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Abstract: The digitalization of industry and the conver-

gence of IT and OT bring about the next generation of indus-

trial automation systems which are expected to work with

an orchestration of physical and virtualized components

using a single converged network. The increase of complex-

ity in such systems must be managed by an increase in

automation for orchestration and management. However,

bootstrapping such a complex system from out-of-the-box

components is still a manual and error-prone process. We

present a bootstrapping concept that brings up a system

from out-of-the-box components to an operational solu-

tion with physical and virtualized components. The concept

combines incremental network discoverywith secure incre-

mental bootstrapping of discovered physical components.

The gained trust in the physical components of the network

is then used to translate this trust into virtualized compo-

nents. By attesting the trustworthiness of hosting infras-

tructure, the concept allows for virtualized components to

be securely assigned a cryptographically secure identity

that can be used in further application onboarding. Such

securely bootstrapped systems are then capable to deliver

the required adaptable, modular, and secure automation

solutions of the future.
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Zusammenfassung: Die Digitalisierung der Industrie und

die Konvergenz von IT und OT bringen die nächste

Generation industrieller Automatisierungssysteme auf den

Weg. Diese Systeme arbeiten mit orchestrierten physischen

und virtualisierten Komponenten über ein einziges kon-

vergiertes Netzwerk. Die zunehmende Komplexität solcher

Systeme muss durch eine verstärkte Automatisierung für

Orchestrierung und Management bewältigt werden. Die

initiale Einrichtung eines solch komplexen Systems ist

jedoch immer noch ein manueller und fehleranfälliger

Prozess. Wir stellen ein Bootstrapping-Konzept vor, das

automatisiert aus Standardkomponenten ein betriebsbere-

ites komplexes System mit physischen und virtualisierten

Komponenten sicher einrichtet. Das Konzept kombiniert

eine inkrementelle Netzwerkerkennungmit einem sicheren

inkrementellen Bootstrapping der gefundenen physischen

Komponenten. Das erreichte Vertrauen in die physischen

Komponenten wird dann in virtualisierte Komponenten

übertragen. Durch Attestierung der Hosting-Infrastruktur

ermöglicht das Konzept die Zuweisung kryptografisch

sicherer Identitäten an virtualisierte Komponenten, die

dann das reguläre Onboarding durchlaufen können. Ein

auf diese Weise sicher eingerichtetes System ist dann in

der Lage, anpassungsfähige, modulare und sichere Automa-

tisierungslösungen der Zukunft bereit zu stellen.

Schlagwörter: Secure Bootstrapping; Orchestrierung;

Industrielle Automatisierung; Sichere Identitäten; Network

Discovery; Virtualisierung

1 Introduction

The digitalization of industry and the convergence of IT

and OT bring about the next generation of industrial

automation systems. Theywill empower industries to tackle

the demanding and dynamic landscape of future appli-

cations in industries. To tackle future demands for flexi-

bility, next generation industrial automation systems are

envisioned as independent software modules with defined
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communication interfaces [1, 2]. Theywill deliver adaptable,

modular, and secure automation solutions using standard-

based, flexible, software-based orchestration of physical

and virtualized components.

With Security by Design and Zero Trust Architec-

tures as guidelines, delivering such a complex system of

physical and virtualized components is challenging, labor-

intensive, and error-prone. It is crucial to address the com-

plexity of modern systems not with outdated and inef-

ficient manual procedures but with modern, automated,

and secure functionality. The increasing complexity of

systems and networks should be matched by increasing

automation in orchestration andmanagement to prevent an

increase in costly human effort and equally costly human

errors.

A crucial part of next generation industrial automa-

tion system will be the converged network, that establishes

secure, reliable and functional connectivity between all

physical and virtualized components. Most modern net-

work components in such a converged network can no

longer be treated like cables that are bought, physically

installed, and forgotten. Switches, firewalls, and routers are

increasingly complex systems and play a crucial part not

only in function and performance of a system but also in

its security properties.

Fitting to their increase in functionality and role, net-

work components themselves are getting more complex in

configuration and administration. Many modern network

components take an effort in configuration and administra-

tion comparable to server systems. Most of this increase in

complexity is to be managed through intelligent network

orchestration. However, adding out-of-the-box components

to network orchestration is still a manual and error-prone

process with many possibilities for human errors resulting

in insecure configurations.

