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Abstract: The digitalization of industry and the conver-
gence of IT and OT bring about the next generation of indus-
trial automation systems which are expected to work with
an orchestration of physical and virtualized components
using a single converged network. The increase of complex-
ity in such systems must be managed by an increase in
automation for orchestration and management. However,
bootstrapping such a complex system from out-of-the-box
components is still a manual and error-prone process. We
present a bootstrapping concept that brings up a system
from out-of-the-box components to an operational solu-
tion with physical and virtualized components. The concept
combines incremental network discovery with secure incre-
mental bootstrapping of discovered physical components.
The gained trust in the physical components of the network
is then used to translate this trust into virtualized compo-
nents. By attesting the trustworthiness of hosting infras-
tructure, the concept allows for virtualized components to
be securely assigned a cryptographically secure identity
that can be used in further application onboarding. Such
securely bootstrapped systems are then capable to deliver
the required adaptable, modular, and secure automation
solutions of the future.
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Zusammenfassung: Die Digitalisierung der Industrie und
die Konvergenz von IT und OT bringen die néichste
Generation industrieller Automatisierungssysteme auf den
Weg. Diese Systeme arbeiten mit orchestrierten physischen
und virtualisierten Komponenten iber ein einziges kon-
vergiertes Netzwerk. Die zunehmende Komplexitét solcher
Systeme muss durch eine verstirkte Automatisierung fir
Orchestrierung und Management bewéltigt werden. Die
initiale Einrichtung eines solch komplexen Systems ist
jedoch immer noch ein manueller und fehleranfalliger
Prozess. Wir stellen ein Bootstrapping-Konzept vor, das
automatisiert aus Standardkomponenten ein betriebsbere-
ites komplexes System mit physischen und virtualisierten
Komponenten sicher einrichtet. Das Konzept kombiniert
eine inkrementelle Netzwerkerkennung mit einem sicheren
inkrementellen Bootstrapping der gefundenen physischen
Komponenten. Das erreichte Vertrauen in die physischen
Komponenten wird dann in virtualisierte Komponenten
iibertragen. Durch Attestierung der Hosting-Infrastruktur
ermoglicht das Konzept die Zuweisung kryptografisch
sicherer Identitdten an virtualisierte Komponenten, die
dann das reguldre Onboarding durchlaufen kénnen. Ein
auf diese Weise sicher eingerichtetes System ist dann in
der Lage, anpassungsfahige, modulare und sichere Automa-
tisierungslésungen der Zukunft bereit zu stellen.

Schlagwérter: Secure  Bootstrapping;  Orchestrierung;
Industrielle Automatisierung; Sichere Identitaten; Network
Discovery; Virtualisierung

1 Introduction

The digitalization of industry and the convergence of IT
and OT bring about the next generation of industrial
automation systems. They will empower industries to tackle
the demanding and dynamic landscape of future appli-
cations in industries. To tackle future demands for flexi-
bility, next generation industrial automation systems are
envisioned as independent software modules with defined
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communication interfaces [1, 2]. They will deliver adaptable,
modular, and secure automation solutions using standard-
based, flexible, software-based orchestration of physical
and virtualized components.

With Security by Design and Zero Trust Architec-
tures as guidelines, delivering such a complex system of
physical and virtualized components is challenging, labor-
intensive, and error-prone. It is crucial to address the com-
plexity of modern systems not with outdated and inef-
ficient manual procedures but with modern, automated,
and secure functionality. The increasing complexity of
systems and networks should be matched by increasing
automation in orchestration and management to prevent an
increase in costly human effort and equally costly human
errors.

A crucial part of next generation industrial automa-
tion system will be the converged network, that establishes
secure, reliable and functional connectivity between all
physical and virtualized components. Most modern net-
work components in such a converged network can no
longer be treated like cables that are bought, physically
installed, and forgotten. Switches, firewalls, and routers are
increasingly complex systems and play a crucial part not
only in function and performance of a system but also in
its security properties.

Fitting to their increase in functionality and role, net-
work components themselves are getting more complex in
configuration and administration. Many modern network
components take an effort in configuration and administra-
tion comparable to server systems. Most of this increase in
complexity is to be managed through intelligent network
orchestration. However, adding out-of-the-box components
to network orchestration is still a manual and error-prone
process with many possibilities for human errors resulting
in insecure configurations.

