Quantum computer-aided job scheduling for storage and retrieval systems
-
Stefan Windmann
Abstract
In this paper, a quantum computer-aided approach to job scheduling for automated storage and retrieval systems is introduced. The approach covers application cases, where various objects need to be transported between storage positions and the order of transport operations can be freely chosen. The objective of job scheduling is to arrange the transport operations in a sequence, where the cumulative costs of the transport operations and empty runs between subsequent transport operations are minimized. The scheduling problem is formulated as an asymmetric quadratic unconstrained binary optimization (QUBO) problem, in which the transport operations are modeled as nodes and empty runs are modeled as edges, with costs assigned to each node and each edge. An Quantum Approximate Optimization Algorithm (QAOA) is used to solve the QUBO. Evaluations of the quantum computer-aided job scheduling approach have been conducted on the IBM Q System One quantum computer in Ehningen. In particular, the running time for the solution of the QUBO has been investigated, as well as the scalability of the approach with respect to the required number of qubits.
Zusammenfassung
In diesem Beitrag wird ein Quantencomputer-gestützter Ansatz zur Auftragsplanung für automatisierte Regalbediengeräte vorgestellt. Der Ansatz adressiert Anwendungsfälle, in denen verschiedene Objekte zwischen Lagerpositionen transportiert werden, wobei die Reihenfolge der Transportvorgänge frei gewählt werden kann. Das Ziel der Auftragsplanung ist es, die Reihenfolge so zu optimieren, dass die kumulierten Kosten für die eigentlichen Transportvorgänge sowie zusätzlich erforderliche Leerfahrten minimiert werden. Das Scheduling-Problem wird als asymmetrisches quadratisches, binäres Optimierungsproblem (QUBO) formuliert, in dem die eigentlichen Transportvorgänge als Knoten und die Leerfahrten als Kanten modelliert werden, denen jeweils Kosten zugeordnet werden. Zur Lösung des QUBO-Problems wird ein Quantum Approximate Optimization Algorithm (QAOA) verwendet. Die Evaluierung des vorgeschlagenen Ansatzes wurde auf dem IBM Q System One Quantencomputer in Ehningen durchgeführt, wobei insbesondere die Laufzeit für die Lösung des QUBOs sowie die Skalierbarkeit des Ansatzes in Bezug auf die benötigte Anzahl von Qubits untersucht wurde.
About the author

Stefan Windmann received the Dipl.-Ing. and Dipl.-Inf. degrees in electrical engineering and technical computer sciences from University of Paderborn, Germany, in 2004, where he received the Ph.D. degree in electrical engineering in 2008. He is currently employed as senior scientist at Fraunhofer IOSB-INA in Lemgo, Germany. His current research interests include machine learning algorithms and methods for diagnosis and optimization of automated production systems.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
[1] D. Weichert, P. Link, A. Stoll, S. Ruping, S. Ihlenfeldt, and S. Wrobel, “A review of machine learning for the optimization of production processes,” Int. J. Adv. Des. Manuf. Technol., vol. 104, pp. 1889–1902, 2019. https://doi.org/10.1007/s00170-019-03988-5.Search in Google Scholar
[2] J. H. Lee, “Model predictive control: review of the three decades of development,” Int. J. Control Autom. Syst., vol. 9, pp. 415–424, 2011. https://doi.org/10.1007/s12555-011-0300-6.Search in Google Scholar
[3] T. van Erp and B. Gladysz, “Quantum technologies in manufacturing systems: perspectives for application and sustainable development,” in 55th CIRP Conference on Manufacturing Systems, 2022.10.1016/j.procir.2022.05.118Search in Google Scholar
[4] A. L. Ising, “Formulations of many NP problems,” Front. Phys., vol. 2, pp. 1–15, 2014.10.3389/fphy.2014.00005Search in Google Scholar
[5] J. Larkin, M. Jonsson, D. Justice, and G. G. Guerreschi, “Evaluation of QAOA based on the approximation ratio of individual samples,” arXiv, 2020.Search in Google Scholar
[6] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum, vol. 2, no. 79, 2018, Art. no. 79. https://doi.org/10.22331/q-2018-08-06-79.Search in Google Scholar
[7] M. Brooks, “Beyond quantum supremacy: the hunt for useful quantum computer,” Nature, vol. 574, no. 7776, pp. 19–21, 2019. https://doi.org/10.1038/d41586-019-02936-3.Search in Google Scholar PubMed
[8] A. Perruzo, J. McClean, P. Shadbolt, et al.., “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun., vol. 5, 2014, Art. no. 4213. https://doi.org/10.1038/ncomms5213.Search in Google Scholar PubMed PubMed Central
