
at – Automatisierungstechnik 2022; 70(9): 777–786

Survey

Constanze Hasterok* and Janina Stompe

PAISE® – process model for AI systems
engineering
PAISE® – das Vorgehensmodell für KI-Engineering

https://doi.org/10.1515/auto-2022-0020
Received February 15, 2022; accepted May 25, 2022

Abstract: The application of artificial-intelligence-(AI)-
based methods within the context of complex systems
poses new challenges within the product life cycle. The
process model for AI systems engineering, PAISE®, ad-
dresses these challenges by combining approaches from
the disciplines of systems engineering, software develop-
ment and data science. The general approach builds on
a component-wise development of the overall system in-
cluding an AI component. This allows domain specific
development processes to be parallelized. At the same
time, component dependencies are tested within interdis-
ciplinary checkpoints, thus resulting in a refinement of
component specifications.

Keywords: AI systems engineering, artificial intelligence,
systems engineering, process model, machine learning

Zusammenfassung: Die Anwendung von Methoden der
Künstlichen Intelligenz (KI) im Kontext komplexer Syste-
me stellt neue Herausforderungen an den Produktlebens-
zyklus. Das Vorgehensmodell für KI-Engineering, PAISE®,
adressiert diese Herausforderungen durch die Kombina-
tion von Ansätzen aus den Disziplinen Systems Engi-
neering, Softwareentwicklung und Data Science. Der all-
gemeine Ansatz basiert auf einer komponentenweisen
Entwicklung des Gesamtsystems einschließlich einer KI-
Komponente. Dadurch können domänenspezifische Ent-
wicklungsprozesse parallelisiert werden. Gleichzeitigwer-
den die Abhängigkeiten der Komponenten untereinander
in interdisziplinären Checkpoints getestet. Dadurch wer-
den die Komponentenspezifikationen Schritt für Schritt
verfeinert.

Schlagwörter:KI-Engineering, künstliche Intelligenz, Sys-
tems Engineering, Vorgehensmodell,maschinelles Lernen

*Corresponding author: Constanze Hasterok, Fraunhofer IOSB,
Karlsruhe, Germany, e-mail:
constanze.hasterok@iosb.fraunhofer.de
Janina Stompe, Fraunhofer IOSB, Karlsruhe, Germany, e-mail:
janina.stompe@iosb.fraunhofer.de

1 Introduction
Due to the progress in computing power over the last
decades and the increasing availability of data, the use of
data-driven methods is favored and expanded in many in-
dustrial domains. Therefore, machine learning (ML) algo-
rithms are advancing to the practical forefront as a subset
of artificial intelligence (AI). The ML algorithm programs a
software for a given use case by analyzing so-called train-
ing data and identifying patterns and correlations. The
functions of the created software are therefore largely de-
termined by the training data.

The importance of finding a systematic approach for
the development of intelligent systems making use of
novel AI and machine learning methods is widely recog-
nized in Germany and Europe – in industrial development
(e. g., in the projects of the “AI family” of the VDA flag-
ship initiative), in standardization (e. g., in the AI stan-
dardization roadmap of DIN and DKE [1]), and by institu-
tions such as the European Commission. In addition to the
great potential of AI, the European Commission sees the
need for regulations as described in the “EU AI Act” [5].
Legal foundations should protect markets and the public
sector as well as people’s security and fundamental rights.
This goal of creating trustworthy AI applications in Europe
requires a high level of systematic and interdisciplinary
approaches.

Classical procedure models assume a systematically
testable system and are therefore only conditionally com-
patible with the use of ML methods. Currently, systems
that apply ML methods can only be tested by empirical
methods, regardless of whether ML is built into the final
system itself or whetherMLmethods are used to derive de-
sign specifications for the final product. In both cases, the
results of complex ML-based methods can influence the
functionality of the end product in a critical way. There-
fore, it is necessary to be able to trace this influence back
to principles of the ML-based methods used and the un-
derlying data.