We present an automated, secure bootstrapping con-
cept that is capable of securely bringing up a next gen-
eration industrial automation system from out-of-the-box
components to an operational, orchestrated solution with
both, physical and virtualized components, securely and
automatically bootstrapped.

The remainder of this article is structured as follows.
In Section 2 we discuss the pressing need for automatic
network and software bootstrapping triggered by next gen-
eration industrial systems. Then, we detail our solution for
securely bootstrapping networks in Section 3 which forms
a foundation for secure bootstrapping of virtualized soft-
ware, discussed in Section 4. Both Sections 3 and 4 first moti-
vate the addressed problem and then describe the technical
solution. We conclude in Section 5.
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2 Next-generation industrial
automation systems

With the digitalization of the industry and the conver-
gence of IT and OT, industrial automation systems are going
through a transformation that is shaping the control system
of tomorrow and already empowering industries to respond
to the increasingly demanding and dynamic landscape of
future industries [1]. In parallel with this transformation,
a change in automation systems is also being motivated by
an abundance of user-driven initiatives toward openness,
security and interoperability.

For instance, the Open Process Automation Forum
(OPAF) is a 110-member consortium of end-user companies
and automation providers, which is working to define a
standard-based, open, secure and interoperable architec-
ture. In line with the OPAF’s vision for open control systems
with independent software modules and defined commu-
nication interfaces, future process automation systems are
becoming virtual and modular as containerized functional
entities. These entities will be flexibly deployable, dynami-
cally available and independent of system hardware. Con-
nectivity will be provided with industry-standard secure
protocols and interoperable technologies. To this end, the
resulting converged and secure system and network archi-
tecture for next generation industrial automation systems is
illustrated in Figure 1.

Delivering such adaptable, reliable, integrated, modu-
lar, scalable, and secure automation solutions requires flex-
ible, simple, and automated system and network operations
and processes that can replace the outdated and inefficient
manual procedures while hiding the increasing diversity
and complexity of systems and networks. Automation and
orchestration are key technologies from IT to tackle these
challenges. However, there are differences between IT and
industrial applications that still provide for challenges. One
example is the initial setup of each industrial application
from out-of-the-box components on site, that has no equiv-
alent in orchestrated IT.

For this purpose, there is a need for a software-based
bootstrapping mechanism and workflow for systems and
their networks, which will allow for interoperable and
efficient future Distributed Control Systems. That solution
needs to be able to create the foundation for secure indus-
trial systems that meet latest security requirements defined
by industrial standards in order to properly deal with
the evolving threat landscape. While doing that, it needs
to utilize latest security technologies (e.g., advanced con-
tainer isolation, zero-trust security) and apply operations
and orchestration flows which are secure by design.
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Figure 1: Unified, modular, flexible and secure system and network architecture for next generation industrial automation systems.

3 Secure network bootstrapping

Network Bootstrapping is a process that involves discov-
ering, authenticating, and commissioning network devices
to fulfill specific network and security requirements. For
instance, starting from an unknown network topology
of network devices running in an out-of-the-box factory
default configuration, often called commissioning mode, net-
work bootstrapping reconstructs the topology, verifies the
authenticity of each device, manages authorization mate-
rial, configures network requirements such as TSN and
VLAN, and transitions devices into operational mode. As the
number of connected network devices grows, the complex-
ity of network bootstrapping increases. Especially with a
mix of network devices from different vendors, of different
age, and of different capabilities, this initial configuration
of the network is a very complex and error-prone task. This
complexity manifests in security, compatibility, and scala-
bility challenges, hindering naive network bootstrapping
techniques.

3.1 Problem description

As network devices become increasingly intricate, and
with the requirement to accommodate legacy devices in
real-world industrial networks, network bootstrapping has
become an arduous task, particularly when executed man-
ually due to the lack of automated approaches. Manual
processes often leave behind residual and sensitive mate-
rial, such as user accounts, credentials, certificates, and
temporary configurations [3]. Some security risks stemming

from poor management of sensitive material linger indef-
initely (e.g., user accounts and insecure configurations),
while others arise at alater and undocumented point in time
(e.g., manually managed certificates). Regular maintenance
of critical systems might include guidelines to mitigate some
of those risks (e.g., checking for expired certificates [4]) but
these processes only work for actually known and used
configurations.