[9] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv, 2014.Search in Google Scholar
[10] F. Neukart, G. Compostella, C. Seidel, D. von Dollen, S. Yarkoni, and B. Parney, “Traffic flow optimization using a quantum annealer,” Tech. Rep., Volkswagen Group of America, Volkswagen Data:Lab, Munich, D-Wave Systems, 2017.10.3389/fict.2017.00029Search in Google Scholar
[11] D. Inoue, A. Okada, T. Matsumori, K. Aihara, and H. Yoshida, “Traffic signal optimization on a square lattice with quantum annealing,” arxiv, 2003.07527v2, 2021.10.1038/s41598-021-82740-0Search in Google Scholar PubMed PubMed Central
[12] E. Osaba, E. Villar-Rodriguez, and I. Oregi, “A systematic literature review of quantum computing for routing problems,” IEEE Access, vol. 10, pp. 55805–55817, 2022. https://doi.org/10.1109/access.2022.3177790.Search in Google Scholar
[13] V. Sharma, S. Gupta, G. Mehta, and B. K. Lad, “A quantum-based diagnostics approach for additive manufacturing machine,” IET Collab. Intell. Manuf., vol. 3, no. 2, pp. 2021–2192, 2021. https://doi.org/10.1049/cim2.12022.Search in Google Scholar
[14] A. Ajagekar and F. You, “Quantum computing for energy systems optimization: challenges and opportunities,” Energy, vol. 179, pp. 76–89, 2019. https://doi.org/10.1016/j.energy.2019.04.186.Search in Google Scholar
[15] D. Inoue and H. Yoshida, “Model predictive control for finite input systems using the D-wave quantum annealer,” Sci. Rep., vol. 10, 2020, Art. no. 1591. https://doi.org/10.1038/s41598-020-58081-9.Search in Google Scholar PubMed PubMed Central
[16] A. Mehta, M. Muradi, and S. Woldetsadick, “Quantum annealing based optimization of robotic movement in manufacturing,” in Int. Workshop Quantum Technol, Optim. Problems, 2019.10.1007/978-3-030-14082-3_12Search in Google Scholar
[17] J. Clark, T. West, J. Zammit, X. Guo, L. Mason, and D. Russell, “Towards real time multi-robot routing using quantum computing technologies,” in Proc. Int. Conf. High Perform. Comput. Asia–Pacific Region, 2019.10.1145/3293320.3293333Search in Google Scholar
[18] P. Atchade-Adelomou, G. Alonso-Linaje, J. Albo-Canals, and D. Casado-Fauli, “QRobot: a quantum computing approach inmobile robot order picking and batching problem solver optimization,” Algorithms, vol. 14, no. 7, p. 194, 2021. https://doi.org/10.3390/a14070194.Search in Google Scholar
[19] S. Hadfield, “On the representation of boolean and real functions as Hamiltonians for quantum computing,” ACM Trans. Quantum Comput., vol. 2, pp. 1–21, 2018. https://doi.org/10.1145/3478519.Search in Google Scholar
[20] N. Grüttemeier, K. Balzereit, N. Soni, and A. Bunte, “Efficient production scheduling by exploiting repetitive product configurations,” in IEEE 21st International Conference on Industrial Informatics (INDIN), 2023.10.1109/INDIN51400.2023.10218249Search in Google Scholar
[21] A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, et al.., “Readiness of quantum optimization machines for industrial applications,” Phys. Rev. Appl., vol. 12, 2019, Art. no. 014004. https://doi.org/10.1103/physrevapplied.12.014004.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Vorwort 2024
- Survey
- Unmanned vehicles on the rise: a review on projects of cooperating robot teams
- Methods
- Quantum computer-aided job scheduling for storage and retrieval systems
- On computation of Floquet-transformations and their applicability to controller synthesis for electrical machines
- Adaptive tracking control of a nonholonomic wheeled mobile robot with multiple disturbances and input constraints
- Fault detection in automated production systems based on a long short-term memory autoencoder
- Applications
- SysML’ – incorporating component properties in early design phases of automated production systems
- Persönliches
- Prof. Dr.-Ing. habil. Hartmut Janocha zum 80. Geburtstag
Articles in the same Issue
- Frontmatter
- Editorial
- Vorwort 2024
- Survey
- Unmanned vehicles on the rise: a review on projects of cooperating robot teams
- Methods
- Quantum computer-aided job scheduling for storage and retrieval systems
- On computation of Floquet-transformations and their applicability to controller synthesis for electrical machines
- Adaptive tracking control of a nonholonomic wheeled mobile robot with multiple disturbances and input constraints
- Fault detection in automated production systems based on a long short-term memory autoencoder
- Applications
- SysML’ – incorporating component properties in early design phases of automated production systems
- Persönliches
- Prof. Dr.-Ing. habil. Hartmut Janocha zum 80. Geburtstag