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/auto-2022-0020
mailto:constanze.hasterok@iosb.fraunhofer.de
mailto:janina.stompe@iosb.fraunhofer.de


778 | C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering

The above explanations can be summarized in the fol-
lowing two challenges for the use of ML methods in the
development process of complex technical systems:
1. The ML component functionalities crucially depend

on data from operating components and
2. the performance of ML components is not predictable

in advance.

Popular and well-established process models like the Wa-
terfall Model, Scrum, Crisp-DMand the V-Model do not ad-
dress these challenges in a consequent way.

The Waterfall Model, originally defined for the do-
main of software development in 1970, consists of a fixed
number of phases that are run through in a predefined
sequence with clearly pre-defined results [10]. While this
process model supports good time planning during devel-
opment, it lacks iterative elements that allow an explo-
rative approach. Therefore, challenge 2 is not addressed.

The V-Model, which was designed in 1979 for software
development as well, is nowadays widely used in systems
engineering. In order to ensure product quality, design
phases are characterized with different levels of detail and
are accompanied by respective test phases. In contrast to
the Waterfall Model, the V-Model allows for an iterative
approach since a design phase can be repeated if the test
phase at the corresponding level of detail fails [9], [6].

The process model Scrum originates from the agile
software development approach and is an iterative model
as well. It was designed in 2002 [7] and development cy-
cles aim at fulfilling all tasks from a backlog that is re-
filled from a requirement list after every cycle. The essen-
tial ideas of agile software development are the follow-
ing main value preferences: individuals and interactions
over processes and tools, working software over compre-
hensive documentation, customer collaboration over con-
tact negotiation and responding to change over following
a plan [2]. It is these premises that have been heavily incor-
porated into the field of AI development and the discipline
of data science. Software engineering has thus departed
from the waterfall-like and V-Model approaches. However,
particularly agile development contradicts the needs of
specification- and documentation-driven development of
complex technical systems. Also the V-Model lacks a de-
scription of how to synchronize the parallel development
of data-driven software and hardware components and
ensure compatibility. For ML-components compatibility
severely depends on the quality of the data that was used
during the component’s development. Thus, challenge 1 is
met neither by the V-Model nor Scrum.

The Cross-industry standard process for data min-
ing (Crisp-DM) was designed in 1996 for data mining

projects [4]. The process focuses primarily on the under-
standing, exploration and modelling of the data. The sub-
sequent data evaluation is matched to the business un-
derstanding. The results decide on whether the modeling
cycle is started again or whether the model is deployed.
Crisp-DM assumes presence of data and does not con-
sider data sources, i. e., system components that can in-
fluence the data and therefore the model. Hence, the pro-
cess model lacks the capability to describe the interplay
between data quality and the functionalities of the ML-
component and therefore does not address challenge 1.

Especially in the area of software-intensive systems of
systems (SISOS), there has been a return to more struc-
tured process models since the 2010s. Standards such as
ISO 12207 and ISO/IEC 15288 are paving the way for the
development of increasingly complex systems. The goal is
to make AI engineering integrable into very large develop-
ment contexts in particular. This is where the discipline of
AI systems engineering and the associated Process model
forAI Systems Engineering (PAISE®) aim to make a signif-
icant contribution.

The standard ISO/IEC 15288 describes the life cycle
processes of a system developed according to the estab-
lished disciplines of systems engineering and software en-
gineering. These processes are equally important forAI en-
gineering. As a process model for AI systems engineering,
PAISE® is seen as an example of a procedure that picks
up the processes from the standard, focuses on the techni-
cal processes and highlights the special features that arise
through the use of AI.

The main application domains, that originally mo-
tivated PAISE®, are mobility and production. However,
PAISE® is in principle domain-independent and may be
used in a wide range of engineering disciplines. Various
usage scenarios include the customer-specific develop-
ment and implementation of AI-based systems, as well as
a completely new development of AI-based products that
are manufactured in series.

In the following, we will focus on the foundations of
PAISE®. More detailed explanations together with instruc-
tive examples can be found in [3].

