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Abstract: This paper proposes a scheme of model pre-
dictive control for single-loop networked control sys-
tem (NCS) with probabilistically modeled communication
channel and disturbances. Uncertainties of the commu-
nication network are projected onto a tailored probabil-
ity for the satisfaction of state and input constraints. The
proposed receding horizon control scheme uses a proba-
bilistic terminal state and set to establish a balance bet-
ween control performance and state probability distribu-
tion, while satisfying the given constraints. In addition
to describing the control approach, its properties are dis-
cussed, and it is illustrated by an example.

Keywords: networked control, stochastic disturbances,
constrained linear control, model predictive control, age
of information

Zusammenfassung: Dieser Artikel schlägt ein Schema
zur modellprädiktiven Regelung einschleifiger Regelkrei-
se mit probabilistisch modelliertem Kommunikationska-
nal und Störung vor. Unsicherheiten des Kommunikati-
onsnetzeswerden auf eine angepassteWahrscheinlichkeit
zur Erfüllung von Zustands- und Eingangsbeschränkun-
gen projiziert. Die Nutzung von probabilistischen Termi-
nalmengen sowie -zuständen erlaubt die Einstellung eines
Kompromisses zwischen der Regelgüte und der Zustands-
verteilung bei Einhaltung der Beschränkungen. Der Bei-
trag stellt den Ansatz vor, diskutiert seine Eigenschaften
und beschreibt die Anwendung anhand eines Beispiels.
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1 Introduction

This article combines principles of model predictive con-
trol (MPC) and networked control systems (NCS) to ad-
dress timing effects that arise from wireless components
within control loops [1]. As wireless sensors have become
widely available and are simple to integrate [2], they also
contribute to enabling concepts of Industry 4.0, e. g., the
control of mobile systems with stationary motion capture
systems [3]. On the downside, the drawback of electro-
magnetic susceptibility (like packet loss and/or latency)
arises if used in control systems. As imperfect wireless
communication can be interpreted as a stochastic pro-
cess, the behavior, control performance, and stability of
the NCS depend on stochastic information flow. In case
the communication delays are in the order of the domi-
nant time constants of the plant dynamics, the considera-
tion of the stochastic process within the controller synthe-
sis is mandatory, while being omitted in the vast majority
ofmethods proposed for NCS. Some approachesmodel the
imperfections by considering a worst case delay [4, 5, 6]
– however, the use of constant worst case delays within
controller synthesis typically leads to overly conservative
results anddegradedperformance. Ownwork in this direc-
tion aimed at the reduction of conservatism by use of vari-
able communicationdelayswithin the controller synthesis
[7, 8]. The key point there is to predict and robustly bound
the delay of the communication network, and to consider
the time-varying bounds in distributed MPC.

However, as all these approaches aim at robust sat-
isfaction of constraints (while the underlying communi-
cation process is of probabilistic nature), the reduction
of conservatism is limited. Therefore, the objective of this
contribution is to model the NCS completely stochastic,
and to use stochasticMPC (SMPC). In SMPC the probabilis-
tic system behavior is explicitly described by its underly-
ing probability distribution to directly address the proba-
bility to satisfy or violate associated constraints. For a brief
overview of SMPC and its application to control systems
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without network structures, see [9]. For more explicit liter-
ature on SMPC with state and input constraints, the inter-
ested reader is referred to [10, 11]. In the context of NCS, the
satisfaction of state constraints – especially in the proba-
bilistic setting – is still a largely open issue. Thus, [12] has
further investigated the stochastic problem setup and pro-
vides a stochastic optimal control scheme, which is able to
handle both, uncertain communication and additive dis-
turbances affecting the plant as stochastic processes. The
uncertainty of when future sensor information will be re-
ceived by the controller are projected onto a tailored likeli-
hood to satisfy state and input constraints. The promising
result is that a poorly performing communication link will
affect the uncertainty, but not necessarily the performance
of controlled behavior. In this article, the findings of [12]
are used to develop an MPC scheme, in order to cope with
larger horizons and to further reduce the conservatism. As
usual for MPC, this implies the formulation and use of a
terminal control law and set for the stochastic system to
ensure recursive feasibility and stability in a probabilistic
sense.

The article is structured as follows: Section 2 intro-
duces notation and clarifies different mathematical as-
pects used throughout the article. Section 3 specifies the
networked control system and the control problem. Sec-
tion 4, as main part of the paper, details aspects of the
stochastic communication channel, the computation of
the terminal control law, and the stochastic MPC scheme
including properties. The scheme is then applied in Sec. 5
to the example of an aerial vehicle, and conclusions are
contained in Sec. 6.

2 Preliminaries

The symbol s(k) denotes a discrete-time value of a signal
s(t) ∈ ℝns at time t = k ⋅ Δt, with k ∈ ℕ+, and constant
time-step Δt ∈ ℝ+. The value of the signal s for a future
time-step k + t, t ∈ ℕ+ as predicted in k is denoted by st|k .

