DE GRUYTER OLDENBOURG

at-Automatisierungstechnik 2025; 73(9): 669-678 a

Methods

Christoph Wree and Rando RaBmann*

Methodology for optimizing convolutional neural
networks for fast production processes

Methode zur Optimierung von Convolutional Neural Networks fir schnelle Produktionsprozesse

https://doi.org/10.1515/auto-2024-0155
Received November 8, 2024; accepted May 7, 2025

Abstract: An individualized production is needed to man-
ufacture products with a batch size of up to 1 at low costs.
To ensure that the individual steps in the production pro-
cess are executed for each individual product, the products
have to be classified beforehand. For complex problems,
machine vision can be used in conjunction with machine
learning (ML) to classify the individual components. Here,
models of Convolutional Neural Networks (CNNs) in par-
ticular achieve high classification accuracies. However, they
require high computational cost, which makes it more chal-
lenging to execute CNNs in real-time within a PLC runtime
environment and synchronize them with motion control
tasks. In this paper, a methodology is presented using a
production-oriented application example to minimize the
inference time of a CNN models for image classification
while maximizing the classification accuracy. The presented
methodology demonstrates how computationally cost inten-
sive CNNs can be optimized for real-time image recognition
in coordination with machine and motion control tasks.
The execution times as well as the achieved accuracies of
the CNNs are measured. The results show that the CNNs
trained on a synthetic CAD dataset are able to reliably clas-
sify individual products with an accuracy of 100 % in less
than 185 ps (with an image size of 39 X 26 X 1 pixel).

Keywords: individualized production; convolutional neural
networks; hyper-parameter optimization

Zusammenfassung: Eine individualisierte Produktion
wird benétigt, um Produkte mit einer Losgréfie von bis zu
1 zu geringen Kosten herzustellen zu kénnen. Damit die

*Corresponding author: Rando RaBmann, Department of Computer
Science and Electrical Engineering, University of Applied Sciences Kiel,
Grenzstr. 5, 24149 Kiel, Germany, E-mail: rando.rassmann@fh-kiel.de
Christoph Wree, Department of Computer Science and Electrical Engi-
neering, University of Applied Sciences Kiel, Grenzstr. 5, 24149 Kiel,
Germany, E-mail: christoph.wree@fh-kiel.de

jeweiligen Schritte im Produktionsprozess ausgefiihrt
werden, miissen die Produkte zuvor entsprechend klas-
sifiziert werden. Bei komplexen Problemen kann maschi-
nelle Bildverarbeitung in Verbindung mit maschinellem
Lernen, insbesondere durch die Verwendung von Con-
volutional Neural Networks (CNNs), hohe Genauigkeiten
erzielen. CNNs sind jedoch sehr rechenintensiv, was die
Integration in eine Echtzeitumgebung innerhalb einer
SPS erschwert. In diesem Beitrag wird eine Methode zur
Minimierung der Inferenzzeit von CNN-Modellen fiir
die Bildklassifizierung bei gleichzeitiger Maximierung
der Genauigkeit vorgestellt. Die Ergebnisse zeigen, dass
CNNs, die auf einem synthetischen CAD-Datensatz trainiert
wurden, individualisierte Produkte mit 100 % Genauigkeit
in weniger als 185 ps Kklassifizieren konnen (bei einer
Bildgrofie von 39 X 26 X 1 Pixel).

Schlagwérter: Individualisierte Produktion; Convolutional
Neural Networks; Hyperparameter-Optimierung

1 Introduction

To cope with the diverse customers’ needs in a competi-
tive market, manufactures have to increase the flexibility
of their production lines. Therefore, currently, the trend in
manufacturing systems is towards an individualized pro-
duction. Individualized production refers to manufacturing
systems that can produce products for a single customer up
to a batch size of 1 at low cost [1]-[3]. Different sub-variants
of the same product can be manufactured on the same
production system. To ensure that each variant’s individual
manufacturing steps are executed, they have to be classified
in advance. Figure 1 illustrates a schematic representation
of such an individual production system, where the individ-
ual products must be classified according to the sequence of
the customer’s order.