2 PAISE®

The Process Model for AI Systems Engineering views the
development of a product as a system that can be decom-
posed into subsystems which can be either software (e. g.,
ML algorithms) or hardware (e. g., mechanical parts).
The subsystems provide individual functionalities, have



C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering | 779

Figure 1: Schematic view on the overall structure of the Process model for AI Systems Engineering (PAISE®).

clearly defined interfaces and can themselves be decom-
posable. ML methods can be integrated directly into sub-
systems or into so-called enabling systems that are not
part of the overall systemand are therefore not delivered to
customers, but enable the development and maintenance
of other subsystems. As pointed out in Section 1, data sets
and their quality play a crucial role in the process of AI
systems development. Hence, data sets are developed in-
dividually and are treated as a kind of subsystem. Subsys-
tems, enabling systems, and data sets are referred to as
components in PAISE®.

The schematic view on the overall structure of PAISE®

is presented in Figure 1. The process model consists of
seven phases that are arranged in a waterfall-like struc-
ture.

The first two phases, Goals & Problem Specification
and Requirements & Solution Approaches, adopt the pro-
cesses “Business orMission Analysis Process”, the “Stake-
holder Needs & Requirements Definition Process” and the
“System Requirements Definition Process” from the stan-

dard ISO/IEC 15288. Overall project goals are defined,
product requirements are derived and first ideas of how to
approach the problem are developed. It should be pointed
out that all considerations in theses phases should ad-
dress the overall system and should not go into the level of
detail of e. g., a functional decomposition. If the decision
has been taken to apply AImethods, requirements from le-
gal regulationsmust be considered [5]. Additionally, corre-
sponding data has to be integrated into the requirements
and the solution approach in that case.

The artifact of role distribution is initialized during the
phase Requirements & Problem Understanding to have a
clear distribution of responsibilities. It lists the responsi-
bilities required in each phase and is extended, if needed,
in all following phases.

Not AI specific is also the component specification
part in the phase Component Specification & Checkpoint
Strategy. Together with the Functional Decomposition it
adopts the “Architectural Definition Process” from the
standard ISO/IEC 15288. Components defined during the



780 | C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering

Functional Decomposition are initially specified including
their interfaces. The definition of the checkpoint strategy,
however, prepares the structure of the AI specific develop-
ment cycle and will be explained in Section 4.

The phase Handover covers the “Transition process”
from the standard ISO/IEC 15288 where the product is
transferred from the development team to the organiza-
tional units that realize operation and maintenance. For
this purpose, an operation andmaintenance concept is de-
veloped together with the corresponding documentation
for the user (e. g., user manual) and the service team. The
concept includes the definition of normal operationmodes
of the product aswell as escalation levelswith correspond-
ing measures and maintenance triggers. Ideally, these as-
pects were already considered during the development cy-
cle and only have to be documented at this stage.

In contrast, the characteristics of the phases Func-
tional Decomposition, Development Cycle and Operation &
Maintenance are specific to the application of AI meth-
ods in addition to general aspects from the “Design Defini-
tion Process”, “Implementation Process”, “Validation and
Verification Process” and “System Analysis Process” from
standard ISO/IEC 15288.

Their corresponding activities of theses phases and
how they address the two challenges of AI systems engi-
neering introduced in Section 1 are described in the fol-
lowing sections.

3 Functional decomposition

During the phase of Functional Decomposition, the func-
tions of the overall system are initially distributed onto
subsystems. The result is a mostly hierarchical subsystem
specification with well-defined interfaces. This is supple-
mented by the specification of additional enabling sys-
tems. The granularity of the subdivision depends strongly
on the complexity of the system.

It is important to emphasize that relations between
components can be of very different nature, such as data
exchange, electrical currents ormechanical forces. Hence,
several system models can exist depending on the kind of
relation. The same holds for the type of subsystem, which
can be hardware (e. g., mechanical parts) and/or software
(e. g., algorithms). Depending on the complexity of the use
case this distinction can require several system models.

In the context of AI systems engineering, it is crucial
to incorporate data sources into the system model. Data
sources are understood to be subsystems or enabling sys-
tems that provide data for development and/or for oper-

ation and thus significantly influence the functionality of
AI components. This consideration, together with a dedi-
cated process onhow to acquire data from the data sources
and evaluate data quality, addresses challenge 1 (see Sec-
tion 1).