A convex polytope for s, parameterized by a pair
(Cs, bs) of matrix and vector of appropriate dimension, is
referenced by:

S = {s!!!! Cs ⋅ s ≤ bs }.

An ellipsoidal set is defined by its center point and shape
matrix ( ̄s,S):

ε( ̄s,S) = {s!!!! (s − ̄s)
⊺S−1(s − ̄s) ≤ 1 }.

A multivariate normal distribution of an ns-dimensional
random vector s with covariance S ∈ ℝns×ns and a mean-
value ̄s ∈ ℝns is denoted by s ∼ N ( ̄s,S). Correspondingly,
the expectation of a value s is denoted by ̄s = E[s]. An
affine transformation of a normal distribution with matrix
M and vector v is again a normal distribution according to:

M ⋅N ( ̄s,S) + v = N (M ̄s + v,MSM⊺),

and the sum of two normally distributed random vectors
s1 ∼ N ( ̄s1,S1) and s2 ∼ N ( ̄s2,S2) is also again a normal
distribution:

s1 + s2 ∼ N ( ̄s1 + ̄s2,S1 + S2).

The level-curves of a Gaussian probability density func-
tion are ellipsoidal, such that the δ-confidence ellipsoid
of a normal distribution with rank n and with probability
δ ∈ [0, 1] is defined by:

S[δ] = ε( ̄s, c[δ]S),

using a scaling factor c[δ] = F−1χ2 (δ, n), in which Fχ2 denotes
the cumulative distribution function of a χ2-distribution.
Throughout the paper, themean value of a distribution co-
incides with the center point of the confidence ellipsoid,
and the shape matrix is equal to the covariance matrix of
the distribution. Thus, the same notation is used for these
quantities.

The probability for an event A is referred to by ℙ (A),
and if this probability is specific for the time-step k, it is de-
noted byℙk (A). Likewise, the conditioned expectation for
a signal st|k is denoted by Ek[st|k] =: ̄st|k, since prediction
and expectation rely on the same time-step k throughout
the paper.

Finally, the symbol ‖s‖2Q = s
⊺ ⋅Q ⋅ s denotes a weighted

2-norm of the vector s with weight Q.

3 Considered class of networked
control systems

The class of systems under consideration in this paper rep-
resent single-loop feedback structures with wireless com-
munication network in the signal link between plant and
controller, see Fig. 1a. This setting can be motivated, e. g.,
in the context of controlling aerial vehicles, as explained
in Sec. 5. The plant is modeled by discrete-time linear sys-
tems with probabilistic additive disturbances:

x(k + 1) = Ax(k) + Bu(k) + Ew(k), (1)
w(k) ∼ N (0,W(k)),
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with state vector x ∈ ℝnx , input vector u ∈ ℝnu , and a vector
of disturbancesw ∈ ℝnw . The additive disturbances cannot
be measured and are assumed to be normally distributed
with zero-mean and covariance matrixW, and to be inde-
pendent, identically distributed (i. i. d.).

Assumption 1. The stochastic disturbance process may
vary over time, but is assumed to be known with an upper
bound Ŵ of the covariance:W(k) ≼ Ŵ.

The states x(k) and inputs u(k) have to satisfy poly-
topic chance-constraints with likelihoods δx, and δu re-
spectively (both typically chosen close to 1):

ℙ (x(k) ∈ Xk) ≥ δx , Xk = {x
!!!! Cxk ⋅ x ≤ bxk }, (2a)

ℙ (u(k) ∈ U) ≥ δu, U = {u
!!!! Cu ⋅ u ≤ bu }. (2b)

The admissible sets Xk and U are assumed to be convex,
compact, and to contain the origin in their interior for all k.

The controller and plant are statically connected in
wired form, but sensor and controller are loosely con-
nected by wireless communication. The communication
network is established as a simple one-link channel and
consists of a sender S, a receiver R, and the link-probability
p(k), see Fig. 1a. The link probability can be understood
as an abstract representation of the network characteris-
tics (or protocol), as, e. g., resending information in case
of failed transmission, or activation/deactivation of the
channel by a network controller, but it could also be in-
terpreted as the probability that measured sensor data
is available. However, for assuming a time-varying link-
probability, the communication network is modeled by a
Markov chain [13] in each time-step k, as shown in Fig. 1b.

Assumption 2. The link-probability p(k) may vary over
time, but is assumed to be known (by measurement, or
possibly according to a predictive network control scheme,

Figure 1: Structure of the networked control system and the corre-
sponding Markov chain modeling the communication network.

see [14]). Furthermore, possible dropouts of information at
times k and k + t are i. i. d. for all {k, t} ∈ ℕ+.

In time-step k, the current state x(k) is available to S.
The information is broadcast to R, and thus available to
the controller with probability p(k). If information is not
received, the information remainswith S. Then, the last in-
formation received by the controller is outdated, such that
the age of the currently available state information incre-
ments. Similar to the previouswork in [8, 12], the following
definition is proposed:

Definition 1. The quantity a(k) ∈ ℕ≥0 denotes the age of
the newest state information x(t), t ∈ ℕ≤k available to the
controller (short: AoI), and it quantifies the difference be-
tween the time-instances of sending and using the informa-
tion x(t).