Possible methods for classifying individual products
or workpieces can be based on reading RFID tags [3] or
barcodes [4]. However, it is difficult to attach RFID tags or

B 0pen Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/auto-2024-0155
mailto:rando.rassmann@fh-kiel.de
mailto:christoph.wree@fh-kiel.de

670 = C.Wree and R. RaBmann: Methodology for optimizing CNNs for production processes

MC: Motion Control; MV: Machine Vision; IE: Inference Engine

Input Storage

PLC

i Customer 2

DE GRUYTER OLDENBOURG

Output Storage

Customer 1

processing step,

Camera
m ! -
\ Robot /
@ ®
l m Transport System

Waiting for next
)\Sustomer n e

depending on order

Figure 1: Manufactured products are collected in an input storage. From the input storage the individual products are placed onto a transport system.
MV and the IE are used to classify the products. Depending on the classification, the PLC initiates the next production step, e.g. sorting the ordered
products for packaging or routing the products to the next machining station.

barcodes to the product during the manufacturing process.
In addition, such identifiers could be damaged or occluded
during a production step. Another approach is to use image
analysis methods (machine vision) for classification [5]. In
recent years, machine learning (ML) algorithms have been
successfully applied in the field of computer vision to solve
complex classification problems [2], [6], [7]. ML based vision
systems can reduce the programming effort and improve
the efficiency of a system [2]. For conventional machine
vision the image processing system can be implemented on
an external computer [5], on an intelligent camera [5] or
within a PLC runtime environment hosted on an industrial
PC (soft-PLC) [8].

One key question for using ML in an industrial envi-
ronment is, where the inference engine is executed. The
inference engine can be implemented in a cloud (option 1)
with highest computational resources [9] or on an edge
server (option 2) with high computational resources [2],
[10], [11]. It is also possible to execute the ML models on a
separate controller (option 3), which interacts with the PLC
[12] or to execute the ML model directly within the PLC con-
troller (option 4), within the PLC runtime [8]. For the latter
two possibilities the computational resources are limited.

The integration of CNN models for manufacturing systems
and real-time applications has been discussed in various
investigations [10], [13]-[15]. All four options have different
advantages and disadvantages, which are summarized in
Table 1.

In order to achieve higher accuracies, there is a com-
mon trend towards deeper and more complex model archi-
tectures based on CNNs for computer vision solutions [6],
[16]. Modern CNNs models for image classification are able
to classify complex data with hundreds of different objects
from different perspectives and with varying backgrounds.
This results in higher computational cost for the state-of-
the-art models for both training and inference. In dynamic
processes with high throughput rates and in conjunction
with motion control, there is only a short time window
between the acquisition of the sensor signal for classifica-
tion and the execution of the following actuator command
based on the classification result. It is crucial to obtain the
classification results in the shortest possible time, so that
there is sufficient time for the calculation of the subsequent
positioning command for the actuators. In terms of using a
cloud or edge computing, a long latency in the communica-
tion could be problematic. In addition, the unavailability of

Table 1: Comparison of different integration strategies for inference engines for individual production systems.

Requirement Cloud (1) Edge-computing (2) External controller (3) PLC (4)
Computational resources ++ + —
Less/no additional interfaces — - + ++
Fast response time? — - + ++
Reliability - - + +

Less complexity for IT - — + +
Simple synchronization to other tasks - - ++
Reduced network traffic load - - + ++

afor applications with response times in a microsecond range. Requirements satisfied: 4+, excellent; 4, well; —, acceptable; ——, insufficient.

DE GRUYTER OLDENBOURG

the service could also be a problem if the inference engine
is located in a cloud or on an edge device [9].

Different studies have investigated how models of CNNs
for image classification can improve industrial processes. In
[2] a CNN-based sorting system for a flexible manufacturing
system is proposed. The applications of automated systems
for quality inspection with CNNs are presented in [10]. All
these approaches are using a camera system which sends
the image to an edge-server where the inference engine is
located. Subsequently the results are transmitted to a PLC
to set the following actuator command, based on the results.
Both the inference of the model and inference pipeline must
be optimized to meet the real-time constraints. In [17] an
architecture is presented that allows the use of a GPU within
the real-time environment of a soft-PLC.

However, a dedicated GPU is expensive. It is not always
possible to add a GPU into an existing industrial PC (IPC).
Moreover, within a production system the computational
power of a GPU is not always needed to solve a problem
applying ML. If the image processing and the inference of
the ML models is implemented on the same controller as the
machine control and the motion control, the different tasks
can be efficiently synchronized with each other, and latency
times as well as additional interfaces can be reduced. The
integration of all tasks into one central system avoids also
separate subsystems, guarantees full transparency overall
processing steps and reduces the complexity to implement
IT-security.

Due to the mentioned reasons, for dynamic processes in
conjunction with motion control und short response times it
is preferable to integrate the inference engine direct into a
soft-PLC, instead off using an external controller, an edge-
device or a cloud. Integrating ML based models into the
real-time environment of a PLC or an external controller
is challenging because the developed models need to have
a deterministic runtime behavior and the computational
resources are limited. Recent works [8], [12] have demon-
strated that it is possible to integrate Multilayer Perceptrons
(MLPs) and Convolutional Neural Networks (CNNs) into the
real-time environment of a (soft-)PLC for simple classifica-
tion problems. However the computational cost for CNN
models are too high with inference times of 350 ms [12] and
41 ms [18], in order to use them in dynamic applications in
conjunction with motion control with typical PLC task cycle
times of 1-2 ms [13].