The decision as to which subsystem should be AI-
based can be made either from experience during the ini-
tial Functional Decomposition or during the Development
Cycle in which refinement of the initial decomposition is
envisioned. It is important to note that the decision to use
AI is part of the solution approach, not the requirements.
Additionally, the need for additional enabling systems or
subsystemsmay arise during development, e. g., when ad-
ditional data sources are needed. Similarly, components
may be dropped if they are no longer needed. It is there-
fore important to note that the initial functional decom-
position is not final, but should be used for the first itera-
tions of the approach and may be subsequently adjusted.
The same holds for the component specifications that are
documented based on the initial functional decomposi-
tion and the system requirements in the phase Component
Specification & Checkpoint Definition.

Figure 2 shows an example of a system model for
an emergency breaking system that autonomously brakes
a car in the event of danger. This is realized by detect-
ing objects in camera images. The decision maker esti-
mates the distance and relative speed of the objects and
makes an emergency braking decision based on this in-
formation. Both detector and decision maker can be de-
veloped as AI-based subsystems. Enabling systems in this
scenario are, for example, the software that performs an
optimization of the attachment position for the given cam-
era or a database in which recordings of the camera can be
stored.

4 Development cycle

To address challenge 2 (see Section 1), PAISE® defines an
iterative development cycle which is supported by check-
points to synchronize component development. It allows
switching between an exploratory approach on the one
hand and a goal-oriented approach on the other. By iter-
ating through the cycle, the maturity of the components
and therefore of the overall system is continuously in-
creased. Each cycle consists of a Refinement step, a phase
of parallelized Component Development and a Checkpoint
including assessment of the development results. Finally,
the results of the evaluation lead to the decision whether
the overall system is complete with respect to the re-



C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering | 781

Figure 2: Example of a functional decomposition for an emergency braking system.

Figure 3: Substructure of the Development Cycle.

quirements. While the processes Refinement and Compo-
nent Development take place within the respective disci-
plines and are parallelized for all components, the sub-
processCheckpoint/Assessment takes place across compo-

nents anddomains. Figure 3 shows a schematic viewof the
development cycle and its sub-processes.

In the Refinement, the problem solution approach of
each component is detailed and varied if necessary. The



782 | C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering

solution approach is translated into the appropriate ad-
justments regarding the system model as well as the com-
ponent specification. At this point, a further decomposi-
tion of components may be needed, e. g., in order to avoid
bottlenecks during the development, or additional compo-
nents, e. g., with inclusion of new data sources. Improve-
ments to individual subsystems must always be consid-
ered in the context of the overall system.

Basis for the parallelized Component Development are
the component specifications, which are to be fulfilled
and validated. Development takes place for each compo-
nent according to an individually appropriate anddomain-
specific procedure. For classical components such as me-
chanical or electrical subsystems, for example, procedures
from systems engineering can be used. The prerequisite
is that these can be integrated into the cyclic structure
described here. PAISE® specifies its own procedures for
ML component development and data provisioning. Once
a solution approach for a component has been imple-
mented (whether prototypical or refined), it can be inte-
grated into the surrounding subsystem and validated and
verified within integration tests.

Checkpoints are used to synchronize the development
status of all components and to test the interaction of the
subsystems within the overall system. For this purpose,
(partial) integration of the subsystems takes place com-
bined with verification and validation tests with regard to
the requirements of the overall system. Since the compo-
nent development allows an individual procedure for each
subsystem, progress can be expected at different speeds.
Hence, not all components need to actively participate in
each checkpoint.

Different strategies can be followed in determining
when and according to which criteria a checkpoint takes
place. Although classicmilestone planning is possible and
has many advantages in terms of predictability, a more ag-
ile approach is recommended where the goals for the next
checkpoint are defined during the Refinement step. Strate-
gies how to define the next checkpoint can be the follow-
ing:
– Feature-based: Definition of features that should be

implemented for each component until the next
checkpoint

– Maturity-based: Definition of degree of maturity de-
fined with respect to the requirements of the overall
system

– Time-based: Definition of a fixed time interval after
which the next checkpoint takes place

Overall, the checkpoint serves to focuson interdisciplinary
cross-sectional aspects. In addition to considering func-

tional safety or even costs, this may also include open dis-
cussionof potential ethical conflicts that canbegenerated,
for example, by the use of incomplete data or data with
bias included. Such aspects are specifically addressed by
the role of thedata officer andare also anchored in thedata
provisioning procedure.