If x(k+ 1) is received, the AoI is reset to zero, otherwise
it is incremented again.

The main control objective for this networked control
system is to steer the states to the origin with acceptable
costs for the input, i. e., to find a control sequence {u(k)}∞k=0
which minimizes the infinite horizon cost function:

J∞ =
∞
∑
k=0

l(x(k), u(k))

subject to the state and input constraints, and the uncer-
tain AoI respectively. The stage costs are formulated in the
following common form:

l(x, u) = ‖x‖2Qx
+ ‖u‖2Qu

(3)

with symmetric and positive semi-definite weighting ma-
trix Qx = Q⊺x ≥ 0 for the states, and definite weighting ma-
trix Qu = Q⊺u > 0 for the inputs.

4 SMPC based on stochastic
optimization

To cope with the challenges of control under uncertainty
of the reception of data and the satisfaction of chance con-
straints, the following control scheme is proposed: In each
time-step k in which information is received (i. e., a(k) =
0), the controller solves a finite-time stochastic optimal
control problem with horizon H. The solution of the opti-
mal control problem is a control sequence {ut|k}H−1t=0 , which
has to guarantee the satisfaction of the constraints (2) with
respect to the upcoming communication link probabilities
{p(k+ t)}H−1t=1 . Then, as usual for MPC, the first control input
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is applied to the system, i. e., u(k) = u0|k . In case no infor-
mation is received, i. e., a(k) > 0, the controller solves no
optimization problem, but applies the subsequent control
input of the optimal control law computed in the previous
optimization. This was accomplished at time k−a(k), thus
the input is chosen according to u(k) = ua(k)|k−a(k). Note
that the use of a previously computed control input is rel-
atively unusual in predictive control, but here it is used to
avoid accounting for uncertain initial states within the op-
timization problem, discussed later on.

This scheme is repeated recursively, thus the case
of an infinite horizon control, as mentioned in Sec. 3,
would be approximated. However, due to the proper-
ties of the probabilistic communication link, the possi-
bility exists that the communication link fails for more
than H subsequent time-steps, i. e., ℙ(a(k) ≥ H) > 0.
In this case, no control law computed before is avail-
able. This problem is immanent to the considered setting,
and cannot be healed by any closed-loop control strat-
egy (while its probability of occurrence can, of course,
be reduced by increasing H within finite-horizon MPC).
Consequently, closed loop control may not be possible,
if the lack of measured information persists permanently,
while open-loop control remains to be an option (obvious
from Fig. 1a). Thus, the following assumption needs to be
stated:

Assumption 3. A fallback strategy, like stalling or
shutting-down operation, exists, which can be applied
in the case that the communication link fails forH ormore
subsequent time-steps, to ensure safety of operation.

Obviously, the age of information (AoI) is a crucial
value in operating the NCS and for the success of the pre-
dictive control policy. Hence, this quantity is detailed in
the following subsection.

4.1 Modelling the age of information

According to the one-link communication network in
Fig. 1, the AoI depends on the behavior of the communi-
cation link, and its transmission probability. In each time-
step, the transmission succeeds if x(k) is made available to
the controller, implying according to Def. 1 that a(k) = 0. If
the transmission fails, the newest information previously
sent to the controller remains the same as before. But since
this information is older by one time-step,a(k) := a(k−1)+1
results. According to this scheme, the behavior of the AoI
is modeled (and becomes therefore predictable) according
to a discrete-time Markov chain with states σj(k + t) imply-

ing a(k+ t) = j, and with probabilities q(k+ t) = 1−p(k+ t),
as shown in Fig. 2.

With an initial distribution μ(k) (determined by the
current AoI), the distribution for future values of the AoI
results to:

μt|k = (
t
∏
r=1

P(r)) ⋅ μ(k) (4)

with time-varying transition probability matrix P(k). For
the example of Fig. 2, P(k) is given by:

P(k) =
[[[[

[

p(k) p(k) p(k) 1
q(k) 0 0 0
0 q(k) 0 0
0 0 q(k) 0

]]]]

]

.

The probability for a specific value of the AoI in time-step
k + t predicted in k is given by:

ℙk (a(k + t) = j) = μt|k[j], (5)

where μ[j] denotes the (j + 1)-th entry of the vector μ.