To execute the CNNs models in less than 1 ms directly
on a soft-PLC, the computational cost of the model architec-
tures has to be reduced, while maintaining a high accuracy.
The field of application of ML models for image classifi-
cation for manufacturing applications differs substantially

C. Wree and R. RaBmann: Methodology for optimizing CNNs for production processes = 671

from the field of application of modern ML image classi-
fication models such as YOLO. In manufacturing systems
all processing steps are well known and controlled. There
are no or less interfering effects or changes in the image
acquisition process. In addition, the models do not need to
be able to identify so many different and complex objects.
Thus, the conditions of the industrial environment simplify
the problem to be solved. This can be utilized to reduced
computational cost of the models while maintaining a high
accuracy.

In this paper an approach for integrating CNN mod-
els for image classification into a soft-PLC in conjunction
with motion control for an individualized production is pre-
sented. The applied methodology for minimizing the exe-
cution time and maximizing the accuracy, through hyper-
parameter optimization is explained. The CNN optimization
is based on the Non-Dominated Sorting Genetic Algorithm
IT (NSGA-II) [19]. In order to train the models without the
availability of a dataset from the production system, this
work investigates whether a synthetic dataset can be used
for the training. The final model selection is built on the
required floating-point operations (FLOPs) and the achieved
accuracy.

The rest of the paper is organized as follows. In
Section 2, the production system of the applied use case
and the used methodology for optimizing the model archi-
tectures are explained. The results of the optimization
process, as well as the required execution times and the
achieved accuracies on the production system are presented
in Section 3. Section 4 discusses the results, followed by
Section 5, which concludes the study.

2 Methodology

2.1 Methodology for determining an
appropriate model architecture

The computational cost as well as the accuracy of the models
to classify the products are substantially influenced by the
hyper-parameters of the model architectures (e.g. the input
image size as well as the numbers, dimensions, and types
of the hidden layers). The hyper-parameters of the training
itself, such as learning rate or batch size, also affect the final
model accuracy. A direct measurement of the required exe-
cution time of the CNNs during the training is not possible in
the user mode of a Windows operating system. In addition,
in the later production system, the models are executed
in a single task on a CPU of a soft-SPS with less computer
resources, while during the training process the models are
executed on an GPU on a workstation. In order to estimate

672 = C.Wree and R. RaBRmann: Methodology for optimizing CNNs for production processes

the required execution time, the number of floating-point
operations can be used as an indirect metric, to compare the
different model architectures among each other [16]. How-
ever, it should be noted that there is no linear relationship
between the number of FLOPs and the required execution
time.

To identify every product correctly, an accuracy of
100 % is required. Thus, the question arises whether the
computational cost of the network architecture can be
reduced while maintaining an accuracy of 100 %. Figure 2
plots the theoretical accuracy vs. the computational cost for
a classification problem which is be optimized by maximiz-
ing the accuracy and minimizing the execution time.

Model 1 represents the simplest architecture with only
one input neuron that is directly connected to the output
vector without any hidden layers. Due to the simple archi-
tecture, the computational cost for the model are low but
the model is not able to learn, so it is not able to achieve a
high accuracy. By e.g. increasing the size of the input layer
or by adding hidden layers, more trainable parameters are
available in the model. The computational cost of the model
increases and thus, the accuracy of the model may also be
raised. So, with increasing the computational cost, models
with higher accuracies can be achieved. Model 2 has the
lowest computational cost for a certain accuracy. Model 3
has the lowest computational cost to achieve an accuracy
of 100 %. This model is the model with the optimal model
architecture and has to be identified. Models 4, 5, 7 and
8 have higher computational cost but do not achieve high
accuracies due to the selected hyper-parameters. Models 6
and 9 achieve an accuracy of 100 % but have higher compu-
tational cost, which leads to a higher execution time.

2.2 Description of the production system
demonstrator used for the experiments

In this practical application example, cuboids representing
hydraulic blocks shall be classified by using CNNs instead

oS
@ @ 2)

)

Accuracy [%]
[)

4,5),7,8)

! 6),9)
0 Computational Costs [FLOPs]

S

DE GRUYTER OLDENBOURG

Figure 3: Demonstrating an individualized production using ML for
classifying products.

of machine vision. The hydraulic blocks differ in number,
position, depth, diameter and type of their holes (see input
storage in Figure 3). It is evident that solving this kind
of problem with conventional machine vision techniques
would be a time-consuming process and requires expert
knowledge.

