Home MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB
Article
Licensed
Unlicensed Requires Authentication

MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB

  • Tim Moser

    Tim Moser, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

    EMAIL logo
    , Julius Durmann

    Julius Durmann, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

    , Maximilian Bonauer

    Maximilian Bonauer, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

    and Boris Lohmann

    Boris Lohmann, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

Published/Copyright: June 7, 2023

Abstract

We present a novel software toolbox MORpH for the efficient storage, analysis, interconnection and structure-preserving model order reduction (MOR) of linear port-Hamiltonian differential-algebraic equation systems (pH-DAEs). The model class of pH-DAEs enables energy-based modeling and a flexible coupling of models across different physical domains. This makes them particularly suited for the simulation and control of complex technical systems. To promote the use of recent theoretical findings in engineering practice, efficient software solutions are required. In this work, we illustrate how possibly large-scale pH-DAEs can be efficiently stored and interconnected in MATLAB in an object-oriented way. We discuss three structure-preserving MOR strategies that are supported by MORpH and demonstrate the application and performance of selected MOR algorithms by means of two benchmark examples.

Zusammenfassung

In diesem Beitrag wird eine neue Software-Toolbox MORpH vorgestellt, die eine effiziente Speicherung, Analyse, Vernetzung sowie strukturerhaltende Modellordnungsreduktion (MOR) von linearen port-Hamiltonschen differential-algebraischen Modellen (pH-DAEs) ermöglicht. Die Modellklasse der pH-DAEs erlaubt eine energiebasierte Modellierung und eine flexible Kopplung von Modellen über verschiedene physikalische Domänen hinweg. Hierdurch ist sie besonders für die Simulation und Regelung komplexer technischer Systeme geeignet. Um die Anwendung neuer theoretischer Erkenntnisse in der Ingenieurspraxis zu fördern, sind effiziente Softwarelösungen erforderlich. In diesem Beitrag zeigen wir, wie potenziell große pH-DAEs effizient und objektorientiert in MATLAB gespeichert und vernetzt werden können. Wir diskutieren drei strukturerhaltende MOR-Strategien, die von MORpH unterstützt werden, und demonstrieren die Anwendung ausgewählter MOR-Algorithmen anhand zweier Benchmarks.


Corresponding author: Tim Moser, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany, E-mail:

About the authors

Tim Moser

Tim Moser, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

Julius Durmann

Julius Durmann, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

Maximilian Bonauer

Maximilian Bonauer, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

Boris Lohmann

Boris Lohmann, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics and Computation, Boltzmannstr. 15, 85748 Garching, Germany.

Acknowledgement

The authors would like to thank Zeyad Hassan, Honglin Kang, and Nora Reinbold for their help with the implementation of MORpH.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research has been funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project number 418612884.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

Third-party software

The MORpH toolbox partially relies on the following (open-source) third-party software which has to be downloaded separately and which we gratefully acknowledge:

  1. The optimization software MANOPT [42] and GRANSO [43] for optimization-based MOR methods such as lyapOpt.

  2. The M-M.E.S.S. toolbox [41] for the solution of large-scale algebraic Riccati and Lyapunov equations as in prbt.

  3. SADPA [44] and SAMDP [45] for computing dominant spectral zeros in dszm.

  4. The optimization software CVX [46, 47] and YALMIP [48] for solving the KYP inequality (8) in ss2phs.

  5. The functions linorm_subsp [49, 50] and hinorm [51] to compute the H norm of large-scale models in ihaPH.

Similar to the call of subroutines in a MORpH function, the use of third-party software may be enforced and configured via the Opts struct (see Section 3.3.2). In lyapOpt, for example, the maximum number of optimization iterations by the third-party software MANOPT can be set to 500 via

  • Opts.manopt.maxiter = 500

Depending on the configuration, the input parser of each function then searches for required third-party software and, if not yet installed, assists with installation instructions.