4.2 AoI-dependent constraints

The predicted evolution of the NCS is subject to two types
of uncertainties, the additive disturbances and the AoI.
While the disturbances may lead to violation of the state
constraints, the AoI may prevent necessary control ac-
tions. To minimize the uncertainty of prediction (and thus
to enhance the control performance), a control law is syn-
thesized which compensates the additive disturbances. To
obtain a synthesis problem with admissible solution, a
scheme of disturbance feedback is used. Since the appli-
cability of the control law depends on the AoI, the con-
straints are formulated depending on this quantity. In any
time-step, in which the controller receives new informa-
tion, i. e., a(k) = 0, the predictive scheme requires to
solve the stochastic optimal control problem. The solution
{ut|k}H−1t=0 has to satisfy input and state constraints (2), de-
spite the uncertainty arising from the AoI. This raises the

Figure 2: Example of a Markov chain to model the AoI for 3 subse-
quent time-steps with k = 0 and a(0) = 0.
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question of how the feedback policies should be chosen,
given the situation that it is unclear whether the future
states are available to the controller. Therefore, uncertain-
ties of the communicationnetwork are projected onto a tai-
loredprobability for the satisfactionof state and input con-
straints.

However, the availability of the states is predictable
according to the AoI with (5): x(k + r) is available to the
controller in time-step k + t, t ≥ r, if a(k + t) ≤ t − r holds.
Now assume for amoment, that if x(k+ r) is available, also
all prior states {x(k + t)}rt=0 are available to the controller.
Then, also all affecting disturbances {w(k + t)}r−1t=0 (except
of the last) could be reconstructedby the controller accord-
ing to (1).

Hence, the probability that a disturbance w(k + r) is
available to the controller in k + t results with (5) to:

ℙk (r < t − a(k + t)) =
t−r−1
∑
j=0

μt|k[j] =: pt,r|k ,

which follows from (4)with μ(k) = [1,0, . . . ,0]⊺ as a(k) = 0.
With the probabilities pt,r|k, the likelihoods {δu, δx} for sat-
isfying the input and state constraints are separated into:
the likelihood that the control policy from optimization in
k is applicable in k + t: αt|k ∈ [max{δu, δx}, 1], and the tai-
lored likelihoods to satisfy the input and state constraints:
{γ(u)t|k , γ

(x)
t|k }, such that:

δu = γ
(u)
t|k ⋅ αt|k , δx = γ

(x)
t|k ⋅

t−1
∏
r=1

αr|k . (6)

Note, that the choice of the αt|k allows for some degrees of
freedom, but is proposed to be as in [12]:

αt|k = min
r∈ℕ≥0
{pt,r|k , 1}, (7)

s. t.: pt,r|k > max{δx , δu},
t−1
∏
r=1

αr|k ≥ δx ∀ t ≥ H .

Finally, the disturbance feedback policy used for the opti-
mization results to:

ut|k = Vt|k ⋅ x(k) +
̂rt|k
∑
r=0

Mt,r|k ⋅ w(k + r), (8)

with feedback matrices V ∈ ℝnu×nx and M ∈ ℝnu×nw , and
̂rt|k as the minimizer of (7). Note that (8) is equivalent to a
linear state-feedback [15], and could easily extended to an
affine control law [16]. However, this is not necessary here,
since the NCS is controlled to the origin.

In summary, the uncertain AoI requires the compu-
tation of the probabilities {μt|k}H−1t=1 to choose the values

{αt|k , ̂rt|k}H−1t=1 , and to tighten the state and input constraints
with (6) according to:

ℙk (xt|k ∈ Xk+t) ≥ γ
(x)
t|k , ∀ t = {1, . . . ,H}, (9a)

ℙk (ut|k ∈ U) ≥ γ
(u)
t|k , ∀ t = {0, . . . ,H − 1}. (9b)

Finally, the uncertainty of the AoI is cast into a variation of
the control law, and the state and input constraints, such
that a common stochastic optimal control problem can be
formulated. In order to adapt the optimal control prob-
lem into one of predictive control, the next section clarifies
how to specify the terminal conditions for theNCSwithun-
certain AoI.

Note the following important point: in each time-step
k, in which new information arrives, an optimization over
the control law (8) is initiated. Then, only the state x(k)
is needed to compute the input u0|k (which has to be ap-
plied to the NCS), since w(k + r) ∀r ≥ 0 is never available
in k. In the first succeeding time-step k + t for which the
feedback of disturbance w(k) (the first disturbance affect-
ing the system after reception of x(k)) was expected in k,
new information is received with probability αt|k . In case
this information is received (andw(k) could beusedwithin
ut|k), a new optimization is started and the reconstruction
of w(k) is not necessary anymore. In case the expected in-
formation is not available, the input ut|k has to be applied
without the expected feedback of disturbance w(k). This
may violate the state and input constraints, but is sched-
uled according to the tightened probabilities γ(u)t|k , and γ

(x)
t|k .

Hence, the assumption to know all prior states and distur-
bances (which was made above), is not necessary within
the predictive control scheme, but allows the prediction of
an admissible control sequence according to (8).