To measure the execution times of the trained models
within an industrial controller, the models are integrated
into a soft-PLC of a production system demonstrator. The
production system is shown in Figure 3 and is structured as
follows: Individual products are located in an input storage.
In this application example, the hydraulic blocks can be
stacked in random order and can be rotated 180° around the
z-axis. A delta robot picks the individual products (hydraulic
blocks) from the input storage and places them on the trans-
port system. The transport system moves the individual
products to different stations and allows to determine the
position of the products at any time. The production sys-
tem consists of three stations in total, two machine mod-
ules and a camera system. The camera system is operated
with an LED ring light to reduce the influence of changing
light conditions. The image is captured while the product
is travelling at 4 m/s on the transport system. The prod-
uct only requires 25 ms to reach the robot’s pick position.
From there, depending on the classification result, the robot

Network with the minimal
possible architecture

Network with lowest complexity
for a certain accuracy

3) Network with lowest complexity
for the highest accuracy
Network with high complexity
and low accuracy

Network with high complexity
and highest accuracy

Figure 2: Accuracy (%) vs. computational cost (FLOPs) for different model architectures for solving an image classification problem.

DE GRUYTER OLDENBOURG

places the product at the individual storage location.The
control of the machine, the control of the transport system,
the control of the delta robot, the image acquisition and pre-
processing, and the inference of the CNNs are executed on
different tasks, but in the same runtime environment. The
production system is operated with a TwinCAT runtime run-
ning on a conventional Beckhoff Industrial PC (IPC) C6920
with an Intel® i7-4700EQ 2.4 GHz processor with four cores.
A detailed description of the production system’s structure
can be found in [8].

2.3 Dataset generation to classify the
hydraulic blocks

For solving classification problems based on ML, a dataset
is needed to develop such a model, and the data quantity
has to match the problem complexity. For image classifi-
cation problems, the dataset has to contain data tuples of
input images and corresponding class labels. Among other
things, images already captured from the production system
may be used for this purpose. However, this method could
not be applied to new products since this data is not yet
available. In this case, the development of the models can
only start after the production system has been put into
operation. In addition, recording and labeling the data is a
time-consuming and resource-intensive process.

To solve this problem, a synthetic dataset is generated
using the CAD models of the individual products. The pro-
cess for generating the data is carried out as follows: A total
of 10 different 3D models of the hydraulic blocks are gener-
ated. Next, the top view of each hydraulic block is created,
so that the initial dataset consists of 10 images, one image
per class (see Figure 4a). By applying data augmentation
methods, the dataset size is increased. The generation of the
synthetic images is divided into two steps. First, 20 images
per class are generated by randomly rotating the original
image by + 3° and randomly shifting it by + 50 pixels on the
x- and y-axes. Second, 1000 images per class are generated
by randomly changing the 20 images in brightness, contrast,
and elastic deformation (see Figure 4b). The final dataset for
developing the CNNs consists of 10,000 grayscale images in

C. Wree and R. RaBmann: Methodology for optimizing CNNs for production processes = 673

total, each with a shape of 300 x 200 pixels (1000 images
per class). This dataset is split up into two subsets, one for
training and one for validation, with 7000 and 3000 samples,
respectively. A synthetic dataset is beneficial, because the
model development can start once the CAD drafts of the indi-
vidual products are available. There is no need to wait for
hundreds of prototypes of each product to start respective
development process.

In addition, a holdout dataset consisting of 200 images
in total is generated to assess whether the model can gen-
eralize well on unseen data (see Figure 4c). For this pur-
pose, a prototype for each of the 10 individual products is
generated. For example, this can be done by using rapid
prototyping technologies such as 3D printing. Subsequently,
20 images with varying lighting conditions are taken of each
individual product with a smart phone camera. The images
for the test dataset (Figure 4d) used for the final evaluation
of the models is generated with the camera system of the
production system.

2.4 Model architecture optimization process

For developing models with high performance, the selection
of appropriate hyper-parameters is one of the major chal-
lenges. Common search strategies for hyper-parameter opti-
mization are random search, Bayesian optimization, evo-
lutionary methods e.g. genetic algorithms [20]. Traditional
optimization techniques such as gradient based methods
are not suitable to solve this problem because the hyper-
parameters in the search space are discrete, and the objec-
tive function is not differentiable.

For this practical example the optimization objective of
the hyper-parameter optimization is to find an architecture
$ € S that minimizes the model’s FLOPs while maximizing
the accuracy, where the vector S represent the decision
variables for the hyper-parameters within a defined search
space S.

Genetic algorithms are well-suited for addressing the
formulated multi-objective optimization problem, where
the objectives are in conflict with each other [20]. They iter-
atively generate new populations using genetic operators

Figure 4: Comparison of a) an image of a hydraulic block CAD model to generate a synthetic development dataset, b) a synthetically generated image
of the hydraulic block in the development dataset, c) image of the manufactured hydraulic block taken with a smartphone camera for the holdout
dataset and d) an image of the hydraulic block to be classified taken by the camera system of the production system (test dataset).