Due to its laborious nature, engineers are tempted to
cut corners and omit security bootstrapping if functionality
can be reached otherwise. For example, suppose a managed
switch is installed but needs only to perform the function-
ality of an unmanaged switch. The managed switch will
provide this functionality often out-of-the-box in its factory
default settings. In that case, engineers might be tempted
to leave the switch in the default configuration. However,
the default configuration leaves the device as a permanent
security risk in the network, open for an attacker to claim,
configure, and exploit certain vulnerabilities that would not
have been possible otherwise (e.g., local privilege escala-
tion), maintain persistence in the network, and allow for
lateral movement. All while staying undetected since the
switch itself still provides all functional duties. Manual net-
work bootstrapping additionally struggles in meeting repro-
ducibility and extensibility requirements as knowledge of
the network often remains undocumented and gets lost as
the engineers who bootstrapped it move on.

Moreover, although network bootstrapping was once
considered a one-time effort, the increasing complexity and
convergence of IT/OT networks necessitate its recurrence.
In particular, even minimal structural and configurational
changes in a network require overall evaluation to avoid
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conflicts and minimize attack surface through proper secu-
rity configurations. Such continuous evaluation, however,
poses practical challenges, especially when done manually.

Automated network bootstrapping, as an alternative to
manual approaches, streamlines some of the manual pro-
cesses but brings different challenges, including the need to
ensure the authenticity of the commissioned device and the
automatic discovery of neighbor devices, e.g., connected to
Ethernet ports. As devices vary in complexity due to ven-
dor fragmentation, some challenges are more relevant than
others, necessitating a backward-compatible approach. For
instance, when the authenticity of a device cannot be ver-
ified, manual authentication is inevitable but the commis-
sioner should be sufficiently supported.

3.2 Solution

We propose a largely automated, secure network bootstrap-
ping technique tailored to modern devices but also com-
patible with a wide range of legacy devices. The proposed
solution has minimal requirements on network devices. It
can be used by average network engineers in a fully or semi-
automated fashion, depending on the level of complexity of
the target devices. Besides reducing tedious manual effort,
the proposed technique elevates network security by adher-
ing to the zero-trust security principle as a defining design

Network Orchestrator
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decision. The zero-trust principle places the security of net-
work devices, and transitively the whole network, at higher
standards, by limiting capabilities of local user accounts
on network devices, ensuring strong authentication and
secret management mechanisms, enforcing fine-grained
access control, and establishing the authenticity of network
devices participating in a network [5]. The proposed solu-
tion bridges a gap in industrial automation and paves the
way for more rigorous secure network bootstrapping.

3.2.1 Components overview

As shown in Figure 2, the proposed solution, referred to as
the Network Orchestrator hereafter, consists of four com-
ponents, the Network Controller, Security Controller, Vault,
and Web User Interface (Web UI). The Network Orchestrator
interfaces with the users, who wish to bootstrap the net-
work, and network devices, which are limited to switches
in our prototypical design. We first introduce these com-
ponents and then describe their interactions to securely
bootstrap networks.

The Network Controller manages the overall bootstrap-
ping process. It offers the necessary APIs to start, stop,
and visualize the bootstrapping process through a Web Ul
(see Figure 2). It additionally accepts the network config-
urations from the users and deploys them on the target

Level 2 Level 3

Py

Switch B ] [Switch C Switch D

Level 2

@ Repeat Steps 3-0 0 SWitch B |- === == === mmnemnannn
| |

@ Repeat Steps 3-9 on Switch C } ----------------------------- >

Level 3

»——— Network wiring

Figure 2: Execution flow for bootstrapping a network consisting of four network devices. The figure shows the network orchestrator that composes
four basic components necessary for bootstrapping the network. It also shows the steps necessary to discover, authenticate, and commission a single
network device (i.e., steps 3-9 and then step X). The discovery process follows the depth-first traversal algorithm (i.e., discovery of switches B, C, and

D, in order).
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devices as they get authenticated and securely configured
during the process. The Network Controller also implements
access control to segregate roles, e.g., auditors only have
view access rights while network commissioners have edit
rights. It also persists users’ actions and requests to ensure
accountability.

