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Abstract: This article presents an overviewof the evolution,

impact, and challenges of plastics, focusing on the difficul-

ties in recycling processes and introducing biocatalytic tech-

nologies as a promising solution for efficient plastic degra-

dation. While there are many obstacles in accessability of

plastics for enzymatic degradation, recent achievements

in industrial application and discoveries of new enzyme

classes for polymer degradation highly encourage further

investment in this technology paving theway towards broad

industrial application of biocatalysis in plastic recycling.

Keywords: biocatalysis; enzyme engineering; plastic recy-

cling; synthetic polymer degradation

Zusammenfassung: Dieser Artikel bietet einen Überblick

über die Entwicklung, die Auswirkungen und die Heraus-

forderungen von Kunststoffen, wobei der Fokus auf den

Schwierigkeiten in den Recyclingprozessen liegt und biokat-

alytische Technologien als vielversprechende Lösung für

einen effizienten Abbau von Kunststoffen vorgestellt wer-

den. Obwohl es viele Hürden bei der Zugänglichkeit von

Kunststoffen für den enzymatischen Abbau gibt, ermuti-

gen jüngste Errungenschaften in der industriellen Anwen-

dung unddie Entdeckungneuer Enzymklassen für den Poly-

merabbau zu weiteren Investitionen in diese Technologie,

die den Weg für eine breite industrielle Anwendung der

Biokatalyse im Kunststoffrecycling ebnet.

Schlagwörter: Biokatalyse; Enzym-engineering; Plastik-

recycling; Abbau synthetischer Polymere
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1 The story of plastics

Plastics have become a defining feature of modern life

within the contemporary era which thus often is referred

to as the “plastic age”. Indeed, the exponential increase in

plastic contamination since the 1950’s closely mirrors the

trajectory of global plastic production, marking plastics as

a significant geological indicator of human impact on the

planet. Plastics, as defined by the International Union of

Pure and Applied Chemistry (IUPAC), are polymeric materi-

als that may contain additives (e.g., inorganic fillers, soften-

ers, thermal stabilizers, fire retardants, UV stabilizers and

colorants) [1] to enhance performance or reduce costs [2]

and their ascent to becoming the material of choice for

numerous applications is well-founded: Due to their poly-

meric structure, they exhibit high molecular weight and

plasticity. Plastics outclass other materials due to the ease

of manufacture, high resistance to water, chemicals or light,

and a good performance in a wide range of temperature.

Furthermore, they provide a high strength/weight ratio

and most importantly, low production costs [1]. While first

approaches of humans to use polymers like natural rubber

lead back to the ancient Mesoamericans in 1600 BC, the first

fully synthetic polymer, Bakelite, was invented in 1909 [3],

[4] andmarked the birth of a new class of heavily usedmate-

rials with global production soaring from 1.5 million tons in

1950 to an astounding 390 million tons in 2021 [5], [6]. From

packaging fresh foods to insulating electrical instruments,

as well as usage in lightweight construction materials and

essential healthcare products, plastics have played a pivotal

role in advancing health, safety, and convenience.

Despite these benefits, the vast production and inade-

quatemanagement of plasticwaste have led to environmen-

tal contamination on a global scale ranging from the depths

of the Mariana Trench to remote Antarctic food chains.

Approximately 60 % of plastic debris, due to its lower den-

sity than water, floats in surface waters, contributing to

large-scale accumulations like the Great Pacific Garbage

Patch (Figure 1) [7]–[9].

The categorization of plastic debris based on size,

including micro- and nanoplastics, highlights another

dimension of the problem. These small particles infiltrate
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Figure 1: Plastic catch in the pacific garbage patch by “the ocean

cleanup” in 2023 [10].

marine ecosystems, which impacts wildlife and potentially

human health. The ability of plastic surfaces to adsorb

harmful pollutants ranging from pathogenic microorgan-

isms to intrisic chemical additives in plastics such as phtha-

lates raises further concerns about the environmental and

health consequences of plastic waste [11]–[13].