4.3 The terminal system and covariance

The control strategy aims at recursively solving the
stochastic optimal control problem to obtain a predictive
control scheme. In deterministic constrained predictive
control, stability is usually guaranteed by i.) the use of an
invariant set as terminal constraint for the last state of the
predictionhorizon, and ii.) by the use of a Lyapunov-based
terminal cost term in the objective function. Similarly to
the control of delayed systems, the terminal set and cost
term have to be modified for the NCS to account for the
uncertain AoI. In addition and according to the additive
and probabilistic disturbancew(k), the use of an invariant
covariance is introduced to ensure recursive feasibility. In
order to formulate terminal covariance and terminal set, a
terminal system is introduced, motivated by the findings
in [4].
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Terminal system
With delay-time τ ∈ ℕ>0, the state vector of the terminal
system ξ ∈ ℝnξ with nξ = (τ + 1) ⋅ nx is introduced to con-
sist of multiple state vectors of the NCS for different time
instances:

ξ ⊺H|k = [x
⊺
H−τ|k . . . x

⊺
H−2|k x⊺H−1|k x⊺H|k].

The dynamics of the terminal system is chosen to:

ξt+1|k = Aξ ⋅ ξt|k + Bξ ⋅ ϕt|k + Eξ ⋅ w(k + t) (10)

for t ≥ H and with matrices:

Aξ = [
0τ⋅nx×nx Iτ⋅nx
0nx×τ⋅nx A ],Bξ = [

0τ⋅nx×nu
B ],Eξ = [

0τ⋅nx×nw
E ],

and the input vector ϕ ∈ ℝnu . Obviously, (10) comprises
and extends the dynamics (1), if ϕt|k := ut|k is chosen.

Now consider a delayed control law (which is later
called terminal control law):

ϕt|k = Kτ ⋅ xt−τ|k =: Kξ ⋅ ξt|k (11)

withKτ ∈ ℝnu×nx such that the terminal systemhas a stable
closed loopmatrixAξ ,cl = (Aξ+BξKξ ). Note that this control
law is applicable as long as the AoI does not exceed the
value τ, what is assumed temporarily.

Given the probabilistic disturbance w(k) with zero
mean, the closed loop behavior of the terminal state is pre-
dictable with ξt|k ∼ N ( ̄ξt|k)Ξt|k with mean value ̄ξt|k and
covariance Ξt|k evolving according to:

̄ξt+1|k = Aξ ,cl ̄ξt|k , (12a)

Ξt+1|k = Aξ ,clΞt|kA
⊺
ξ ,cl + EξW(k + t)E

⊺
ξ . (12b)

Due to the structure of the terminal system, the rank of the
underlying distribution is limited to nx, regardless of the
dimension of nξ , or τ respectively. Thus, an ellipsoid with
confidence δ for containing the predicted state ξt|k is intro-
duced and denoted by Ξ[δ]t|k = ε(

̄ξt|k , c[δ] ⋅ Ξt|k), with a scal-
ing factor c[δ] = F−1χ2 (δ, nx).

Invariant covariance and probabilistic invariant set
By applying (12) recursively, the evolution of the terminal
state is obtained. With stable closed-loop matrix Aξ ,cl and
for t →∞, the expected value ξt|k converges to zero. With
respect to the upper bound Ŵ ≽ W(k) from Asm. 1, an in-
variant covariance can be obtained, similar to the work in
[17].

Definition 2. A matrix Σξ = Σ⊺ξ ≽ 0 is called invariant
covariance for system (10) with control law (11) and upper
bound Ŵ ≽W(k), if it satisfies the Lyapunov equation:

Σξ = Aξ ,clΣξA
⊺
ξ ,cl + Eξ ŴE⊺ξ .

Corollary 1. If Σξ is an invariant covariance, the following
holds:

Ξt+1|k ≼ Σξ , ∀ Ξt|k ≼ Σξ , ∀W(k) ≼ Ŵ .

Obviously from Def. 2 and Corollary 1, the predicted termi-
nal state converges to a neighborhood around the origin,
i. e., ξ∞|k ∼ N (0, Σξ ).

Next, the satisfaction of the constraints (2) is consid-
ered for the terminal system: From Corollary 1 follows di-
rectly that the terminal system is held within an ellipsoid
of δx-confidence:

Corollary 2. Given an invariant covariance Σξ , the proba-
bility δx ∈ [0, 1], and a corresponding confidence ellipsoid
Σ[δx]ξ = ε(0, c

[δx] ⋅ Σξ ) with scaling factor c[δx] = F−1χ2 (δx , nx),
the relation:

Ξ[δx]t|k ⊆ Σ
[δx]
ξ (13)

implies for all r ≥ t that:

ℙk(ξ (k + r) ∈ Σ
[δx]
ξ ) ≥ δx .