The Web UI gives users oversight and control over the
bootstrapping process, leveraging the APIs exposed from the
Network Controller. While bootstrapping modern network
devices is fully automated, bootstrapping legacy devices
requires manual intervention, in which users are supported
with information-rich Uls that facilitate taking decisions
and corresponding actions. In a corporate setup, the Web
UI is the sole access point to the network bootstrapping
process. It must be operated by securely authenticated users
and should be protected via Single Sign On (SSO). This aligns
with zero-trust architectures by using a single, strong source
of user identity and avoiding user authentication on the
level of network devices.

The Vault is a repository for sensitive material, includ-
ing authorization and authentication material necessary to
manage the devices in the network. It enforces second-layer
access control on who can access what from the Vault, fur-
ther elevating the security of the overall solution. It is a
form of privileged access management (PAM) on the level of
machine-to-machine authentication. When a user initiates
operations on network devices through the Web UI, the
network controller executes them using authorization and
authentication material from the Vault.

The Security Controller has the responsibility of incre-
mentally discovering the network devices, authenticating
them, and handing them over to the Network Controller
for further commissioning. Along the way, the Security Con-
troller ensures that devices’ default authorization tokens
and potentially insecure default configurations are replaced
with stronger ones. Authorization and authentication mate-
rial is securely persisted in the Vault. It is worth noting
that discovering network devices entails several security
operations and, therefore, falls under the responsibilities of
the Security Controller.

3.2.2 Bootstrapping process overview

The network bootstrapping process begins when the Net-
work Controller receives a “start” request from the user via
the corresponding exposed API triggered from the Web UI
(see Figure 2). This request will be passed on to the Security
Controller (step @), which has to be connected to an arbi-
trary device of the network for the bootstrapping process to
work. The Security Controller will then query its local Link
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Layer Discovery Protocol [6] (LLDP) data (step ). The LLDP
data describes directly connected devices, i.e., Switch A in
this example, conveying its IP address, the address of a man-
agement endpoint, MAC address, chassis number, model,
and manufacturer details. Using this information, the secu-
rity controller configures its network interface accordingly
to establish a connection to the management endpoint (e.g.,
by configuring an IP address and subnet).

At this point, the Security Controller attempts to
authenticate switch A. Several options for authenticating
the switch are possible, for example, using transport layer
security certificates issued by a manufacturer CA or a public
CA. In our prototypical implementation it queries a pre-
stored manufacturer-issued SSH server public key from the
Vault that corresponds with switch A (step @). Such key
material could be pre-stored using trust from the Web PKI
or directly derived from communication with the vendor.
If no such authentication key exists, the Security Controller
resorts to other techniques to validate the authenticity of the
target device, which we describe in Section 3.2.3.

After validating the authenticity of switch A (step @),
the Security Controller proceeds by accessing the manage-
ment interface with default credentials or credentials pre-
stored in the vault. It checks if the switch is in its default
settings, i.e. commissioning mode, resetting default autho-
rization material of the target device, and storing the new
material in the Vault (steps @ and @). The Security Con-
troller is then also responsible to change the network config-
uration to a configuration that avoids conflicts and ensures a
disturbance-free progress of the bootstrapping process. For
example, the Security Controller configures switch A with a
separate VLAN per port, isolating the devices connected to
Switch A from each other. The devices connected to Switch
A remain accessible from the Security Controller since the
Security Controller configures its own connecting port of
Switch A to carry all frames VLAN tagged (i.e., a so-called
trunk port). This not only prevents problems due to con-
flicting default configuration, but also provides a barrier for
threat actors to access other devices. This leaves switch A
with a defined, secure configuration and sets up connected
devices for the further progress of secure discovery (step
@). At this point, the Security Controller announces to the
Network Controller that Switch A is trusted and ready to
be commissioned (step ®), so that the Network Controller
can update the Web UL This marks a checkpoint indicating
that network devices of Level 1 have been fully discovered.
However, the Network Controller waits for further orches-
tration until all devices are discovered and set up with
secure configurations.
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To discover further devices directly connected to
Switch A, the Security Controller queries the LLDP data from
Switch A using NETCONF [7] over SSH transport and authen-
ticates and authorizes itself using material from the Vault.
The LLDP data yield information about Switches B and C
(step @). Following a depth-first traversal approach, the
bootstrapping process now considers Switch B for authenti-
cation and basic configurations. The Security Controller sets
up an interface with the corresponding VLAN configuration
for switch B and then repeats steps @ to @©.