674 = (. Wree and R. RaBmann: Methodology for optimizing CNNs for production processes

Table 2: Search space S for the hyper-parameter optimisation based on
the NSGA-IL

Hyper-parameter Search space S

Input-image size 30X 20 - 300 x 200

Batch normalization True/False
Convolutional-layer:

Number of layers 1-3

Kernel size 1-5

Number of filters 1-64

Activation function Relu, sigmoid, tanh

Pooling-layer:

Pooling True/False

Pooling size 2-10
Dense-layer:

Number of layers 0-2

Activation function Relu, sigmoid, tanh

Number of neurons 16-512

Dropout True/False

Dropout rate 0-0.8

such as selection, crossover, and mutation until a predefined
termination criterion is met. Since there is no single best
solution, instead trade-offs between accuracy and inference
time must be identified. This trade-off can be achieved by
identifying non-dominated solutions within the objective
space Y, known as the Pareto-optimal set. A solution vector
y, dominates a solution vector y, in Y if there is no other
solution that can improve at least one of the objectives
without degradation any other objective. To find a model
architecture the Non-dominated Sorting Genetic Algorithm
IT (NSGA-II) [19] is particularly suitable. One of its key fea-
tures is its ability to return a set of Pareto-optimal solutions,
facilitating informed decision-making for the model selec-
tion process.

The total hyper-parameter optimization process is
implemented in a Python script. For the training of the
models the framework Keras and for the implementation
of the NSGA-II the Python module pymoo [21] are used.
The defined search space S for the hyper-parameter opti-
mization to determine an appropriate model architecture is
shown in Table 2.

For scaling the images to the required input data size,
a bilinear interpolation is applied. Example images for the
minimum input data for the three datasets are shown in
Figure 5.

Figure 6 illustrates the applied optimization process for
identifying model architectures with a high accuracy and

DE GRUYTER OLDENBOURG

less required FLOPs. Since the size of the input images can
be changed, the 300 X 200 pixels 8 bit grayscale images are
reduced to the new pixel size before each training process.
For the training of the models the synthetic development
dataset is split into a training dataset and a validation
dataset. After the training of each model architecture, the
models are evaluated by determining the achieved accu-
racy on the holdout dataset and the number of required
FLOPs.

2.5 Integration of the CNNs into the
production system

To integrate the models into the runtime environment of
the soft-PLC of the aforementioned production system, a
compiler is required that converts the trained models into
machine-readable code. If a TwinCAT runtime is used, this
can be achieved by using the MATLAB Coder' in conjunction
with the TE1401 TwinCAT Target for MATLAB.? The CNNs
trained are imported into MATLAB (R2023a) and called by
MATLAB functions using the “Predict” method. Next, the
MATLAB Coder is used together with the TE1401 TwinCAT
Target for MATLAB to convert the MATLAB functions into a
PLC library. Finally, the PLC library can be used in TwinCAT
Engineering to integrate the generated function blocks into
the PLC project.

3 Optimization results

3.1 Results of the optimization process

In total 2400 models over 60 generations are examined with
the help of the NSGA-IL. Each model is trained on an Nvidia
GeForce RTX 4090 GPU for 100 epochs using Adam as a train-
ing optimizer. The entire optimization process has taken
23 h. Figure 7a illustrates the required number of FLOPs
versus the accuracy for all investigated CNNs, obtained
during the NSGA-II optimization process on the holdout
dataset.

In Figure 7a the required FLOPs and the achieved accu-
racy of all investigated models on the holdout dataset are
shown. The majority of suitable model architectures are
in a range between 0.01 MFLOPs and 100 MFLOPs. It is

1 Release Notes for MATLAB Coder-MATLAB & Simulink-
MathWorks Deutschland. [Online]. Available: https://de.mathworks
.com/help/coder/release-notes.html (accessed: Oct. 13 2024).

2 Beckhoff Automation GmbH & and Co. KG, Hiilshorstweg 20
33,415 Verl, TwinCAT 3 Target for MATLAB®. [Online]. Available:
https://www.beckhoff.com/de-de/produkte/automation/twincat/
texxxx-twincat-3-engineering/te1401.html (accessed: Oct. 13 2024).

https://de.mathworks.com/help/coder/release-notes.html
https://de.mathworks.com/help/coder/release-notes.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/texxxx-twincat-3-engineering/te1401.html
https://www.beckhoff.com/de-de/produkte/automation/twincat/texxxx-twincat-3-engineering/te1401.html

DE GRUYTER OLDENBOURG

a)

C. Wree and R. RaBmann: Methodology for optimizing CNNs for production processes

- 675

Figure 5: Example images reduced to the minimum size of 30 X 20 pixel of: a) Development dataset, b) holdout dataset, c) test dataset.