At checkpoints the (partial) integration and evalua-
tion of components with respect to requirements takes
place. Checkpoints therefore serve as a point of synchro-
nization of all components. For ML components, this
means evaluation against validation metrics that assess
the component’s functioning within the overall system.
The results of a checkpoint can lead to refinements as well
as adjustments in the solution approaches used to target
component functionality. By iterating through Component
Development,Checkpoint/Assessment andRefinement, the
maturity of all components and thus the overall system is
continuously increased.

The checkpoint-based cyclic procedure aims at a con-
tinuous improvement of the overall system. In doing so, it
contains three properties that are in our view essential for
AI systems engineering:
– It respects the fact that the development of some com-

ponents might depend on others.
– It makes an explorative procedure possible, which

is particularly necessary for the development of ML-
based components, since no guarantees can be given
in advance regarding the fulfillment of the require-
ments (see challenge 2).

– It offers the framework for a risk-based development
which permits alternative solutions, allows prototyp-
ing and weighs risks against gains.

5 Data provisioning
The data provisioning procedure has the purpose to gener-
ate, prepare and evaluate training, test and validationdata
sets. In the refinement step, the specification of the data is
adapted includingdata sources,whichmaybedifferent for
the stages training, testing, and runtime.

The data requirements comprise technical aspects rel-
evant to the accomplishment of the AI component’s tasks.
Examples are the amount of data (how many measure-
ments are available), its quality (e. g., how much miss-
ing or incorrect information) and its representativeness
(whether the training data represents the data that will
be generated at runtime). In addition, there are high-level
non-technical aspects such as bias in the distribution of
data, which can lead to unfair decisions, costs in data
acquisition, and legal aspects of personal data, which in



C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering | 783

Figure 4: Scheme of the data provisioning process.

turn require additional steps such as anonymization or
pseudonymization.

The data provisioning procedure is based on the
V-Model introduced in Section 1. Each development step
has a testing and verification step at the same level of de-
tail. A scheme of the data provisioning process is shown in
Figure 4. Two levels of detail have been proven to be use-
ful: The data set level and the data sample level.

At the data set level target metrics are defined which
are used later to evaluate if the data requirements are met.
This is followed by the data collection step which can
range between a simple gathering of available data, aug-
menting existing data, executing a simulation or conduct-
ing experiments and measurements under well-defined
conditions. The acquired raw data are prepared with re-
spect to the problem definition. This step comprises for ex-
ample the derivation of features, i. e., measurement char-
acteristics that serve as input to the ML component, data
annotation (labelling), the aggregation of multiple data
points, noise removal, filtering of incomplete data points
or imputation ofmissing information. Furthermore, multi-
ple features can be combined into a new feature to reduce
the dimension and thus complexity of the data points. If
the requirements demand it, techniques of anonymization
or pseudonymization of data are also applied in this step.
While some of the preparation steps are only necessary for
training, testing, and validation data (e. g., annotation),
some methods must be applied to the data at runtime for
consistency reasons (e. g., noise removal, data imputation,
combination of multiple features, etc.). Hence, part of the
defined data preparation steps has to be transferred and
implemented into the ML-component. The data provision-
ing procedure finishes with the data assessment where the
previously defined target metrics are evaluated. After suc-
cessful completion, the processed and evaluated data are
made available for the development of AI components at
the next checkpoint.

It should be emphasized that the process of data
preparation does not necessarily have to be manual, but

that there is great potential for automating individual
steps or work sequences.