Since Switch B is not connected to any further undis-
covered devices, its LLDP data will not yield further infor-
mation about unknown devices. Discovery will stop for this
path. The exact same process then repeats for Switch C,
marking a checkpoint for Level 2 devices, and then for
Switch D, marking a checkpoint for Level 3 and a conclusion
of the whole bootstrapping process. With all devices authen-
ticated and corresponding authorization material persisted
in the Vault, the Security Controller signals to the Network
Controller, that all necessary information to orchestrate the
network to the user’s requirements is ready (step ©).

3.2.3 Device authentication

The goal of this step is to make sure we are talking to the
intended network device. This not only prevents misconfig-
uration due to errors, it also prevents malicious actors from
infiltrating the network. To authenticate a device, the Net-
work Orchestrator supports three mechanisms, depending
on whether the device offers a verifiable secure identity

(e.g., a DevID as defined in IEEE 802.1AR [8]) or not:

1. Automatic authentication does not require any manual
effort but requires certain functionality from devices
and organizational measures. A device needs to provide
a secure identity and relevant information for checking
the secure identity (i.e., public keys, certificates) existing
in the Vault.

2. Semi-automatic authentication is when the device offers
a secure identity, but the identity is not available in
the Vault. Depending on configuration, manual inter-
vention might be needed to confirm the identity and
store it in the Vault. Alternatively, device authentica-
tion could be configured to automatically trust secure
identities from certain vendors. Then, the device could
be authenticated like in the automatic authentication
step. However, information about this should be still
conveyed in the Web UL

3. Manual authentication is when the device does not offer
a secure identity, a limitation common in legacy devices.
In such a case, plausibility checking offers another
automated verification layer, including checks on MAC
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address if it comes from the intended vendor and chas-
sis ids and serial number matching on the device. A
visualization of the device showing where it is located in
the network is also shown. Such meta information about
the device facilitates decision making and provide a
more secure alternative than pure-manual authentica-
tion. Finally, the Network Orchestrator can only provide
clues to the user if a device is authentic. The decision
itself has to be taken by the user.

After a device is authenticated, its configuration is checked
if it still in factory default. Only then, the device is ready
and trusted for operation. If there are unexpected changes
to the configuration, it is not considered secure. Depending
on the device in question, a reset to factory default can be
issued and device authentication restarted. However, this is
only secure if the device in question supports a complete
reset to factory defaults and measures to check for success
(e.g., secure boot, remote attestation). Otherwise, human
intervention is necessary.

3.2.4 Device authorization

Network devices are shipped with default credentials and
users. Intuitively, keeping devices in such a state is insecure.
In our design, we also consider non-default credentials that
are not stored in the Vault to be a threat. We argue that
such credentials, despite possibly being strong, can be easily
leaked, as opposed to credentials stored in the Vault. To miti-
gate this situation, the Network Controller leverages default
credentials to login into the devices for the first time. It then
resets the login credentials to stronger ones and stores them
in the Vault. It additionally removes unused users and inval-
idates existing sessions to preclude attackers who maintain
active access. This effectively limits access to the devices to
only the Network Controller and Security Controller, which
are strongly protected behind an auditable access control
policy, shielded behind an SSO scheme in our design.

3.2.5 Device commissioning

After all devices are discovered and authenticated, the
Network Orchestrator configures the network according
to user-defined requirements for networking and security
configurations, such as establishing VLANs and setting up
TSN. Configuring network devices, thanks to our proposed
solution, is a centrally-managed process, as opposed to
prevalent distributed and device-by-device approach. As a
last step, the Network Orchestrator brings up all devices into
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Table 1: Average execution time for core network bootstrapping
operations in seconds. All operations use an RSA key of 2048 bits. The
size of retrieved LLDP data is 2.49 KB.