We present an automated, secure bootstrapping con-

cept that is capable of securely bringing up a next gen-

eration industrial automation system from out-of-the-box

components to an operational, orchestrated solution with

both, physical and virtualized components, securely and

automatically bootstrapped.

The remainder of this article is structured as follows.

In Section 2 we discuss the pressing need for automatic

network and software bootstrapping triggered by next gen-

eration industrial systems. Then, we detail our solution for

securely bootstrapping networks in Section 3 which forms

a foundation for secure bootstrapping of virtualized soft-

ware, discussed in Section 4. Both Sections 3 and 4firstmoti-

vate the addressed problem and then describe the technical

solution. We conclude in Section 5.

2 Next-generation industrial

automation systems

With the digitalization of the industry and the conver-

gence of IT and OT, industrial automation systems are going

through a transformation that is shaping the control system

of tomorrowand already empowering industries to respond

to the increasingly demanding and dynamic landscape of

future industries [1]. In parallel with this transformation,

a change in automation systems is also being motivated by

an abundance of user-driven initiatives toward openness,

security and interoperability.

For instance, the Open Process Automation Forum

(OPAF) is a 110-member consortium of end-user companies

and automation providers, which is working to define a

standard-based, open, secure and interoperable architec-

ture. In line with the OPAF’s vision for open control systems

with independent software modules and defined commu-

nication interfaces, future process automation systems are

becoming virtual and modular as containerized functional

entities. These entities will be flexibly deployable, dynami-

cally available and independent of system hardware. Con-

nectivity will be provided with industry-standard secure

protocols and interoperable technologies. To this end, the

resulting converged and secure system and network archi-

tecture for next generation industrial automation systems is

illustrated in Figure 1.

Delivering such adaptable, reliable, integrated, modu-

lar, scalable, and secure automation solutions requires flex-

ible, simple, and automated system and network operations

and processes that can replace the outdated and inefficient

manual procedures while hiding the increasing diversity

and complexity of systems and networks. Automation and

orchestration are key technologies from IT to tackle these

challenges. However, there are differences between IT and

industrial applications that still provide for challenges. One

example is the initial setup of each industrial application

from out-of-the-box components on site, that has no equiv-

alent in orchestrated IT.

For this purpose, there is a need for a software-based

bootstrapping mechanism and workflow for systems and

their networks, which will allow for interoperable and

efficient future Distributed Control Systems. That solution

needs to be able to create the foundation for secure indus-

trial systems that meet latest security requirements defined

by industrial standards in order to properly deal with

the evolving threat landscape. While doing that, it needs

to utilize latest security technologies (e.g., advanced con-

tainer isolation, zero-trust security) and apply operations

and orchestration flows which are secure by design.
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Figure 1: Unified, modular, flexible and secure system and network architecture for next generation industrial automation systems.

3 Secure network bootstrapping

Network Bootstrapping is a process that involves discov-

ering, authenticating, and commissioning network devices

to fulfill specific network and security requirements. For

instance, starting from an unknown network topology

of network devices running in an out-of-the-box factory

default configuration, often called commissioningmode, net-

work bootstrapping reconstructs the topology, verifies the

authenticity of each device, manages authorization mate-

rial, configures network requirements such as TSN and

VLAN, and transitions devices into operational mode. As the

number of connected network devices grows, the complex-

ity of network bootstrapping increases. Especially with a

mix of network devices from different vendors, of different

age, and of different capabilities, this initial configuration

of the network is a very complex and error-prone task. This

complexity manifests in security, compatibility, and scala-

bility challenges, hindering naive network bootstrapping

techniques.

3.1 Problem description

As network devices become increasingly intricate, and

with the requirement to accommodate legacy devices in

real-world industrial networks, network bootstrapping has

become an arduous task, particularly when executed man-

ually due to the lack of automated approaches. Manual

processes often leave behind residual and sensitive mate-

rial, such as user accounts, credentials, certificates, and

temporary configurations [3]. Some security risks stemming

from poor management of sensitive material linger indef-

initely (e.g., user accounts and insecure configurations),

while others arise at a later andundocumented point in time

(e.g., manually managed certificates). Regular maintenance

of critical systemsmight include guidelines tomitigate some

of those risks (e.g., checking for expired certificates [4]) but

these processes only work for actually known and used

configurations.