As theworld grapples with this issue, the need for effec-

tive plastic waste management and innovative recycling

technologies, including biocatalysis, becomes ever more

pressing.

2 The challenging task of plastic

recycling

The exponential growth in plastic production has not

been matched by equivalent increases in recycling. Histor-

ically, before 1980, nearly all plastic waste was discarded.

Since then, incineration and recycling rates have gradu-

ally increased. Despite the growth in recycling, a signifi-

cant portion of the produced plastics remains unrecycled.

As of 2015, an estimated 12 % of global plastic waste was

incinerated, only 9 % recycled, and 79 % accumulated in

landfills or the natural environment [14]. In addition to the

inherent toughness of plastics, a major challenge in achiev-

ing economically viable plastic recycling is the dependence

of recycling effectiveness on the purity of the polymers.

Contaminants can drastically hinder the recycling potential

as only pure degradation products can be reused for high

quality polymer production, necessitating advanced sorting

techniques. Near Infrared (NIR) detection, for example, is

commonly used to differentiate between polymers, such as

distinguishing polyamides from PET waste [15]. However,

the vast diversity in plastic compositions poses a substantial

challenge. Two plastics of the same type, like packaging

consisting of PE, can vary significantly in their composition

of colorants, modifiers, etc. complicating the recycling pro-

cess. Multilayer products further complicate this issue, as

their complex layers of different materials make efficient

recycling more difficult. Chemical recycling, which breaks

down plastics to their molecular components, is affected

by such impurities, but also faces further challenges. High

reaction temperatures, aggressive solvents and catalysts, or

extreme pH values drive up costs, creating a highly ques-

tionable ecological benefit. Mechanical recycling processes,

such as grinding, melting, and reshaping, are cheaper and

less complex. For instance, many thermoplastics, like PET,

PE, or PP, can be melted and reshaped with little loss of

quality; however, these processes aremore strongly affected

by impurities and additionally are limited in their scope

and effectiveness. Usually, mechanical recycling generates

products of lower quality, thus failing to significantly reduce

the need for producing new, virgin polymers [16].

Energy recovery methods like pyrolysis and incinera-

tion offer an increasingly considered alternative that does

not rely on polymer purity. Yet, they comewith their own set

of environmental concerns, like greenhouse gas emissions

and air pollution. Most importantly, these approaches only

gain energy, but no material is recycled and hence new

polymers must be produced from petrol-based resources

again with negative impacts on the climate.

In light of these challenges, biocatalysis emerged as

a promising approach, leveraging the specificity and effi-

ciency of enzymes and microorganisms to break down and

recycle plastics. This innovative method offers a poten-

tial solution to the limitations of traditional recycling tech-

niques, paving the way for more sustainable and efficient

plastic waste management [17].

3 Biocatalytic technologies

for plastic degradation

Biodegradation, the breakdown of organic matter by liv-

ing organisms, is a vital process in nature and a corner-

stone of biocatalytic plastic degradation. Organisms use

enzymes as biocatalysts, or molecular tools, for biochemi-

cal reactions in their metabolism. These processes typically

require the cooperation of multiple organisms or enzymes

and can occur in both aerobic and anaerobic environments,

such as different layers of landfills or composts. Over the

past two decades, biocatalysis, has emerged as a practi-

cal and environmentally friendly alternative to traditional

catalysis. The field has evolved through waves of techno-

logical research and innovations, particularly in protein

engineering. Early applications of biocatalysis utilized
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enzyme-containing components of living cells for chemi-