Operation Execution time (s) Code
Identity verification 0.091 \Y
Administrative access 0.206 A
LLDP data retrieval 0.743 R

operational mode, restricting access and further modifica-
tions to the network to strongly authorized entities while
adhering to a configurable access control policy.

3.2.6 Scalability considerations

Evaluating the execution runtime of automated versus man-
ual network bootstrapping is unreasonable for the huge
disparity in favor of the automated approach. However, it
is beneficial to evaluate the absolute execution runtime of
automated network bootstrapping to understand its scala-
bility prospective. To that end, we present a hypothetical
example of a network consisting of X switches. Leveraging
the measured execution times of basic bootstrapping opera-
tions, we argue for worst-case execution runtime assuming
no parallelization of execution available.

Setup: The network device used in the measurements
runs a Dual-core ARM Cortex-A9 CPU with 1 GB RAM and
offers an automatically verifiable identity. The average exe-
cution time over 100 runs of the core operations are sum-
marized in Table 1. Notice that the execution runtime of
all operations vary depending on the used cryptographic
algorithm, the switch’s processing power, and networking
overhead. Similarly, retrieving the LLDP data depends on
the size of the payload influenced by the number of directly
connected switches.

In a worst case scenario, with X switches that are seri-
ally connected forming an unbalanced tree of depth X, the
overall runtime execution, excluding time necessary for
configuring the device as it is dependent on the device and
type of configuration, is approximately

(A+V + R)xX (seconds).

Where A, V, and R are explained in Table 1 and X is the
number of switches in the target network.

In this worst case scenario, the execution runtime is
linear to the number of network devices participating in the
network. However, a setup of serially connected switches is
highly unlikely. In practice, the branching factor of switches
is considered to be much higher. This enables opportunities
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for significant speedup by bootstrapping all network devices
discovered in one step in parallel. Then, execution runtime
becomes logarithmic to the number of devices following
the branching factor of the network topology. Both best-
case and worst-case execution runtimes are very affordable,
compared to the manual execution runtime, rendering our
proposed solution highly scalable.

3.3 Limitations

Some legacy network devices offer human-only interfaces
to access and configure them (e.g., web configuration).
Especially modern web user interfaces are usually not
machine friendly since they are expected to be accessed in
the browser and implement functionality client-side. This
poses a limitation as our solution works best with machine
friendly interfaces like SSH shells or NETCONF. Notice that
workarounds exist to mitigate this issue, e.g., via machine
controlled, instrumented browsers, which could improve
the range of devices fit for the proposed solution. Another
limitation is related to the discovery protocols. Our solution
relies on network devices to support LLDP for discovery.
Discovery of network devices without LLDP support is out
of the scope of our solution but still feasible in an active
discovery effort (e.g., using network scanning tools like
nmap [9]).

4 Bootstrapping virtualized
components

In next-gen industrial automation systems, components
are often no longer physical devices that serve one par-
ticular purpose (see Section 2). Instead, components are
being virtualized, which provides several benefits related
to availability, flexibility, and scalability. However, securely
bootstrapping virtualized components poses several chal-
lenges, since traditional solutions for physical components
no longer apply. In this section, we first introduce the
problem and then describe our solution for a secure boot-
strapping of virtualized components.

4.1 Problem description

Secure hootstrapping solutions typically rely on manufac-
turers pre-installing cryptographic keys and digital certifi-
cates in components, which give the component a unique
bootstrapping identity. During bootstrapping, automation
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engineers and tools then verify these manufacturer-
assigned identities to ensure the authenticity of new compo-
nents before integrating them into the network. To ensure
security, the necessary cryptographic material is typically
stored on devices in hardware-protected memory.

In modern industrial systems, components are increas-
ingly implemented as virtual software, so-called container-
ized applications. Existing bootstrapping techniques fail to
address the security needs of such containerized applica-
tions and virtual devices, since pre-installed device iden-
tities cannot be used to authenticate containerized appli-
cations. The reason for this is that containers may run on
various host devices and may even be shifted from one host
to another host during operation. An alternative approach
would be pre-installing cryptographic identities in the con-
tainerized applications themselves. However, this approach
provides insufficient security, as an adversary with access
to a container can copy it, obtain multiple components with
the same bootstrapping identity, and thus impersonate the
original component. This highlights the need for a solution
to securely bootstrap software components, including con-
tainerized applications, in industrial systems.