Due to its laborious nature, engineers are tempted to

cut corners and omit security bootstrapping if functionality

can be reached otherwise. For example, suppose amanaged

switch is installed but needs only to perform the function-

ality of an unmanaged switch. The managed switch will

provide this functionality often out-of-the-box in its factory

default settings. In that case, engineers might be tempted

to leave the switch in the default configuration. However,

the default configuration leaves the device as a permanent

security risk in the network, open for an attacker to claim,

configure, and exploit certain vulnerabilities that would not

have been possible otherwise (e.g., local privilege escala-

tion), maintain persistence in the network, and allow for

lateral movement. All while staying undetected since the

switch itself still provides all functional duties. Manual net-

work bootstrapping additionally struggles inmeeting repro-

ducibility and extensibility requirements as knowledge of

the network often remains undocumented and gets lost as

the engineers who bootstrapped it move on.

Moreover, although network bootstrapping was once

considered a one-time effort, the increasing complexity and

convergence of IT/OT networks necessitate its recurrence.

In particular, even minimal structural and configurational

changes in a network require overall evaluation to avoid
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conflicts and minimize attack surface through proper secu-

rity configurations. Such continuous evaluation, however,

poses practical challenges, especially when done manually.

Automated network bootstrapping, as an alternative to

manual approaches, streamlines some of the manual pro-

cesses but brings different challenges, including the need to

ensure the authenticity of the commissioned device and the

automatic discovery of neighbor devices, e.g., connected to

Ethernet ports. As devices vary in complexity due to ven-

dor fragmentation, some challenges are more relevant than

others, necessitating a backward-compatible approach. For

instance, when the authenticity of a device cannot be ver-

ified, manual authentication is inevitable but the commis-

sioner should be sufficiently supported.

3.2 Solution

We propose a largely automated, secure network bootstrap-

ping technique tailored to modern devices but also com-

patible with a wide range of legacy devices. The proposed

solution has minimal requirements on network devices. It

can be used by average network engineers in a fully or semi-

automated fashion, depending on the level of complexity of

the target devices. Besides reducing tedious manual effort,

the proposed technique elevates network security by adher-

ing to the zero-trust security principle as a defining design

decision. The zero-trust principle places the security of net-

work devices, and transitively the whole network, at higher

standards, by limiting capabilities of local user accounts

on network devices, ensuring strong authentication and

secret management mechanisms, enforcing fine-grained

access control, and establishing the authenticity of network

devices participating in a network [5]. The proposed solu-

tion bridges a gap in industrial automation and paves the

way for more rigorous secure network bootstrapping.

3.2.1 Components overview

As shown in Figure 2, the proposed solution, referred to as

the Network Orchestrator hereafter, consists of four com-

ponents, the Network Controller, Security Controller, Vault,

andWebUser Interface (WebUI). TheNetworkOrchestrator

interfaces with the users, who wish to bootstrap the net-

work, and network devices, which are limited to switches

in our prototypical design. We first introduce these com-

ponents and then describe their interactions to securely

bootstrap networks.

The Network Controllermanages the overall bootstrap-

ping process. It offers the necessary APIs to start, stop,

and visualize the bootstrapping process through a Web UI

(see Figure 2). It additionally accepts the network config-

urations from the users and deploys them on the target

Figure 2: Execution flow for bootstrapping a network consisting of four network devices. The figure shows the network orchestrator that composes

four basic components necessary for bootstrapping the network. It also shows the steps necessary to discover, authenticate, and commission a single

network device (i.e., steps 3–9 and then step X). The discovery process follows the depth-first traversal algorithm (i.e., discovery of switches B, C, and

D, in order).
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devices as they get authenticated and securely configured

during the process. TheNetwork Controller also implements

access control to segregate roles, e.g., auditors only have

view access rights while network commissioners have edit

rights. It also persists users’ actions and requests to ensure

accountability.