In consequence, satisfaction of (2a) can be guaranteed,
if the confidence ellipsoid lies within the admissible
state-space, i. e., Σ[δx]ξ ⊆ Xk+t−τ × . . . ×Xk+t, and thus if the
ellipsoid-in-ellipsoid constraint (13) is satisfied. In general,
an ellipsoid-in-ellipsoid problem can be solved according
to the S-procedure proposed in [18] – the solution may be
difficult, however, e. g., if the center points of the ellipsoids
differ. In [19], a general ellipsoid-in-ellipsoid constraintwas
reformulated with respect to the linearization of a shape-
matrix with heuristically chosen linearization point. The
use of heuristics is not appropriate for the purpose of re-
cursive feasibility in this paper. Another possibility is to
use polytopic under-approximations Σ̌[δx]ξ ⊂ Σ[δx]ξ , lead-
ing to an ellipsoid-in-polytope constraint. This is simple to
formulate, but the computation of Σ̌[δx]ξ is in general only
feasible for small dimensions nξ . Since the uncertainties
arising from the AoI typically lead to terminal systems of
higher dimension, polytopic computations are also not ap-
plicable here. Therefore, ellipsoid-in-ellipsoid constraints
with equivalent center-points are used here:

Proposition 1. Given two ellipsoids E1 ∼ ε(q, E1) and E2 ∼
ε(q, E2) with q ∈ ℝnq , then E1 ⊆ E2 iff:

E2 − E1 ≽ 0.
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Hence, constraint (13) is reformulated to:

̄ξt|k = 0, (14a)
Σξ − Ξt|k ≽ 0. (14b)

Since the terminal system is used within the optimiza-
tion problem for the end of the prediction horizon, the
conservatism introduced by (14a) reduces if the predic-
tion horizon increases. To likewise satisfy the input con-
straint (2b) with use of (11) and the terminal state ξt|k, the
δu-confidence ellipsoid for the input ϕt|k ∼ N (ϕ̄t|k ,Φt|k)
has to lie within the admissible input set, i. e.:

Φ[δu]t|k = ε(Kξ
̄ξt|k , c
[δu] ⋅ KξΞt|kK

⊺
ξ ) ⊆ U. (15)

If the constraints (14) are satisfied, (15) is satisfied too, if:

ε(0, c[δu] ⋅ KξΣξK
⊺
ξ ) ⊆ U (16)

is guaranteed. Note that the satisfaction of (16) can be
proven offline with determination of Kξ and Σξ .

4.4 Constrained stochastic optimization

Before the optimization problem is stated, the existence
of a terminal control law, which complies with the restric-
tions above, is assumed.

Assumption 4. For the terminal system (10) with delay-
time τ and the communication link probabilities
{p(k + t)}∞t=1, there exist a linear control law (11), a ter-
minal weight Pξ and a probabilistic terminal set Σ[δx]ξ such
that the following holds:
1. The delay-time τ is chosen to satisfy the threshold:

ℙ (a(k) ≤ τ) ≥ δτ, ∀ k ∈ ℕ≥0 (17)

2. The terminal set is the δx-confidence ellipsoid of the
invariant covariance Σξ for the closed loop system:

ξ (k + 1) = Aξ ,clξ (k) + Eξw(k), w(k) ∼ N (0, Ŵ).

3. The terminal set is a subset of the state admissible set,
i. e., Σ[δx]ξ ⊆ Xk−τ × . . . ×Xk, ∀ k ∈ ℕ≥0.

4. The terminal control law u(k) = Kξ ⋅ ξ (k) satisfies the
probabilistic input constraint according to (16).

5. The weighting matrix Pξ of the terminal cost term
solves a Lyapunov function in the sense that:

‖ξ (k + 1)‖2Pξ − ‖ξ (k)‖
2
Pξ + ‖ξ (k)‖

2
Qξ
≼ 0

holds for the weights of the stage cost function (3):

Qξ = diag(KξQuK
⊺
ξ ,0, . . . ,0,Qx).

With these assumptions, a common stochastic finite-
horizon cost-function is used with the terminal weight Pξ
and the stage cost (3):

JH (k) = Ek[
""""ξH|k
""""
2
Pξ
+
H−1
∑
t=0

l(xt|k , ut|k)] (18)

The optimization problem to be solved in each k with
a(k) = 0 is eventually:

J⋆H (k) = min
{Vt|k ,Mt,r|k}

{ ̂rt|k ,H−1}
{r,t}=0

JH (k) (19a)

s. t.: xt+1|k = Axt|k + But|k + Ew(k + t),
ut|k satisfies (8),
γ(x)t|k , γ

(u)
t|k given by (9a), (9b), (19b)

ξ ⊺H|k = [x
⊺
H−τ|k . . . x

⊺
H|k]

̄ξH|k = 0, Σξ − ΞH|k ≽ 0. (19c)

Note, that reformulation of (18) into a quadratic cost-
functional iswell-known in literature, e. g., cf. [10, 20], and
that [15] already provides a method to reformulate (19b)
into an LMI, such that (19) results in an SDP. The opti-
mal solution {V⋆t|k ,M

⋆
t,r|k}

H−1
{t,r}=0 together with (8) provides

admissible control inputs for the next H time-steps.
As the NCS is affected by an unbounded additive dis-

turbance, and thus the statemay become unbounded, too,
the optimization problem (19)may also become infeasible.
Therefore, and similar to the findings in [20], the use of
positive slack variables is proposed to soften both types
of constraints (19b) according to [21]. As discussed in [20],
this simply augments the set of feasible initial states to
ℝnx , and recursive feasibility of (19) can be ensured.