4.2 Solution

While existing solutions rely on pre-installed bootstrap-
ping credentials [10], we enable the Orchestrator to assign
bootstrapping identities immediately at deployment. The
Orchestrator is a common paradigm in modern software
architectures, which deploys and manages software con-
tainers running on a distributed cluster of host devices.
Our solution is the first that combines secure bootstrapping
identities with remote attestation and a secure hardware
key storage for containers, to enable the secure bootstrap-
ping of containerized applications by Orchestrators.

In detail, we propose to leverage secure hardware (e.g.,
a TPM) that is built into devices hosting containerized appli-
cations. Based on the secure hardware, a remote attestation
procedure is implemented between Orchestrator and host
devices. During attestation, the Orchestrator verifies that
containerized applications run on legitimate devices in an
uncompromised software environment. This way, our solu-
tion ensures that the Orchestrator assigns secure bootstrap-
ping identities only to containerized applications running in
trustworthy environments, i.e., environments that are not
controlled by an adversary. Note that containerized appli-
cations themselves need not be verified [11, 12], as they are
securely deployed by the Orchestrator and thus are trust-
worthy. In addition, host devices use the same technique to
verify the integrity and authenticity of the Orchestrator.
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Figure 3: Illustration of the proposed secure onboarding process in case
of OPC UA.

To manage bootstrapping identities, we propose that
host devices implement a so-called Software Identity
Provider (SIP), which provides two novel features. First, it
offers an abstraction layer to the underlying secure hard-
ware, which ensures that each containerized application
can only access its own bootstrapping key but not the keys
of other applications. Second, it allows credentials to be
securely moved from one host device to another, which is
required when the Orchestrator shifts containerized appli-
cations in the cluster.

The secure bootstrapping of containerized applications
is a 4-step process, illustrated in Figure 3. In the first step,
the Orchestrator verifies the integrity of the host server and
its software (see Section 4.2.1). The second step focuses on
managing the identity of the volatile containerized appli-
cations (see Section 4.2.2). To enable secure communica-
tions between applications, the third step implants a trusted
certificate in all containers (see Section 4.2.3). The final step
describes the necessary measures for securely migrating
applications across the host while maintaining functionality
(see Section 4.2.4).

4.2.1 Integrity verification

Before installing containerized applications on a specific
host device, the Orchestrator uses a technique called remote
attestation to ensure the integrity of host devices and their
installed software. Remote attestation is a security solution
that allows a computer, the verifier, to check the software
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integrity of another computer, the prover. During attesta-
tion, the verifier determines whether the software running
on the prover is healthy or compromised, which enables the
verifier to remotely establish trust in the prover. Attestation
is typically implemented leveraging secure hardware, such
as a TPM, ARM TrustZone, or Intel SGX. In our solution, the
Orchestrator acts as a verifier and ensures that the host
has not been compromised by an adversary, as it is being
checked that the host only runs legitimate, unmodified, and
up-to-date software. In addition, the Orchestrator can verify
the legitimacy of the host device, e.g., whether it has been
installed by a system integrator or is maintained by a cloud
provider, if the host device has been certified by them. Only
if the authenticity and integrity of the host device and its
execution environment has been verified, the Orchestrator
deploys the containerized application and provides it with
a bootstrapping identity, as described in the next step. Addi-
tionally, host devices can use the same technique to ensure
the integrity and authenticity of the Orchestrator. This pre-
vents an attacker from impersonating an Orchestrator and
misusing host devices, albeit this would be detected by the
actual Orchestrator.