TheWeb UI gives users oversight and control over the

bootstrappingprocess, leveraging theAPIs exposed from the

Network Controller. While bootstrapping modern network

devices is fully automated, bootstrapping legacy devices

requiresmanual intervention, inwhich users are supported

with information-rich UIs that facilitate taking decisions

and corresponding actions. In a corporate setup, the Web

UI is the sole access point to the network bootstrapping

process. Itmust be operated by securely authenticated users

and should be protected via Single Sign On (SSO). This aligns

with zero-trust architectures by using a single, strong source

of user identity and avoiding user authentication on the

level of network devices.

The Vault is a repository for sensitive material, includ-

ing authorization and authentication material necessary to

manage the devices in the network. It enforces second-layer

access control on who can access what from the Vault, fur-

ther elevating the security of the overall solution. It is a

form of privileged access management (PAM) on the level of

machine-to-machine authentication. When a user initiates

operations on network devices through the Web UI, the

network controller executes them using authorization and

authentication material from the Vault.

The Security Controller has the responsibility of incre-

mentally discovering the network devices, authenticating

them, and handing them over to the Network Controller

for further commissioning. Along the way, the Security Con-

troller ensures that devices’ default authorization tokens

and potentially insecure default configurations are replaced

with stronger ones. Authorization and authenticationmate-

rial is securely persisted in the Vault. It is worth noting

that discovering network devices entails several security

operations and, therefore, falls under the responsibilities of

the Security Controller.

3.2.2 Bootstrapping process overview

The network bootstrapping process begins when the Net-

work Controller receives a “start” request from the user via

the corresponding exposed API triggered from the Web UI

(see Figure 2). This request will be passed on to the Security

Controller (step ), which has to be connected to an arbi-

trary device of the network for the bootstrapping process to

work. The Security Controller will then query its local Link

Layer Discovery Protocol [6] (LLDP) data (step ). The LLDP

data describes directly connected devices, i.e., Switch A in

this example, conveying its IP address, the address of aman-

agement endpoint, MAC address, chassis number, model,

and manufacturer details. Using this information, the secu-

rity controller configures its network interface accordingly

to establish a connection to the management endpoint (e.g.,

by configuring an IP address and subnet).

At this point, the Security Controller attempts to

authenticate switch A. Several options for authenticating

the switch are possible, for example, using transport layer

security certificates issued by amanufacturer CA or a public

CA. In our prototypical implementation it queries a pre-

stored manufacturer-issued SSH server public key from the

Vault that corresponds with switch A (step ). Such key

material could be pre-stored using trust from the Web PKI

or directly derived from communication with the vendor.

If no such authentication key exists, the Security Controller

resorts to other techniques to validate the authenticity of the

target device, which we describe in Section 3.2.3.

After validating the authenticity of switch A (step ),

the Security Controller proceeds by accessing the manage-

ment interface with default credentials or credentials pre-

stored in the vault. It checks if the switch is in its default

settings, i.e. commissioning mode, resetting default autho-

rization material of the target device, and storing the new

material in the Vault (steps and ). The Security Con-

troller is then also responsible to change the network config-

uration to a configuration that avoids conflicts and ensures a

disturbance-free progress of the bootstrapping process. For

example, the Security Controller configures switch A with a

separate VLAN per port, isolating the devices connected to

Switch A from each other. The devices connected to Switch

A remain accessible from the Security Controller since the

Security Controller configures its own connecting port of

Switch A to carry all frames VLAN tagged (i.e., a so-called

trunk port). This not only prevents problems due to con-

flicting default configuration, but also provides a barrier for

threat actors to access other devices. This leaves switch A

with a defined, secure configuration and sets up connected

devices for the further progress of secure discovery (step

). At this point, the Security Controller announces to the

Network Controller that Switch A is trusted and ready to

be commissioned (step ), so that the Network Controller

can update the Web UI. This marks a checkpoint indicating

that network devices of Level 1 have been fully discovered.

However, the Network Controller waits for further orches-

tration until all devices are discovered and set up with

secure configurations.
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To discover further devices directly connected to

SwitchA, the Security Controller queries the LLDPdata from

Switch A using NETCONF [7] over SSH transport and authen-

ticates and authorizes itself using material from the Vault.

