10501, 2022, https://doi.org/10.1007/
s00521-021-06830-w.

[10] H. Ha and J. Jeong, “CNN-based defect inspection for injection

molding using edge computing and industrial IoT systems,” Appl.

Sci., vol. 11, no. 14, p. 6378, 2021,.

[11] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient

acceleration of deep learning inference on resource-constrained

edge devices: a review,” Proc. IEEE, vol. 111, no. 1, pp. 42−91,
2023,.

[12] E. Solowjow, et al., “Industrial robot grasping with deep learning

using a programmable logic controller (PLC),” in 2020 IEEE 16th

International Conference on Automation Science and Engineering

(CASE), Hong Kong, IEEE, 2020, pp. 97−103.
[13] F. Schellroth, et al., “Latency optimized architectures for a real-time

inference pipeline for control tasks,” in 2021 International

Conference on Information and Communication Technology for

Development for Africa (ICT4DA), Bahir Dar, Ethiopia, IEEE, 2021,

pp. 166−171.
[14] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,

“Convergence of edge computing and deep learning: a

comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2,

pp. 869−904, 2020,.
[15] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial

internet of things: a cyber-physical systems perspective,” IEEE

Access.: Pract. Innovat., Open Solut., vol. 6, pp. 78238−78259,
2018,.

[16] R. Desislavov, F. Martínez-Plumed, and J. Hernández-Orallo,

“Trends in AI inference energy consumption: beyond the

performance-vs-parameter laws of deep learning,” Sustain.

Comput.: Inform. Syst., vol. 38, p. 100857, 2023,.

[17] A. Schmidt, F. Schellroth, M. Fischer, L. Allimant, and O. Riedel,

“Reinforcement learning methods based on GPU accelerated

industrial control hardware,” Neural. Comput. Applic., vol. 33, no. 18,

pp. 12191−12207, 2021,.
[18] R. Raßmann, et al., “Implementierung von Convolutional Neural

Networks zur echtzeitfähigen Bildklassifizierung auf

konventionellen Industriesteuerungen,” in Tagungsband AALE 2023:

Mit Automatisierung gegen den Klimawandel, Leipzig, Hochschule für

Technik, Wirtschaft und Kultur Leipzig, 2023.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.

Computat., vol. 6, no. 2, pp. 182−197, 2002,.
[20] F. Hutter, et al., Automated Machine Learning: Methods, Systems,

Challenges, Cham, Springer, 2019.

[21] J. Blank and K. Deb, “Pymoo: multi-objective optimization in

Python,” IEEE Access.: Pract. Innovat., Open Solut., vol. 8,

pp. 89497−89509, 2020,.

https://doi.org/10.1007/s00521-021-06830-w
https://doi.org/10.1007/s00521-021-06830-w

678 — C. Wree and R. Raßmann: Methodology for optimizing CNNs for production processes

Bionotes

Christoph Wree

Department of Computer Science and Electrical Engineering, University

of Applied Sciences Kiel, Grenzstr. 5, 24149 Kiel, Germany

christoph.wree@fh-kiel.de

Christoph Wree is a Professor of Automation Technology at the Kiel

University of Applied Sciences. His research focuses on automation

technology in the context of Industry 4.0 and the energy transition.

Additionally, he investigates the application of machine learning in

automation technology.

Rando Raßmann

Department of Computer Science and Electrical Engineering, University

of Applied Sciences Kiel, Grenzstr. 5, 24149 Kiel, Germany

rando.rassmann@fh-kiel.de

Rando Raßmann obtained a Master of Engineering degree in electrical

engineering from the University of Applied Sciences Kiel in 2022. He is

currently working as a research associate at the University of Applied

Sciences Kiel. His research interests include design methodologies and

artificial intelligence.

mailto:christoph.wree@fh-kiel.de
mailto:rando.rassmann@fh-kiel.de

	1 Introduction
	2 Methodology
	2.1 Methodology for determining an appropriate model architecture
	2.2 Description of the production system demonstrator used for the experiments
	2.3 Dataset generation to classify the hydraulic blocks
	2.4 Model architecture optimization process
	2.5 Integration of the CNNs into the production system

	3 Optimization results
	3.1 Results of the optimization process
	3.2 Methodology for the model selection
	3.3 Investigation of model performances

	4 Discussion
	5 Conclusions
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