References

[1] T. Breiten, R. Morandin, and P. Schulze, “Error bounds for port-Hamiltonian model and controller reduction based on system balancing,” arXiv Preprint arXiv:2012.15266, 2020.Search in Google Scholar

[2] S. Chaturantabut, C. Beattie, and S. Gugercin, “Structure-preserving model reduction for nonlinear port-Hamiltonian systems,” SIAM J. Sci. Comput., vol. 38, no. 5, pp. B837–B865, 2016. https://doi.org/10.1137/15m1055085.Search in Google Scholar

[3] S. Gugercin, R. V. Polyuga, C. Beattie, and A. van der Schaft, “Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems,” Automatica, vol. 48, no. 9, pp. 1963–1974, 2012. https://doi.org/10.1016/j.automatica.2012.05.052.Search in Google Scholar

[4] B. Liljegren-Sailer and N. Marheineke, “On port-Hamiltonian approximation of a nonlinear flow problem on networks,” SIAM J. Sci. Comput., vol. 44, no. 3, pp. B834–B859, 2022. https://doi.org/10.1137/21m1443480.Search in Google Scholar

[5] T. Moser, P. Schwerdtner, V. Mehrmann, and M. Voigt, “Structure-preserving model order reduction for index two port-Hamiltonian descriptor systems,” arXiv Preprint arXiv:2206.03942, 2022.Search in Google Scholar

[6] K. Cherifi, H. Gernandt, and D. Hinsen, “The difference between port-Hamiltonian, passive and positive real descriptor systems,” arXiv Preprint arXiv:2204.04990, 2022.Search in Google Scholar

[7] T. Breiten and B. Unger, “Passivity preserving model reduction via spectral factorization,” Automatica, vol. 142, p. 110368, 2022. https://doi.org/10.1016/j.automatica.2022.110368.Search in Google Scholar

[8] R. Ionutiu, J. Rommes, and A. C. Antoulas, “Passivity-preserving model reduction using dominant spectral-zero interpolation,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., vol. 27, no. 12, pp. 2250–2263, 2008. https://doi.org/10.1109/tcad.2008.2006160.Search in Google Scholar

[9] K. Unneland, P. Van Dooren, and O. Egeland, “A novel scheme for positive real balanced truncation,” in 2007 American Control Conference, 2007, pp. 947–952.10.1109/ACC.2007.4282863Search in Google Scholar

[10] S. Grivet-Talocia and B. Gustavsen, Passive Macromodeling: Theory and Applications, Hoboken, NJ, John Wiley & Sons, Inc., 2016.10.1002/9781119140931Search in Google Scholar

[11] R. Milk, S. Rave, and F. Schindler, “pyMOR – generic algorithms and interfaces for model order reduction,” SIAM J. Sci. Comput., vol. 38, no. 5, pp. S194–S216, 2016. https://doi.org/10.1137/15m1026614.Search in Google Scholar

[12] A. Castagnotto, M. Cruz Varona, L. Jeschek, and B. Lohmann, “sss & sssMOR: analysis and reduction of large-scale dynamic systems in MATLAB,” Automatisierungstechnik, vol. 65, no. 2, pp. 134–150, 2017. https://doi.org/10.1515/auto-2016-0137.Search in Google Scholar

[13] P. Benner and S. W. R. Werner, “MORLAB—the model order reduction LABoratory,” in Model Reduction of Complex Dynamical Systems, P. Benner, T. Breiten, H. Faßbender, M. Hinze, T. Stykel, and R. Zimmermann, Eds., Cham, Springer International Publishing, 2021, pp. 393–415.10.1007/978-3-030-72983-7_19Search in Google Scholar

[14] N. Gillis and P. Sharma, “Finding the nearest positive-real system,” SIAM J. Numer. Anal., vol. 56, no. 2, pp. 1022–1047, 2018. https://doi.org/10.1137/17m1137176.Search in Google Scholar

[15] C. Beattie, V. Mehrmann, H. Xu, and H. Zwart, “Linear port-Hamiltonian descriptor systems,” Math. Control Signals Syst., vol. 30, no. 17, pp. 1–27, 2018. https://doi.org/10.1007/s00498-018-0223-3.Search in Google Scholar

[16] S. A. Hauschild, N. Marheineke, and V. Mehrmann, “Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic systems,” Control Cybern., vol. 48, no. 1, pp. 125–152, 2019.10.1002/pamm.201900040Search in Google Scholar

[17] C. Güdücü, J. Liesen, V. Mehrmann, and D. B. Szyld, “On non-Hermitian positive (semi)definite linear algebraic systems arising from dissipative Hamiltonian DAEs,” arXiv Preprint arXiv:2111.05616, 2021.10.1137/21M1458594Search in Google Scholar

[18] F. Achleitner, A. Arnold, and V. Mehrmann, “Hypocoercivity and controllability in linear semi-dissipative Hamiltonian ordinary differential equations and differential-algebraic equations,” ZAMM Z. fur Angew. Math. Mech., 2021. https://doi.org/10.1002/zamm.202100171.Search in Google Scholar