The LLDP data yield information about Switches B and C

(step ). Following a depth-first traversal approach, the

bootstrapping process now considers Switch B for authenti-

cation and basic configurations. The Security Controller sets

up an interface with the corresponding VLAN configuration

for switch B and then repeats steps to .

Since Switch B is not connected to any further undis-

covered devices, its LLDP data will not yield further infor-

mation about unknown devices. Discovery will stop for this

path. The exact same process then repeats for Switch C,

marking a checkpoint for Level 2 devices, and then for

Switch D, marking a checkpoint for Level 3 and a conclusion

of thewhole bootstrapping process.With all devices authen-

ticated and corresponding authorization material persisted

in the Vault, the Security Controller signals to the Network

Controller, that all necessary information to orchestrate the

network to the user’s requirements is ready (step ).

3.2.3 Device authentication

The goal of this step is to make sure we are talking to the

intended network device. This not only prevents misconfig-

uration due to errors, it also prevents malicious actors from

infiltrating the network. To authenticate a device, the Net-

work Orchestrator supports three mechanisms, depending

on whether the device offers a verifiable secure identity

(e.g., a DevID as defined in IEEE 802.1AR [8]) or not:

1. Automatic authentication does not require any manual

effort but requires certain functionality from devices

and organizational measures. A device needs to provide

a secure identity and relevant information for checking

the secure identity (i.e., public keys, certificates) existing

in the Vault.

2. Semi-automatic authentication iswhen the device offers

a secure identity, but the identity is not available in

the Vault. Depending on configuration, manual inter-

vention might be needed to confirm the identity and

store it in the Vault. Alternatively, device authentica-

tion could be configured to automatically trust secure

identities from certain vendors. Then, the device could

be authenticated like in the automatic authentication

step. However, information about this should be still

conveyed in the Web UI.

3. Manual authentication is when the device does not offer

a secure identity, a limitation common in legacy devices.

In such a case, plausibility checking offers another

automated verification layer, including checks on MAC

address if it comes from the intended vendor and chas-

sis ids and serial number matching on the device. A

visualization of the device showingwhere it is located in

the network is also shown. Suchmeta information about

the device facilitates decision making and provide a

more secure alternative than pure-manual authentica-

tion. Finally, the Network Orchestrator can only provide

clues to the user if a device is authentic. The decision

itself has to be taken by the user.

After a device is authenticated, its configuration is checked

if it still in factory default. Only then, the device is ready

and trusted for operation. If there are unexpected changes

to the configuration, it is not considered secure. Depending

on the device in question, a reset to factory default can be

issued and device authentication restarted. However, this is

only secure if the device in question supports a complete

reset to factory defaults and measures to check for success

(e.g., secure boot, remote attestation). Otherwise, human

intervention is necessary.

3.2.4 Device authorization

Network devices are shipped with default credentials and

users. Intuitively, keeping devices in such a state is insecure.

In our design, we also consider non-default credentials that

are not stored in the Vault to be a threat. We argue that

such credentials, despite possibly being strong, can be easily

leaked, as opposed to credentials stored in the Vault. Tomiti-

gate this situation, the Network Controller leverages default

credentials to login into the devices for the first time. It then

resets the login credentials to stronger ones and stores them

in the Vault. It additionally removes unused users and inval-

idates existing sessions to preclude attackers who maintain

active access. This effectively limits access to the devices to

only the Network Controller and Security Controller, which

are strongly protected behind an auditable access control

policy, shielded behind an SSO scheme in our design.

3.2.5 Device commissioning

After all devices are discovered and authenticated, the

Network Orchestrator configures the network according

to user-defined requirements for networking and security

configurations, such as establishing VLANs and setting up

TSN. Configuring network devices, thanks to our proposed

solution, is a centrally-managed process, as opposed to

prevalent distributed and device-by-device approach. As a

last step, theNetworkOrchestrator brings up all devices into
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Table 1: Average execution time for core network bootstrapping

operations in seconds. All operations use an RSA key of 2048 bits. The

size of retrieved LLDP data is 2.49 KB.