Model Optimization (NSGA-II)

| i
|
' I [Model Selecti
. ! | Model Generation [odel Selection
Data preprocessing > o ! out of ¥
| within § :
|
! i Accuracy on | e oo
| Training Holdout Dataset | etain on Holdouw
: (Synthetic Data) (Camera Pictures) i Dataset
|
| o |
Validation Test Models on
| ¢ Calculate FLOPs : .
| (Synthetic Data) | Production System
| |

a) b) 1.05
1 v, Model, ¢3; Model, s Model, 5,
0.9 L2 1 Model, g4
®
0.8 1 Model,gys %9 J R ’
5 0.7 0% ° % o % 0.95 E. o
s 0.6 : o - s ° <
£ 05 S H b oo LK Y
S o8 S 09 od o P o °
< 04 & [o°° 9 < I "™ S e e o
0.3 ® i o Slef| %y 0 090
° 3 L4 o o f e
0.2 - 0.85 e%y [T 1 7 o
(Y ° ° .
0.1 =g oo A X o % |e%
(1} 0.8 *
0.001 0.01 0.1 1 10 100 1000 10000 0.01 0.1 1 10
M-FLOPs M-FLOPs

Figure 7: Accuracy vs. FLOPs on the holdout dataset a) all investigated CNNs, b) CNNs with 100 % accuracy on the CAD validation dataset.

also evident that models with more than 0.1 MFLOPs are
able to achieve accuracies greater than 99 %. Below 1
MFLOPs the accuracy of the models starts to decrease
slightly. With further reduction of the computational cost
(<0.1 MFLOPs), the loss in performance becomes even more
visible.

3.2 Methodology for the model selection

After the optimization process, five CNNs are selected to
implement them on the production system to investigate the
execution time and the accuracy on the production system.
To select the models, the first step is to reduce the number
of potential models by filtering out all models that do not
achieve 100 % accuracy in the CAD validation data set (see
Figure 7b). Second, the first five models that dominate in
terms of accuracy and number of FLOPs are selected (red
pointsin Figure 7b). The architectures of the selected models

are presented in Figure 8. Table 3 summarizes the achieved
accuracies.

3.3 Investigation of model performances

To investigate the execution times and the accuracies on
the production system, the five selected models are trained
using the CAD-Dataset. Subsequently, the pretrained models
are retrained for a few epochs (<50) on the holdout dataset
(compare Figure 6). Finally, the models are integrated into
the soft PLC with the described methodology in Section 2.5.
After the integration of the selected CNNs, the accuracy
and execution time of the CNNs are investigated (compare
Table 3). The results demonstrate that the CNNs achieve high
accuracies on both the holdout and test datasets.

Model,sq; exhibits the fastest execution time of about
185 ps The slowest model is Model,;5;; with an average exe-
cution time of 10.6 ms.

676 = C.Wree and R. RaBmann: Methodology for optimizing CNNs for production processes

Baseline Model from [7] Modelys; Model,sse

Input Image (300x200) Input Image (88x59)

Input Image (73x49)

DE GRUYTER OLDENBOURG

Model;g;g Model, 6

Input Image (52x35)

Model;sg3

Input Image (88x58) Input Image (39x26)

Conv2d(3x3, 8Ch),
BatchNorm2d, ReLU

Conv2d(3x3, 23Ch),
BatchNorm2d, tanh

Conv2d(2x2, 6Ch),
BatchNorm2d, sigmoid

Conv2d(2x2, 2Ch),
BatchNorm2d, ReLU

Conv2d(2x2, 3Ch),
BatchNorm2d, ReLU

Conv2d(2x2, 3Ch),
BatchNorm2d, tanh

| MaxPool(10x10) | | MaxPool(4x4) | | MaxPool(4x4) | | MaxPool(4x4) | | MaxPool(3x3) | | MaxPool(2x2) |
v v v v v
De“se(3;i)é£zit§hN°"“’| | Dense(10), softmax | | Dense(10), softmax | | Dense(10), softmax | | Dense(10), softmax | | Dense(10), softmax |
Dense(10), softmax
MFLOPs 9.200 2.397 0.218 0.103 0.060 0.040

Figure 8: Model architecture and the number of FLOPs of the selected models.

Table 3: Accuracies (%) on the used training, validation, holdout and test datasets, that has been used by the NSGA-II optimization algorithm, and the

final test dataset as well as execution times (us) of the selected models.