6 ML component development
The procedure for ML component development is based
on the V-Model as well. The goal of the procedure is the
encapsulation of an ML model (i. e., the data-driven part)
into a component. This facilitates the substitution of data
sources and related enabling systems in order to be able to
iteratively integrate and validate results within the check-
points. This approach creates an organizational interface
between the classical data science discipline and systems
engineering. A scheme of the ML subsystem development
process is shown in Figure 5.

In Refinement, the component is specified in the con-
text of the surrounding system and the specification is de-
tailed iteratively and adapted within each cycle. Among
others, the specification comprises the ML method (e. g.,
neural network, decision tree, etc.) and the software
framework (e. g., TensorFlow [11] or Pytorch [8]) as an ap-
proach to achieve the requirements. Both choices should
take higher-level requirements for the overall system (e. g.,
traceability of decisions) anddirect dependencies on other
components into account (e. g., limited computing re-
sources, availability of data, availability of target vari-
ables). For the process of ML subsystem development, we
identified three levels of detail: Component architecture,
learning architecture and model.

At the component architecture level, in the first step
the data source interfaces needed for this cycle are inte-
grated. It may happen that the data sources and thus the
interfaces are not the same in every cycle, e. g., if data
are initially available in tabular data files and later in a
database. At the learning architecture level, test and val-
idation metrics are derived. These are also sometimes de-
noted as global cost functions that respect the component
requirements and are suited for data-driven evaluation.



784 | C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering

Figure 5: Scheme of the ML subsystem development process.

Domain knowledge should be incorporated at this point in
order to ensure the correct functionality of the component.
Afterwards, the selected ML method is implemented as a
specificmodel architecturewith definedhyperparameters.
Examples of hyperparameters are the number of neurons,
layers in artificial neural networks, learning rate as well
as the definition of the loss function, also denoted as local
cost function.

The model is trained using the training data. Since
the results of the model strongly depend on the ML archi-
tecture, i. e., the chosen hyperparameters, those parame-
ters are iteratively varied in order to find the ideal config-
uration. In many cases, this hyperparameter optimization
can be partially or completely automated by suitable tools
(e. g., auto-ML systems).

In the subsequent model assessment, the test and val-
idation metrics are evaluated based on a test data set in
order to quantify the quality of the learned and optimized
model with respect to the required component functional-
ity.

The final step within ML component development
comprises themodel packaging as a component where the
ML model is prepared for integration into the target plat-
form. While previously the model was validated based on
data only, it is now ensured that the model is executable
on the target platform (e. g., embedded devices) with com-
parable results.

At the Checkpoint the actual integration of the compo-
nents into the high-level system takes place. Tests show
how the component behaves in the interplay with other
components and if it achieves its functionality required
by the overall system. If the tests fail the requirements,
further cycles are necessary in which further solution ap-
proaches, such as other ML procedures, are realized.

7 Operation and maintenance

As soon as all requirements are met, the exit of the devel-
opment cycle is triggeredand the last twophasesHandover
and Operation & Maintenance follow.

Themonitoringof theMLcomponent functionalities is
crucial for reliable operation ofAI-based systems. Changes
in the data processed during operation can degrade the
performance of AI subsystems over time. Such changes
can be caused by changes in latent variables (e. g., tem-
perature, humidity, etc.) as well as by changes in the in-
tended use (e. g., foreign traffic signs; new material being
processed in the machine, etc.). Ideally, these issues were
considered during ML component development leading to
additional components whose purpose is the monitoring
of the ML component and the incoming data. The trigger
for an update of the ML component can be set statically
(e. g., time-based) or based on evaluations during opera-
tion, e. g., ML model performance or metrics for data dis-
tribution shift detection.

Figure 6: Schematic view on the substructure within the Operation &
Maintenance phase.



C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering | 785

If a model update is required, a new training data set
is collected and processed following the data provisioning
procedure (see section 6). In the next step, the ML compo-
nent development procedure (see section 7) is applied in
order to re-adjust the MLmodel. Finally, the updated com-
ponent is reintegrated into the overall system, tested and
put into operation.

Depending on the system’s level of autonomy and the
corresponding risk assessment, additional boundary con-
ditions from reporting obligations anddeclarations of con-
formity, must be addressed during Handover and Opera-
tion&Maintenance. This specifically concerns high-risk AI
systems.