Operation Execution time (s) Code

Identity verification 0.091 V

Administrative access 0.206 A

LLDP data retrieval 0.743 R

operational mode, restricting access and further modifica-

tions to the network to strongly authorized entities while

adhering to a configurable access control policy.

3.2.6 Scalability considerations

Evaluating the execution runtime of automated versusman-

ual network bootstrapping is unreasonable for the huge

disparity in favor of the automated approach. However, it

is beneficial to evaluate the absolute execution runtime of

automated network bootstrapping to understand its scala-

bility prospective. To that end, we present a hypothetical

example of a network consisting of X switches. Leveraging

themeasured execution times of basic bootstrapping opera-

tions, we argue for worst-case execution runtime assuming

no parallelization of execution available.

Setup: The network device used in the measurements

runs a Dual-core ARM Cortex-A9 CPU with 1 GB RAM and

offers an automatically verifiable identity. The average exe-

cution time over 100 runs of the core operations are sum-

marized in Table 1. Notice that the execution runtime of

all operations vary depending on the used cryptographic

algorithm, the switch’s processing power, and networking

overhead. Similarly, retrieving the LLDP data depends on

the size of the payload influenced by the number of directly

connected switches.

In a worst case scenario, with X switches that are seri-

ally connected forming an unbalanced tree of depth X, the

overall runtime execution, excluding time necessary for

configuring the device as it is dependent on the device and

type of configuration, is approximately

(A+ V + R)∗X (seconds).

Where A, V , and R are explained in Table 1 and X is the

number of switches in the target network.

In this worst case scenario, the execution runtime is

linear to the number of network devices participating in the

network. However, a setup of serially connected switches is

highly unlikely. In practice, the branching factor of switches

is considered to be much higher. This enables opportunities

for significant speedupbybootstrapping all networkdevices

discovered in one step in parallel. Then, execution runtime

becomes logarithmic to the number of devices following

the branching factor of the network topology. Both best-

case andworst-case execution runtimes are very affordable,

compared to the manual execution runtime, rendering our

proposed solution highly scalable.

3.3 Limitations

Some legacy network devices offer human-only interfaces

to access and configure them (e.g., web configuration).

Especially modern web user interfaces are usually not

machine friendly since they are expected to be accessed in

the browser and implement functionality client-side. This

poses a limitation as our solution works best with machine

friendly interfaces like SSH shells or NETCONF. Notice that

workarounds exist to mitigate this issue, e.g., via machine

controlled, instrumented browsers, which could improve

the range of devices fit for the proposed solution. Another

limitation is related to the discovery protocols. Our solution

relies on network devices to support LLDP for discovery.

Discovery of network devices without LLDP support is out

of the scope of our solution but still feasible in an active

discovery effort (e.g., using network scanning tools like

nmap [9]).

4 Bootstrapping virtualized

components

In next-gen industrial automation systems, components

are often no longer physical devices that serve one par-

ticular purpose (see Section 2). Instead, components are

being virtualized, which provides several benefits related

to availability, flexibility, and scalability. However, securely

bootstrapping virtualized components poses several chal-

lenges, since traditional solutions for physical components

no longer apply. In this section, we first introduce the

problem and then describe our solution for a secure boot-

strapping of virtualized components.

4.1 Problem description

Secure bootstrapping solutions typically rely on manufac-

turers pre-installing cryptographic keys and digital certifi-

cates in components, which give the component a unique

bootstrapping identity. During bootstrapping, automation
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engineers and tools then verify these manufacturer-

assigned identities to ensure the authenticity of new compo-

nents before integrating them into the network. To ensure

security, the necessary cryptographic material is typically

stored on devices in hardware-protected memory.

In modern industrial systems, components are increas-

ingly implemented as virtual software, so-called container-

ized applications. Existing bootstrapping techniques fail to

address the security needs of such containerized applica-

tions and virtual devices, since pre-installed device iden-

tities cannot be used to authenticate containerized appli-

cations. The reason for this is that containers may run on

various host devices and may even be shifted from one host

to another host during operation. An alternative approach

would be pre-installing cryptographic identities in the con-

tainerized applications themselves. However, this approach

provides insufficient security, as an adversary with access

to a container can copy it, obtain multiple components with

the same bootstrapping identity, and thus impersonate the

original component. This highlights the need for a solution

to securely bootstrap software components, including con-

tainerized applications, in industrial systems.