[19] C. A. Beattie, S. Gugercin, and V. Mehrmann, “Structure-preserving interpolatory model reduction for port-Hamiltonian differential-algebraic systems,” in Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the 70th Birthday of Thanos Antoulas, C. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, Eds., Cham, Springer, 2022.10.1007/978-3-030-95157-3Search in Google Scholar

[20] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Modeling and Control of Complex Physical Systems, Berlin, Heidelberg, Springer-Verlag, 2009.10.1007/978-3-642-03196-0Search in Google Scholar

[21] J. C. Willems, “Dissipative dynamical systems Part II: linear systems with quadratic supply rates,” Arch. Ration. Mech. Anal., vol. 45, no. 5, pp. 352–393, 1972. https://doi.org/10.1007/bf00276494.Search in Google Scholar

[22] B. D. O. Anderson and S. Vongpanitlerd, Network Analysis and Synthesis – A Modern Systems Theory Approach, Englewood Cliffs, NJ, Prentice-Hall, 1973.Search in Google Scholar

[23] R. V. Polyuga and A. van der Schaft, “Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems,” Syst. Control Lett., vol. 61, no. 3, pp. 412–421, 2012. https://doi.org/10.1016/j.sysconle.2011.12.008.Search in Google Scholar

[24] R. V. Polyuga and A. van der Schaft, “Structure preserving moment matching for port-Hamiltonian systems: Arnoldi and Lanczos,” IEEE Trans. Automat. Control, vol. 56, no. 6, pp. 1458–1462, 2011. https://doi.org/10.1109/tac.2011.2128650.Search in Google Scholar

[25] T. Moser, J. Durmann, and B. Lohmann, “Surrogate-based H2${\mathcal{H}}_{2}$ model reduction of port-Hamiltonian systems,” in 2021 Eur. Control Conf. (ECC), 2021, pp. 2058–2065.10.23919/ECC54610.2021.9655109Search in Google Scholar

[26] V. Druskin and V. Simoncini, “Adaptive rational Krylov subspaces for large-scale dynamical systems,” Syst. Control Lett., vol. 60, no. 8, pp. 546–560, 2011. https://doi.org/10.1016/j.sysconle.2011.04.013.Search in Google Scholar

[27] V. Druskin, V. Simoncini, and M. Zaslavsky, “Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems,” SIAM J. Matrix Anal. Appl., vol. 35, no. 2, pp. 476–498, 2014. https://doi.org/10.1137/120898784.Search in Google Scholar

[28] K. Sato, “Riemannian optimal model reduction of linear port-Hamiltonian systems,” Automatica J. IFAC, vol. 93, pp. 428–434, 2018. https://doi.org/10.1016/j.automatica.2018.03.051.Search in Google Scholar

[29] T. Moser and B. Lohmann, “A new Riemannian framework for efficient H2${\mathcal{H}}_{2}$-optimal model reduction of port-Hamiltonian systems,” in Proceedings of 59th IEEE Conference on Decisison and Control (CDC), Jeju Island, Republic of Korea, 2020, pp. 5043–5049.10.1109/CDC42340.2020.9304134Search in Google Scholar

[30] P. Schwerdtner and M. Voigt, “Structure preserving model order reduction by parameter optimization,” arXiv Preprint arXiv:2011.07567, 2020.Search in Google Scholar

[31] U. Desai and D. Pal, “A transformation approach to stochastic model reduction,” IEEE Trans. Automat. Control, vol. 29, no. 12, pp. 1097–1100, 1984. https://doi.org/10.1109/tac.1984.1103438.Search in Google Scholar

[32] J. Phillips, L. Daniel, and L. M. Silveira, “Guaranteed passive balancing transformations for model order reduction,” in Proceedings 2002 Design Automation Conference (IEEE Cat. No.02CH37324), 2002, pp. 52–57.10.1109/DAC.2002.1012593Search in Google Scholar

[33] T. Moser and B. Lohmann, “A Rosenbrock framework for tangential interpolation of port-Hamiltonian descriptor systems,” arXiv Preprint arXiv:2210.16071, 2022.Search in Google Scholar

[34] P. Schwerdtner, T. Moser, V. Mehrmann, and M. Voigt, “Structure-preserving model order reduction for index one port-Hamiltonian descriptor systems,” arXiv Preprint arXiv:2206.01608, 2022.Search in Google Scholar