8 Conclusion and outlook
Process model for AI Systems Engineering (PAISE®) con-
tributes to the aim of integrating AI development into de-
velopment contexts of increasingly complex systems.

The goal of PAISE® is a – from a technical point of
view – high quality product. Therefore, the focus is on
the technical processes of the product life-cycle standard
ISO/IEC 15288 which are covered by PAISE®. Organiza-
tional project-enabling processes, technical management
processes and agreement processes are beyond the scope
of our considerations.

PAISE® addresses the two challenges of AI systems en-
gineering, i. e.:
1. The ML component functionalities crucially depend

on data from operating components and
2. the performance of ML components is not predictable

in advance,

by the core ideas:
– definition of data sourceswithin the functional decom-

position (challenge 1),
– iterative checkpoint-based development cycle (chal-

lenges 1 and 2),
– development of data sets as components in the indi-

vidual process of data provisioning (challenge 1),
– development of ML components in a structured pro-

cess where key performance metrics are constantly
monitored and compared to requirements (chal-
lenge 2),

– monitoring and update of ML components during op-
eration (challenges 1 and 2).

The iterative checkpoint-based development cycle on the
one hand allows for an explorative approach and on the
other hand ensures the consistent integration of all com-

ponents into the overall system in order to respect and
react to dependencies (e. g., the dependency of ML com-
ponent on incoming data from other components). In the
spirit of the Dev-Ops approach in software development,
it supports the prototypical integration and testing of ML
components into the overlying subsystem of hardware
and software at an early stage and, conversely, hardware-
software subsystems are used at an early stage to gener-
ate data that can lead to an optimization of the AI com-
ponent. Thus, instead of a local optimum only for the AI
component, a global optimum for the entire system can be
achieved.

Developing theML-component in a V-Model approach
integrated into the checkpoint-based development cycle
creates an organizational interface between the classical
data science discipline and systems engineering. In partic-
ular, the validation and verification approach ensures the
verified implementation of requirements and can also re-
spect severely restrictive boundary conditions such as lim-
ited computing and memory resources.

PAISE® is a process template that can and should be
adapted depending on the organizational framework in
companies. As with any process model, the elements of
PAISE® must be transferred to the respective use case in
order to derive specific actions.

It should be emphasized that the checkpoint-based
cyclic development procedure together with the pro-
cesses of data provisioning and ML component develop-
ment represent the core of PAISE®. The described seven
phases can also be arranged in other structures. The ba-
sic “checkpoint-based” concept of PAISE® within the de-
velopment phase with preceding system division into sub-
systems is still applicable.

PAISE® has been successfully employed in coopera-
tion with industrial partners, e. g., the company Hypercon
Solutions GmbH to structure a project for optimized pro-
duction of ultra high performance concrete (UHPC) build-
ing materials. Further verifications of PAISE® with other
partners in other branches of production and mobility are
ongoing and subject to current research.

Future efforts will go into specifying and establishing
profiles of PAISE® tailored to selected applicationdomains
or problemspaces. Furthermore, the following aspectswill
be considered: How does the checkpoint-driven develop-
ment cycle scale with the size of the development team?
How can a project time schedule be developed despite
the cyclic development cycle? How can certification bod-
ies be involved in the development process? Hence, there
are promising results expected in the future leading to an
even more optimized and adapted process for AI systems
engineering.



786 | C. Hasterok and J. Stompe, PAISE® – process model for AI systems engineering

Acknowledgment: The authors thank the following per-
sons for their support and help during the develop-
ment of PAISE®: Fraunhofer IOSB – Dr. Julius Pfrommer,
Dr. Thomas Usländer, Jens Ziehn; Research Center for In-
formation Technology (FZI) – Dr. Sebastian Reiter, Michael
Weber; Karlsruhe Institute of Technology (KIT) – Dr. Till
Riedel.

Funding: This work was supported by the Competence
Center Karlsruhe for AI Systems Engineering (CC-KING,
https://www.ai-engineering.eu) sponsored by the Min-
istry of Economic Affairs, Labour and Tourism of Baden-
Württemberg (http://wm.baden-wuerttemberg.de/).