4.2 Solution

While existing solutions rely on pre-installed bootstrap-

ping credentials [10], we enable the Orchestrator to assign

bootstrapping identities immediately at deployment. The

Orchestrator is a common paradigm in modern software

architectures, which deploys and manages software con-

tainers running on a distributed cluster of host devices.

Our solution is the first that combines secure bootstrapping

identities with remote attestation and a secure hardware

key storage for containers, to enable the secure bootstrap-

ping of containerized applications by Orchestrators.

In detail, we propose to leverage secure hardware (e.g.,

a TPM) that is built into devices hosting containerized appli-

cations. Based on the secure hardware, a remote attestation

procedure is implemented between Orchestrator and host

devices. During attestation, the Orchestrator verifies that

containerized applications run on legitimate devices in an

uncompromised software environment. This way, our solu-

tion ensures that the Orchestrator assigns secure bootstrap-

ping identities only to containerized applications running in

trustworthy environments, i.e., environments that are not

controlled by an adversary. Note that containerized appli-

cations themselves need not be verified [11, 12], as they are

securely deployed by the Orchestrator and thus are trust-

worthy. In addition, host devices use the same technique to

verify the integrity and authenticity of the Orchestrator.

Figure 3: Illustration of the proposed secure onboarding process in case

of OPC UA.

To manage bootstrapping identities, we propose that

host devices implement a so-called Software Identity

Provider (SIP), which provides two novel features. First, it

offers an abstraction layer to the underlying secure hard-

ware, which ensures that each containerized application

can only access its own bootstrapping key but not the keys

of other applications. Second, it allows credentials to be

securely moved from one host device to another, which is

required when the Orchestrator shifts containerized appli-

cations in the cluster.

The secure bootstrapping of containerized applications

is a 4-step process, illustrated in Figure 3. In the first step,

the Orchestrator verifies the integrity of the host server and

its software (see Section 4.2.1). The second step focuses on

managing the identity of the volatile containerized appli-

cations (see Section 4.2.2). To enable secure communica-

tions between applications, the third step implants a trusted

certificate in all containers (see Section 4.2.3). The final step

describes the necessary measures for securely migrating

applications across the hostwhilemaintaining functionality

(see Section 4.2.4).

4.2.1 Integrity verification

Before installing containerized applications on a specific

host device, the Orchestrator uses a technique called remote

attestation to ensure the integrity of host devices and their

installed software. Remote attestation is a security solution

that allows a computer, the verifier, to check the software
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integrity of another computer, the prover. During attesta-

tion, the verifier determines whether the software running

on the prover is healthy or compromised, which enables the

verifier to remotely establish trust in the prover. Attestation

is typically implemented leveraging secure hardware, such

as a TPM, ARM TrustZone, or Intel SGX. In our solution, the

Orchestrator acts as a verifier and ensures that the host

has not been compromised by an adversary, as it is being

checked that the host only runs legitimate, unmodified, and

up-to-date software. In addition, the Orchestrator can verify

the legitimacy of the host device, e.g., whether it has been

installed by a system integrator or is maintained by a cloud

provider, if the host device has been certified by them. Only

if the authenticity and integrity of the host device and its

execution environment has been verified, the Orchestrator

deploys the containerized application and provides it with

a bootstrapping identity, as described in the next step. Addi-

tionally, host devices can use the same technique to ensure

the integrity and authenticity of the Orchestrator. This pre-

vents an attacker from impersonating an Orchestrator and

misusing host devices, albeit this would be detected by the

actual Orchestrator.

4.2.2 Bootstrapping identity assignment

Tomanage bootstrapping identities, host devices implement

a so-called Software Identity Provider (SIP). The SIP requests

and receives bootstrapping credentials from the Orchestra-

tor and assigns them to a specific containerized application.