4.2.2 Bootstrapping identity assignment

To manage bootstrapping identities, host devices implement
a so-called Software Identity Provider (SIP). The SIP requests
and receives bootstrapping credentials from the Orchestra-
tor and assigns them to a specific containerized application.
Bootstrapping identities typically consist of a unique key

(Step 2) Identity Assignment
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Figure 4: Illustration of bootstrapping identity assignment in details
(step 2).
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and an associated digital certificate, e.g., DevIDs as proposed
in IEEE 802.1AR [8]. The digital certificate is signed by a
Certificate Authority (CA) that the Orchestrator manages. To
protect the private key associated with the bootstrapping
identity from unauthorized access by other containerized
applications, the SIP commands the generation of a new key
in hardware-protected storage (e.g., in a TPM). Thus, each
containerized application holds its own key that is stored
hardware-protected and managed by the SIP. The SIP only
allows the designated application to use its own key. This
prevents other applications, which may be compromised by
an adversary after deployment, from accessing the keys of
the containerized application. Figure 4 illustrates the boot-
strapping identity assignment.

4.2.3 Protocol-specific secure bootstrapping

The provided secure bootstrapping identity enables the con-
tainerized application to authenticate itself towards other
applications and devices in the network. This is used by
existing solutions, such as FDO [13], BRSKI [14], OPC 10000-21
[15] or SZTP [16], to securely bootstrap the containerized
application. For this step, the Orchestrator’s CA certificate,
from which the bootstrapping identities have been derived,
constitutes a common root of trust in the network. Thus, it
may be needed to import the Orchestrator’s CA certificate as
a trusted root certificate in devices and applications that are
not managed by the Orchestrator. Alternatively, the Orches-
trator may implement an intermediate CA whose certificate
is signed by a well-known root CA that other devices or
applications already consider as trustworthy. During boot-
strapping, the containerized application is typically pro-
vided with protocol- and environment-specific credentials
and settings, which enables the containerized application to
operate as expected after bootstrapping [13-15].

4.2.4 Bootstrapping identity migration

Note that this step is only required when moving containers
between hosts. After deployment, i.e., during operation, the
Orchestrator may decide to shift a containerized applica-
tion from one host device to another, e.g., due to shortage
of resources on the original host device. As containerized
applications should preserve their identities, issued boot-
strapping credentials need to be migrated from the original
host to the new host.

Some secure hardware, such as a TPM, allow the migra-
tion of keys. However, hardware key storage migration
mechanisms are often slow and inconvenient to use, e.g.,
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involving manual effort. For this reason, the SIP imple-
ments a migration protocol that is executed between the
Orchestrator, the SIP of the original host, and the SIP of
the new host. During migration, keys and certificates are
deleted on the old host, and new keys and certificates are
generated on the new host. The new certificates provide the
same identity as the original certificates and are signed by
the Orchestrator. For instance, in case of DevID certificates
that are used for the secure bootstrapping of OPC UA, the
new certificates make use the same ApplicationURI as the
original certificates. Afterwards, a protocol-specific solution
performs the actual bootstrapping with the migrated con-
tainerized application, as described in the previous step.
This way, the migrated application gets new credentials, but
still preserves its original identity that has been assigned by
the Orchestrator during deployment.

5 Conclusions

In this article, we propose an orchestration system that will
allow secure, automated bootstrapping of next generation
industrial automation systems. By filling the automation
gap between out-of-the-box components and orchestrated
components with an automated and secure solution, we
remove most of the tedious, manual effort and we remove
immense room for human error with dire consequences in
the security properties of these systems.

Our orchestration system combines incremental net-
work discovery with secure incremental bootstrapping of
discovered components. Using modern self-identifying and
self-authenticating components, this allows for a completely
automated, secure bootstrapping process with trust in each
incremental step of network discovery. The resulting secure,
orchestrated network then forms a trustworthy foundation
for bootstrapping of virtualized components.

For securely operating virtualized components, our
orchestration system provides them with a unique, secure
identity during the bootstrapping process. The trust in these
secure identities is derived from trust in all underlying com-
ponents during bootstrapping. After secure network boot-
strapping, our orchestration system uses remote attestation
techniques to ensure, that the hosting systems for virtual-
ized components themselves are only running the intended
software. After establishing trust into these host systems,
our orchestration system can deploy trusted cryptograph-
ically secured identities for virtualized components that
benefit from the trust the orchestration system provides
throughout the network.

With the physical network automatically, securely,
bootstrapped and virtualized components automatically
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equipped with secure, trusted identities, a next generation
industrial automation system is ready to be orchestrated to
the users requirements and capable to deliver the required
adaptable, modular, and secure automation solutions of the
future.
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