[35] G. Flagg, C. A. Beattie, and S. Gugercin, “Interpolatory H∞${\mathcal{H}}_{\infty }$ model reduction,” Syst. Control Lett., vol. 627, pp. 567–574, 2013. https://doi.org/10.1016/j.sysconle.2013.03.006.Search in Google Scholar

[36] A. Castagnotto, C. Beattie, and S. Gugercin, “Interpolatory methods for H∞${\mathcal{H}}_{\infty }$ model reduction of multi-input/multi-output systems,” in Modeling, Simulation and Applications, Cham, Springer International Publishing, 2017, pp. 349–365.10.1007/978-3-319-58786-8_22Search in Google Scholar

[37] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamiltonian matrices,” IEEE Trans. Circuits Syst. I: Regul. Pap, vol. 51, no. 9, pp. 1755–1769, 2004. https://doi.org/10.1109/tcsi.2004.834527.Search in Google Scholar

[38] V. Mehrmann and B. Unger, “Control of port-Hamiltonian differential-algebraic systems and applications,” arXiv Preprint arXiv:2201.06590, 2022.10.1017/S0962492922000083Search in Google Scholar

[39] T. Moser, “Benchmark systems and code for article: MORpH: model reduction of linear port-Hamiltonian systems in MATLAB,” 2022. https://doi.org/10.5281/zenodo.7081776.Search in Google Scholar

[40] P. Benner, Z. Bujanovic, P. Kürschner, and J. Saak, “RADI: a low-rank ADI-type algorithm for large scale algebraic Riccati equations,” Numer. Math., vol. 138, no. 2, pp. 301–330, 2017. https://doi.org/10.1007/s00211-017-0907-5.Search in Google Scholar PubMed PubMed Central

[41] J. Saak, M. Köhler, and P. Benner, M-M.E.S.S.-2.1 – The Matrix Equations Sparse Solvers Library, 2022. Available at: https://www.mpi-magdeburg.mpg.de/projects/mess.Search in Google Scholar

[42] N. Boumal, B. Mishra, P. A. Absil, and R. Sepulchre, “Manopt, a matlab toolbox for optimization on manifolds,” J. Mach. Learn. Res., vol. 15, no. 42, pp. 1455–1459, 2014.Search in Google Scholar

[43] F. E. Curtis, T. Mitchell, and M. L. Overton, “A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles,” Optim. Methods Software, vol. 32, no. 1, pp. 148–181, 2017. https://doi.org/10.1080/10556788.2016.1208749.Search in Google Scholar

[44] J. Rommes and N. Martins, “Efficient computation of transfer function dominant poles using subspace acceleration,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1218–1226, 2006. https://doi.org/10.1109/tpwrs.2006.876671.Search in Google Scholar

[45] J. Rommes and N. Martins, “Efficient computation of multivariable transfer function dominant poles using subspace acceleration,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1471–1483, 2006. https://doi.org/10.1109/tpwrs.2006.881154.Search in Google Scholar

[46] M. Grant and S. Boyd, “CVX: matlab software for disciplined convex programming, version 2.1,” 2014. Available at: http://cvxr.com/cvx.Search in Google Scholar

[47] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds., London, Springer, 2008, pp. 95–110.10.1007/978-1-84800-155-8_7Search in Google Scholar

[48] J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.Search in Google Scholar

[49] N. Aliyev, P. Benner, E. Mengi, P. Schwerdtner, and M. Voigt, et al.., “Large-scale computation of L∞${\mathcal{L}}_{\infty }$-norms by a greedy subspace method,” SIAM J. Matrix Anal. Appl., vol. 38.4, pp. 1496–1516, 2017. https://doi.org/10.1137/16m1086200.Search in Google Scholar

[50] P. Schwerdtner and M. Voigt, “Computation of the L∞${\mathcal{L}}_{\infty }$-norm using rational interpolation,” in IFACPapersOnLine 51.25 (2018). 9th IFAC Symposium on Robust Control Design ROCOND, 2018, pp. 84–89.10.1016/j.ifacol.2018.11.086Search in Google Scholar

[51] P. Benner and M. Voigt, “A structured pseudospectral method for L∞${\mathcal{L}}_{\infty }$-norm computation of large-scale descriptor systems,” Math. Control. Signals, Syst., vol. 26, no. 2, pp. 303–338, 2013. https://doi.org/10.1007/s00498-013-0121-7.Search in Google Scholar

Received: 2022-09-15
Accepted: 2022-12-01
Published Online: 2023-06-07
Published in Print: 2023-06-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/auto-2022-0119/html?lang=en
Scroll to top button