Bootstrapping identities typically consist of a unique key

Figure 4: Illustration of bootstrapping identity assignment in details

(step 2).

and an associated digital certificate, e.g., DevIDs as proposed

in IEEE 802.1AR [8]. The digital certificate is signed by a

Certificate Authority (CA) that the Orchestratormanages. To

protect the private key associated with the bootstrapping

identity from unauthorized access by other containerized

applications, the SIP commands the generation of a new key

in hardware-protected storage (e.g., in a TPM). Thus, each

containerized application holds its own key that is stored

hardware-protected and managed by the SIP. The SIP only

allows the designated application to use its own key. This

prevents other applications, whichmay be compromised by

an adversary after deployment, from accessing the keys of

the containerized application. Figure 4 illustrates the boot-

strapping identity assignment.

4.2.3 Protocol-specific secure bootstrapping

The provided secure bootstrapping identity enables the con-

tainerized application to authenticate itself towards other

applications and devices in the network. This is used by

existing solutions, such as FDO [13], BRSKI [14], OPC 10000-21

[15] or SZTP [16], to securely bootstrap the containerized

application. For this step, the Orchestrator’s CA certificate,

from which the bootstrapping identities have been derived,

constitutes a common root of trust in the network. Thus, it

may be needed to import the Orchestrator’s CA certificate as

a trusted root certificate in devices and applications that are

not managed by the Orchestrator. Alternatively, the Orches-

trator may implement an intermediate CA whose certificate

is signed by a well-known root CA that other devices or

applications already consider as trustworthy. During boot-

strapping, the containerized application is typically pro-

vided with protocol- and environment-specific credentials

and settings, which enables the containerized application to

operate as expected after bootstrapping [13–15].

4.2.4 Bootstrapping identity migration

Note that this step is only required whenmoving containers

between hosts. After deployment, i.e., during operation, the

Orchestrator may decide to shift a containerized applica-

tion from one host device to another, e.g., due to shortage

of resources on the original host device. As containerized

applications should preserve their identities, issued boot-

strapping credentials need to be migrated from the original

host to the new host.

Some secure hardware, such as a TPM, allow themigra-

tion of keys. However, hardware key storage migration

mechanisms are often slow and inconvenient to use, e.g.,
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involving manual effort. For this reason, the SIP imple-

ments a migration protocol that is executed between the

Orchestrator, the SIP of the original host, and the SIP of

the new host. During migration, keys and certificates are

deleted on the old host, and new keys and certificates are

generated on the new host. The new certificates provide the

same identity as the original certificates and are signed by

the Orchestrator. For instance, in case of DevID certificates

that are used for the secure bootstrapping of OPC UA, the

new certificates make use the same ApplicationURI as the

original certificates. Afterwards, a protocol-specific solution

performs the actual bootstrapping with the migrated con-

tainerized application, as described in the previous step.

This way, the migrated application gets new credentials, but

still preserves its original identity that has been assigned by

the Orchestrator during deployment.

5 Conclusions

In this article, we propose an orchestration system that will

allow secure, automated bootstrapping of next generation

industrial automation systems. By filling the automation

gap between out-of-the-box components and orchestrated

components with an automated and secure solution, we

remove most of the tedious, manual effort and we remove

immense room for human error with dire consequences in

the security properties of these systems.

Our orchestration system combines incremental net-

work discovery with secure incremental bootstrapping of

discovered components. Using modern self-identifying and

self-authenticating components, this allows for a completely

automated, secure bootstrapping process with trust in each

incremental step of network discovery. The resulting secure,

orchestrated network then forms a trustworthy foundation

for bootstrapping of virtualized components.

For securely operating virtualized components, our

orchestration system provides them with a unique, secure

identity during the bootstrapping process. The trust in these

secure identities is derived from trust in all underlying com-

ponents during bootstrapping. After secure network boot-

strapping, our orchestration system uses remote attestation

techniques to ensure, that the hosting systems for virtual-

ized components themselves are only running the intended

software. After establishing trust into these host systems,

our orchestration system can deploy trusted cryptograph-

ically secured identities for virtualized components that

benefit from the trust the orchestration system provides

throughout the network.

With the physical network automatically, securely,

bootstrapped and virtualized components automatically

equipped with secure, trusted identities, a next generation

industrial automation system is ready to be orchestrated to

the users requirements and capable to deliver the required

adaptable, modular, and secure automation solutions of the

future.
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