References
1. Adler, R., T. Andersen, M. Anton, A. Aschenbrenner, Y. Babar,

A. Bahlke, et al. 2020. In: (W. Wahlster and C. Winterhalter, eds)
Deutsche Normungsroadmap Künstliche Intelligenz. DIN / DKE,
Berlin.

2. Boehm, B. 2006. A view of 20th and 21st century software
engineering. In: ICSE ’06: Proceedings of the 28th international
conference on software engineering, pp. 12–29.

3. Hasterok, C., J. Stompe. 2021, December. PAISE® –
Vorgehensmodell für KI-Engineering. Retrieved from https:
//www.ki-engineering.eu/de/wissen-tools/paise.html.

4. Chapman, P., et al. 2000. CRISP-DM 1.0: Step-by-step data
mining guide.

5. European Commission. 2021. Coordinated Plan on Artificial
Intelligence 2021 Review. COM(2021) 205 final, Brüssel.

6. Friedrich, J., M. Kuhrmann, T. Ternité. 2009. Das V-Modell XT.
Informatik im Fokus. Springer, Berlin, Heidelberg.

7. Beedle, M.A., K. Schwaber. 2002. Agile software development
with Scrum. Prentice Hall.

8. Paszke, A. 2019. PyTorch: An imperative style,
high-performance deep learning library. In: (H.W.-B. Garnett,
ed.) Advances in Neural information processing systems 32.
Curran Associates, Inc., pp. 8024–8035.

9. Ropohl, G. 2009. Allgemeine Technologie: eine Systemtheorie
der Technik. Universitätsverlag Karlsruhe, Karlsruhe.

10. Royce, W. 1970. Managing the development of large software
systems. In: Proceedings of IEEE WESCON 26 (August), pp. 1–9.

11. Tensorflow. 2021, November 4. An end-to-end open source
platform for machine learning: 10.5281/zenodo.5645375.

Bionotes
Dr. rer. nat. Constanze Hasterok
Fraunhofer IOSB, Karlsruhe, Germany
constanze.hasterok@iosb.fraunhofer.de

Dr. Constanze Hasterok is a research associate and project manager
at Fraunhofer IOSB in the department “Information Management
and Production Control”.
She pursued her dissertation at the Max Planck Institute for Nuclear
Physics in Heidelberg in the field of statistical analysis and model-
ing of data from particle detectors. At Fraunhofer IOSB, her research
focuses on the application of machine learning methods for the
optimization of industrial production processes.
Dr. Constanze Hasterok is head of the PAISE (Process Model for AI
Systems Engineering) working group within the Competence Center
for AI Systems Engineering (CC-KING) in Karlsruhe.

Dr. rer. nat. Janina Stompe
Fraunhofer IOSB, Karlsruhe, Germany
janina.stompe@iosb.fraunhofer.de

Dr. Janina Stompe received her PhD in applied mathematics from
the Chair of Applied and Numerical Mathematics at the Karlsruhe
Institute of Technology (KIT). The topic of her PhD lies in the area of
inverse scattering theory. At Fraunhofer IOSB, Dr. Stompe focused
on the optimization of industrial production processes based on
the application of machine learning. In addition, she was head of
the Training Laboratory of the Competence Center for AI Systems
Engineering (CC-KING) in Karlsruhe. In June 2022, Dr. Stompe left
the IOSB and is now working as project manager for funded research
projects in the field of autonomous driving at understand.ai (UAI) in
Karlsruhe.

https://www.ai-engineering.eu
http://wm.baden-wuerttemberg.de/
https://www.ki-engineering.eu/de/wissen-tools/paise.html
https://www.ki-engineering.eu/de/wissen-tools/paise.html
https://doi.org/10.5281/zenodo.5645375
http://understand.ai

	PAISE® – process model for AI systems engineering
	1 Introduction
	2 PAISE®
	3 Functional decomposition
	4 Development cycle
	5 Data provisioning
	6 ML component development
	7 Operation and maintenance
	8 Conclusion and outlook
	References