cal transformations. With the advent of gene technology

in the 1980s and 1990s, it became possible to clone and

express enzymes in microbial hosts, opening new pos-

sibilities for optimizing biocatalysts for non-natural sub-

strates, like plastics [18]–[20]. Just like chemical recycling

of plastics, biodegradation results in the full decomposi-

tion of the polymers into their monomeric building blocks

(this is possible in principle for polymers with hydrolyz-

able bonds, like PET, polyurethane and polyamides like

nylon), but with the significant advantage of mild reaction

conditions. Enzymes, optimized for natural environments,

negate the need for extreme temperatures, high pressure,

or toxic reagents, making biodegradation potentially both

cost-effective and environmentally friendly. The success of

enzymatic plastic degradation largely depends on the acces-

sibility of chemical bonds within the polymers. Addition-

ally, factors such as crystallinity, molecular orientation, and

cross-linking play a crucial role, with amorphous regions

generally more susceptible to degradation [21]. Therefore,

the variability in polymer structures poses a significant

challenge in identifying and developing effective biocat-

alysts. For instance, some fully synthetic polymers, like

polyether-polyurethanes, which are used for mattresses,

insulation, coatings, or shoe soles contain bonds that are

usually not found in nature and thus are less commonly

targeted by naturally occurring enzymes. Other polymers,

like PE or PP, do not contain any reactive chemical bonds

in their main chains and thus may only be targeted by slow

and unspecific oxidative bioreactions with a non-uniform

and complex product scope. Furthermore, here the original

building blocks (ethylene or propylene) can not be accessed.

Thus, biodegradation holds particular promise for certain

types of plastics. Ester bonds, commonly found in natural

polymers and lipids, are cleaved by esterases or lipases,

making them key targets in the setup of biodegradation of

polyester-based plastics, like PET, a plastic widely used in

bottles and clothing.

A primary challenge in the application of biocatalytic

technologies for plastic degradation is the level of enzy-

matic activity. While several enzymes, such as specific cuti-

nases or polyesterases, have shown promise in degrading

polymers like PET, their activity levels often fall short of

what is economically viable and hence enzyme engineering

has been used to make the enzyme suitable for large-scale

processing as described in the next chapter. Beyond that,

process engineering plays a crucial role in enhancing the

efficiency of the process at industrial scale. One significant

aspect is high conversion within a short time and high

substrate loading. In addition, it must be ensured that accu-

mulation of the product must not have a negative impact on

the enzymes’ activity [22]. Acidification from PET hydrolysis

may inactivate the enzymes. Techniques such as (continu-

ous) extraction or crystallization of the product can improve

the overall efficiency of the process and facilitate product

isolation. Another aspect is proper pre-treatment of the

polymer substrate to increase accessibility of the chemical

bonds to be cleaved by the enzyme. Techniques like grinding

and extrusion-based amorphization enhance the interac-

tion between the enzymes and the plastic substrates and

thus can lead to more efficient degradation.

4 Enzyme engineering

To overcome many of the above-mentioned hurdles,

enzyme engineering plays a pivotal role in advancing

biocatalysis, also in regards to plastic recycling. Enzyme

engineering involves themodification of enzyme sequences

to enhance their efficiency, stability, and specificity for

the desired reaction. This process, generally achieved

through techniques like directed evolution and rational

protein design [23]–[25], enables the tailoring of enzymes

for specific industrial applications by making them more

active towards their substrates or more robust at high

temperatures, extreme pH, or towards organic solvents.

In the late 1990s, advanced protein engineering, combined

with high-throughput screening, led to ‘directed evolution’.

Since then, biocatalysis has significantly benefited from

molecular biology advancements, affordable genome

sequencing, bioinformatics, and computer modeling [26].

Rational design involves specific modifications to

amino acids within the enzyme via site-directed mutage-

nesis, relying on structural and mechanistic understand-

ing of enzymes. Recent developments, like the enzyme-

structure prediction tool “Alpha Fold”, significantly empow-

ers rational design approaches. Directed evolution, in con-

trast, employs iterative cycles of randommutagenesis along

the whole enzyme to generate vast libraries of enzyme

variants. This approach allows for the discovery of ben-

eficial mutations that might not be achievable through

rational design alone and does not need much information

about the enzymes’ structure or mechanism. However, vast

library creation requires efficient screening and selection

assays requiring potent high-throughput screeningmethods

to identify improved versions out of thousands or millions

of variants.