Model Accuracy (%) Execution time (ps)
Training Validation Holdout Test

Model; 5 100 100 100 100 10,640

Model, s 100 100 99.5 100 1278

Model, g3 100 100 99.0 100 433

Model,o¢ 100 100 97.5 100 237

Model;sg; 99.98 100 96.0 100 185

4 Discussion

The results in Table 3 show that the execution times can
be substantially reduced while maintaining a classification
performance of 100 % accuracy on the test dataset. These
results can be explained, because the industrial environ-
ment is well controlled which means that the classification
process is less affected by changes. Based on the evaluation
of the results from Table 3, the following statements can be
made:

Synthetically generated data from the CAD design
can be used to train models of neural networks that
achieves high accuracies on real data when embedded
into a production system. This is advantageous because
the models can be developed before commissioning the
production system.

By additionally considering the required computa-
tional cost in the hyper-parameter optimization, model
architectures with minimal sizes can be identified that
solve the classification problem.

The knowledge and control of the entire process can be
exploited to simplify both the problem to be solved and
the model architecture.

The optimization process results in a model architec-
ture with a sub-millisecond execution time of a soft
PLC. The fastest model is 200 times faster than in [18].
Thus, the execution time is substantially lower than
the PLC task cycle time of fast motion control applica-
tions (1-2 ms). This enables the deployment of CNNs for
image classification in conjunction with motion control
applications with real-time requirements.

5 Conclusions

This paper investigates the optimization of CNN architec-
tures for image classification in an industrial context. The
hyper-parameters of the CNN models are optimized for their
accuracy and the FLOPs by using the evolutionary algorithm
NSGA-II In order to train the models without having access
to a dataset of the real products, a synthetic dataset is cre-
ated and used for training and optimization. The results of

DE GRUYTER OLDENBOURG

the presented methodology demonstrate that the proposed
optimization significantly improves both the accuracy and
execution time of the CNNs on the demonstrator production
system. The execution times of the investigated models can
be reduced by a factor 200 from 41 ms to 185 ps, while main-
taining an accuracy of 100 %. The presented approach can
be used to integrate machine learning models directly on
a soft-PLC. This is beneficial because, firstly, no additional
hardware (external controller) is required and, secondly,
there are no latency times or additional interfaces (cloud
and edge computing).

Research ethics: Not applicable.

Informed consent: Not applicable.

Author contribution: All authors have accepted responsibil-
ity for the entire content of this manuscript and approved its
submission.

Use of Large Language Models, AI and Machine Learning
Tools: None declared.

Conflict of interest: The author states no conflict of interest.
Research funding: None declared.

Data availability: Not applicable.

References

[1] Y. Koren, “The local factory of the future for producing
individualized products,” The Bridge, vol. 2021, no. 51, 2021.

[2] Y.Wang, K. Hong, J. Zou, T. Peng, and H. Yang, “A CNN-based visual
sorting system with cloud-edge computing for flexible
manufacturing systems,” IEEE Trans. Ind. Inf., vol. 16, no. 7,
pp. 4726 —4735, 2020.

[3]1 R.Y.Zhong, Q. Dai, T. Qu, G. Hu, and G. Q. Huang, “RFID-enabled
real-time manufacturing execution system for mass-customization
production,” Robot. Comput.-Integr. Manuf., vol. 29, no. 2,
pp. 283—292, 2013.

[4] R.-S.Chen,K.Y.Lu,S. C.W.Yu, H. W. Tzeng, and C. Chang, “A case
study in the design of BTO/CTO shop floor control system,” Inf.
Management, vol. 41, no. 1, pp. 25—37, 2003.

[5]1 A.Hornberg, Handbook of Machine and Computer Vision, 2nd ed.,
Berlin, Wiley-VCH, 2017.

[6] S.T.Krishna, et al., “Deep learning and transfer learning

approaches for image classification,” Int. J. Recent Technol. Eng.,

vol. 7, no. 554, pp. 427—432, 2019.
[71 N.O’Mahony, et al., “Deep learning vs. Traditional computer
vision,” in Advances in Intelligent Systems and Computing, vol. 943,
Advances in computer vision: Proceedings of the 2019 Computer Vision
Conference (CVC), K. Arai, and S. Kapoor, Eds., Cham, Springer, 2020,
pp. 128 —144.
R. RaBmann, et al., “Investigations on real-time image recognition
with convolutional neural networks on industrial controllers,” in

[8

—

C. Wree and R. RaBmann: Methodology for optimizing CNNs for production processes = 677

Studies in Computational Intelligence, Service Oriented, Holonic
and Multi-Agent Manufacturing Systems for Industry of the
Future: Proceedings of SOHOMA 2022, 1st ed., T. Borangiu, D.
Trentesaux, and P. Leitdo, Eds., Cham, Springer, 2023,

pp. 380—391.