Theorem 1. If (19) is feasible in k = 0 without slack vari-
ables, the proposed control scheme guarantees the satisfac-
tion of constraints (2) for all k > 0 at least with probability
δτ in each k.

Proof. For k+1, consider the following solution candidate:

{ut|k+1}
H−1
t=0 = {u1|k , . . . , uH−1|k , (Kξ ξH|k)}. (20)

Eachpredicted input {ur|k}H−1r=1 is applicable to theNCSwith
probability αr|k, and the γ(u)r|k -confidence ellipsoids of the
input lie within U. Hence, the probability that each in-
put lies within the input admissible set U is at least δu.
For k + H, an admissible input can be predicted with re-
spect to the terminal control law uH−1|k+1 = Kξ ⋅ ξH|k . The
use of the terminal control law implies the satisfaction of
the input at least with probability δu, cf. Asm. 4. 4. Even-
tually, the input constraint (2b) is satisfied by (20), under
the condition of an applicable terminal control law, which
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is given at leastwith probability δτ, seeAsm. 4. 1. The satis-
faction of the state constraints follows analogously. Note,
that possible communication dropouts are stochastically
independent, such thatαt−1|k+1 := αt|k holds recursively (cf.
Asm. 2), and satisfaction of constraints (2) for all times
k + t, ∀t ∈ ℕ>0 follows directly by induction over k.

Obviously, constraint satisfaction of the predictive
control scheme depends on the threshold δτ for the AoI
and the underlying probability of the communication link.
In general, the link probability does not depend on the
control system and is therefore a quantity solely depend-
ing on the communicationnetwork.However, Asm. 4. 1 ap-
plies to the communicationnetwork and is in general guar-
anteed with values δτ close to one, see, e. g., [22] for vari-
able transmission power of wireless networks.

Since the disturbance w(k) is stochastically dis-
tributed with unbounded support, the controlled NCS re-
sults in a perturbed Markov process. Stability of a Markov
process (in the sense of mean-square stability) implies a
bounded average for the expected step costs [23, Prop. 1.
iv)], which is often used to show stability in stochastic
model predictive control schemes, e. g., [24, 25, 26, 10].
With Asm. 4. 5, problem (19) is a common stochastic con-
trol problem with tailored control law and likelihoods to
satisfy the constraints. In addition, the existence of an
admissible solution-candidate is given by (20). Therefore,
the decrease of expected costs can be shown analogously
to the references above, and mean-square stability is ob-
tained, but conditioned by δτ.

5 Numerical simulation
This section describes the application of the proposed
method to the example of an unmanned aerial vehicle
(UAV) moving in a constrained area. Usually, the control
of UAVs is twofold: i) an inner control loop stabilizes the
UAV in hovering mode, and ii) an outer control loop de-
termines the path to follow. While the inner loop controls
stateswhich are locallymeasurable, as rotor speeds (in the
case of drones) or the yaw, roll, and pitch angles, the outer
loop controls the position and height in the 3-dimensional
air-space. Therefore, the outer control loop is responsible
for safe operation with respect to the UAV’s environment,
i. e., physical and virtual obstacles like buildings or no
flight zones in urban areas. In contrast to the inner loop,
the states of the outer loop, i. e., the exact position in 3D,
is often not locally measurable because of an unmeasur-
able drift of the gyros used for stabilization, uneven terrain
(e. g., if cameras or infrared sensors are used), or varying

air pressure. Hence, the position is oftenmeasured by GPS
for outdoor motion, and via motion tracking systems in
case of indoor motion. Both methods have the drawback
that the control loop relies on these external signals. In
motion tracking systems, the position of the UAV is pre-
processed by a stationary unit, and afterwards transmit-
ted to the UVA via a communication link (commonly via
wireless LAN). In contrast, GPS is based on the run-time
measurement of electromagnetic satellite-signals and re-
lies therefore on possibly faulty connectivity to satellites.
However, in both cases the availability of the exact po-
sition measurements for the outer UAV control loop can
be modeled by the communication link in Fig. 1b, and its
transmissionprobability.Here, theUAVmotion ismodeled
in a two-dimensional spacewith integrator dynamics, and
with an underlying inner control loop, as proposed in [11].
The dynamics (1) is specified by:

A = [Ã Ã], B = [B̃ B̃], E = [Ẽ Ẽ],

Ã = [1 0.79
0 0.61], B̃ = [0.210.39], Ẽ = [0.51 ],

with state vector x⊺ = [p⊺x , v
⊺
x , p
⊺
y , v
⊺
y], input vector u

⊺ =
[a⊺x , a
⊺
y], and disturbances w

⊺ = [w⊺x ,w
⊺
y]. Here, {px , py} are

the positions, {vx , vy} the velocities, {ax , ay} the accelera-
tion, and {wx ,wy} the disturbances in x- and y-direction. In
contrast to [11], only one disturbance per direction is con-
sidered, modeling a wind force, and affecting both the po-
sition and the velocity of the UAV. The disturbance is mod-
eled as a Gaussian random variable, and the communica-
tion link is considered to transmit with constant probabil-
ity:

p(k) = 0.7, W(k) ≼ Ŵ = [0.6 0.6] ∀ k.