A groundbreaking showcase of successful enzyme engi-

neering and process engineering for plastic recycling is the

achievement made by the French company Carbios which
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has developed an efficient and scalable enzymatic process

for PET recycling. After an amorphization and microniza-

tion pre-treatment of the PET post-consumer waste, they

apply an engineered variant of the leaf- and branch com-

post cutinase (LCC), an enzyme which degrades the natural

polyester cutine in plant cell walls and which was found

in a compost metagenome in 2012 by Sulaiman et al. in

Japan (Figure 2) [27]. In 2020, the company could demon-

strate that after 10 h of incubation of pre-treated waste

PET (200 g/L) with the engineered cutinase mutant LCC-

ICCG, more than 90 % of the polymer was degraded into

its monomers terephthalic acid and ethylene glycol. These

monomers were subsequently used to produce virgin and

high-quality PET bottles [28]. This approach not only offers

an effective recycling solution but also contributes to the

creation of a bio-based circular economy for plastics. To

reach these goals, Carbios has established long-term strate-

gic partnerships, including with Novozymes, a specialist in

the development and production of industrial enzymes and

microorganisms, to ensure a steady supply of enzymes nec-

essary for their PET recycling process. Currently, theworld’s

first biological PET-recycling plant located in Longlaville,

France, is under construction. This plant will process an

estimated 50,000 tons of PET waste per year starting in

2025 [29]. The Carbios method presents a significantly more

environmentally friendly alternative to traditional plastic

recyclingmethods, avoiding the need for high temperatures

and pressure, or toxic reagents. The economic viability of

this process, despite the challenges inmaintaining pH levels

and managing byproducts, offers a promising outlook for

the recycling industry. The ability of the process to convert

waste PET into high-quality raw materials for new plastics

production positions Carbios as a key player in the future of

sustainable plastic management.

5 Future perspectives and

innovations

To expand industrial-scale plastic recycling beyond PET

and polyesters in general, scientists explore novel enzymes

that can degrade nylons (polyamides) [30]–[32] as well as

polyurethane (PU) [22] as we have recently demonstrated

by the discovery of three urethanase-bond hydrolyzing

enzymes in a metagenomic library. These enzymes now

represent a valuable starting point for enzyme engineering

– similar to improving LCC as described above – and the

mining of further enzymes to achieve large-scale processing

of polyurethane waste materials.

Figure 2: Biocatalytic hydrolysis of polyethylene terephthalate (PET).

Under aqueous conditions, the ester bonds within the backbone of the

polymer are hydrolyzed by an esterase, such as LCC. The monomeric

products, terephthalic acid (TPA) and ethylene glycol (EG) can then be

reused for the production of high quality virgin PET.

Another active research area is the upcycling of plastic

waste to higher value products. For example, our recent

study proposed an upcycling fromwaste PET by introducing

highly concentrated calcium ions into the enzymatic PET

degradation reaction. This not only reduces the need for

pH control during enzymatic PET degradation, but simul-

taneously generates calcium terephthalate, which has the

potential to be utilized as a lithium battery anode [33]. Fur-

ther, given the growing scientific and political interest in

biodegradable plastics, like PLA or PHA, for their potential

sustainability, it is crucial to prioritize research and technol-

ogy development on efficient bio-based recycling methods

that focus on monomer recovery rather than biodegrada-

tion. Only monomer recovery can close a circular recycling

system, whereas supposedly natural biodegradation will

waste valuable resources and may leave behind invisible

and non-degradable microplastics.

To conclude, the future of plastic recycling is poised

at the intersection of biotechnology and engineering. Bio-

catalyic plastic recycling already represents a significant

leap forward in the transformation of the plastic industry

to a circular economy. Techniques like enzymatic degra-

dation, spearheaded by advancements in enzyme technol-

ogy and process engineering, offer a more sustainable and

efficient alternative to traditional recycling methods. The

innovations in bioplastic production align with these sus-

tainable goals and pave the way to a circular economy in
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harmony with nature. Recycling of plastic waste is manda-

tory and prevention of avoidable use of plastics and their

reuse should always be preferred over recycling where it is

possible.
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