[9] I Rodriguez-Conde, C. Campos, and F. Fdez-Riverola, “Optimized
convolutional neural network architectures for efficient on-device
vision-based object detection,” (in En;en), Neural Comput. & Applic.,
vol. 34, no. 13, pp. 10469—10501, 2022, https://doi.org/10.1007/
s00521-021-06830-w.

[10] H.Haand].Jeong, “CNN-based defect inspection for injection
molding using edge computing and industrial IoT systems,” Appl.
Sci., vol. 11, no. 14, p. 6378, 2021.

[11]1 M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient
acceleration of deep learning inference on resource-constrained
edge devices: a review,” Proc. IEEE, vol. 111, no. 1, pp. 42—91,
2023.

[12] E. Solowjow, et al., “Industrial robot grasping with deep learning
using a programmable logic controller (PLC),” in 2020 IEEE 16th
International Conference on Automation Science and Engineering
(CASE), Hong Kong, IEEE, 2020, pp. 97—103.

[13] F.Schellroth, et al., “Latency optimized architectures for a real-time
inference pipeline for control tasks,” in 2021 International
Conference on Information and Communication Technology for
Development for Africa (ICT4DA), Bahir Dar, Ethiopia, IEEE, 2021,
pp. 166—171.

[14] X.Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: a
comprehensive survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2,
pp. 869—904, 2020.

[15] H.Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: a cyber-physical systems perspective,” IEEE
Access.: Pract. Innovat., Open Solut., vol. 6, pp. 78238 —78259,

2018.

[16] R. Desislavov, F. Martinez-Plumed, and J. Hernandez-Orallo,
“Trends in Al inference energy consumption: beyond the
performance-vs-parameter laws of deep learning,” Sustain.
Comput.: Inform. Syst., vol. 38, p. 100857, 2023.

[171 A. Schmidt, F. Schellroth, M. Fischer, L. Allimant, and O. Riedel,
“Reinforcement learning methods based on GPU accelerated
industrial control hardware,” Neural. Comput. Applic., vol. 33, no. 18,
pp. 12191—-12207, 2021.

[18] R.Ralmann, et al., “Implementierung von Convolutional Neural
Networks zur echtzeitfahigen Bildklassifizierung auf
konventionellen Industriesteuerungen,” in Tagungsband AALE 2023:
Mit Automatisierung gegen den Klimawandel, Leipzig, Hochschule fiir
Technik, Wirtschaft und Kultur Leipzig, 2023.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-IL,” IEEE Trans. Evol.

Computat., vol. 6, no. 2, pp. 182—197, 2002.

F. Hutter, et al., Automated Machine Learning: Methods, Systems,

Challenges, Cham, Springer, 2019.

[21] J. Blank and K. Deb, “Pymoo: multi-objective optimization in
Python,” IEEE Access.: Pract. Innovat., Open Solut., vol. 8,
pp. 89497—-89509, 2020.

[20]

https://doi.org/10.1007/s00521-021-06830-w
https://doi.org/10.1007/s00521-021-06830-w

678 = C.Wree and R. RaBmann: Methodology for optimizing CNNs for production processes DE GRUYTER OLDENBOURG

BionOtes Rando RaBmann

Department of Computer Science and Electrical Engineering, University
of Applied Sciences Kiel, Grenzstr. 5, 24149 Kiel, Germany

Christoph Wree d @fh-kiel.d

Department of Computer Science and Electrical Engineering, University rando.rassmanntin-kiel.ce

of A.pplied Sciences Kie!, Grenzstr. 5, 24149 Kiel, Germany Rando RaRmann obtained a Master of Engineering degree in electrical
christoph.wree@fh-kiel.de engineering from the University of Applied Sciences Kiel in 2022. He is

currently working as a research associate at the University of Applied
Sciences Kiel. His research interests include design methodologies and
artificial intelligence.

Christoph Wree is a Professor of Automation Technology at the Kiel
University of Applied Sciences. His research focuses on automation
technology in the context of Industry 4.0 and the energy transition.
Additionally, he investigates the application of machine learning in
automation technology.

mailto:christoph.wree@fh-kiel.de
mailto:rando.rassmann@fh-kiel.de

	1 Introduction
	2 Methodology
	2.1 Methodology for determining an appropriate model architecture
	2.2 Description of the production system demonstrator used for the experiments
	2.3 Dataset generation to classify the hydraulic blocks
	2.4 Model architecture optimization process
	2.5 Integration of the CNNs into the production system

	3 Optimization results
	3.1 Results of the optimization process
	3.2 Methodology for the model selection
	3.3 Investigation of model performances

	4 Discussion
	5 Conclusions
	Bionotes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