Position and velocity are constrained according to (2a)
with likelihood δx = 0.95 and the admissible set:

Xk =

{{{{
{{{{
{

x

!!!!!!!!!!!!!!!!!!

−30 ≤ px ≤ 50
−8 ≤ vx ≤ 7
−25 ≤ py ≤ 20
−8 ≤ vy ≤ 8

}}}}
}}}}
}

, ∀ k.

Similarly, the input is constrained according to (2b)
with likelihood δu = 0.9 and the admissible set
U = {u!!!! ‖u‖∞ ≤ 7.5 }. Caused by the uncertain AoI, the
threshold δτ is selected to 99%. With respect to the con-
stant link probability and according to (17), the threshold
results in δτ ≈ 99.19% with delay-length τ = 4 for the ter-
minal system and the control law. Note, that τ = 4 implies
H ≥ 4, and that the expected value of the last 4 predicted
states have to lie in the origin (cf. (19c)).
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Figure 3: Simulation results for 200 Monte-Carlo simulations with
the initial state marked as blue square, the admissible state space
as light gray box, and the projection of the terminal set onto the
corresponding direction as red ellipsoid.

The feedback matrix of the terminal control law Kτ is
chosen to:

Kτ = [
−0.058 −1.172 0 0

0 0 −0.058 −1.172]

satisfying the assumptions 4. 3 and 4. 4.
The prediction horizon is chosen to H = 12, and the

stage cost function from [12] is used with:

Qx = [
Q̃

Q̃], Q̃ = [
10

0.1], Qu = [
0.1

0.1], S = 1.

Starting from an initial state x0 = [35,−2,−20,−4]⊺ (blue
square), Fig. 3 shows 200 Monte Carlo simulations with
50 time-steps each in both directions of the state space,
where each color denotes a different simulation. Note, that
in none of these simulations the use slack variables was
needed. For simulation, the covariance of the disturbance
is chosen to W(k) = Ŵ. All simulations show that sys-
tem trajectories converge into a neighborhood of the ori-
gin. The neighborhood is significantly smaller than the
95%-confidence ellipsoid of Σξ , which is identical to the
region for which the control law (11) is defined.

Figure 4 shows the distribution of the AoI values for
each time-step k of the simulations. Even if the probability
is small, the maximum value for the AoI is 8, thus larger
than τ = 4. Note, that the control strategy only guarantees
probabilistic constraint satisfaction and mean-square sta-
bility as long as a(k) ≤ τ. By a solution of (20) without the
use of slack variables, it provides a suitable control input
as long as a(k) < H. Here, suitability means that a possi-
ble violation of the state and/or input constraints with an

Figure 4: Distribution of the Age of Information for the Monte-Carlo
simulations and each time-step of the simulation time.

aged control input u(k) = uk|k−t, τ ≤ t < H is considered in
the optimal control problem, together with the likelihoods
{γ(u)k , γ

(x)
k }. Since aged control inputs are rarely used (ac-

cording to Fig. 4 onlywith probability around 40% in each
time-step), the satisfaction of constraints is much higher
than {δu, δx}. Here, the admissible state space is never left
over all simulations.

6 Conclusion

This article has introduced a model predictive control
scheme for constrained linear systems with uncertain
availability of state information. The proposed method
is based on a recently suggested optimal control scheme
for linear systems with uncertain communication, which
projects the uncertainty of available information onto a
tailored likelihood to satisfy state and input constraints.
Here, solving such a stochastic optimal control problem in
receding horizon fashion implies the use of terminal con-
straints to guarantee recursive feasibility and stability of
the control scheme. Due to the uncertain communication,
the use of a state-augmented terminal systemwith delayed
control law is proposed. In contrast to existing methods,
which use reachable sets as terminal sets, the terminal set
here is derived with respect to the confidence ellipsoid of
an invariant covariance. This approach scales better with
the dimension of the system and the communication link
probability, compared to the use of polytopic sets.

The simulation results show that the proposed predic-
tive control scheme is able to steer a networked control
system with high (and specified probability) into the tar-
get, while the AoI changes probabilistically. Although the
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control scheme is based on probabilistic constraint satis-
faction, the system state remains in the admissible state
space. At the same time, the state trajectory does not re-
quire considerable safety margins to the state constraints,
thus introducing only little conservatism.Whenapproach-
ing the target state, the proposed control scheme keeps
the system state in a much tighter neighborhood than ap-
proaches which are based solely on a worst case delay of
the communication link.

It is worth noting, that the computational complexity
of the predictive control does not significantly grow with
the complexity of the communication network between
sensor and controller, or if the threshold δτ (and therefore
the dimension of the terminal system) is increased.

This control scheme opens the field to distributed pre-
dictive control systems using collectively a single commu-
nication network – this is matter of future work of the au-
thors.
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