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Abstract: We provide a comprehensive review and prac-
tical implementation of a recently developed model pre-
dictive control (MPC) framework for controlling unknown
systems using only measured data and no explicit model
knowledge. Our approach relies on an implicit system
parametrization from behavioral systems theory based on
one measured input-output trajectory. The presented MPC
schemes guarantee closed-loop stability for unknown lin-
ear time-invariant (LTI) systems, even if the data are af-
fected by noise. Further, we extend this MPC framework to
control unknown nonlinear systems by continuously up-
dating the data-driven system representation using new
measurements. The simple and intuitive applicability of
our approach is demonstrated with a nonlinear four-tank
system in simulation and in an experiment.

Keywords: data-driven control, model predictive control,
nonlinear systems

Zusammenfassung:Dieser Artikel beinhaltet einen umfas-
senden Überblick sowie eine praktische Implementierung
von kürzlich entwickelten Entwurfsverfahren zur modell-
prädiktiven Regelung (MPC), welche unbekannte Syste-
me nur mit Hilfe von gemessenen Daten und ohne expli-
zites Modellwissen regeln. Unser Ansatz bedient sich ei-
ner impliziten Systemparametrisierung aus der behavio-
ral Systemtheorie basierend auf einer Eingangs-Ausgangs-
Trajektorie. Die präsentierten MPC-Algorithmen garantie-
ren Stabilität für unbekannte lineare, zeitinvariante Syste-
me, selbst imFall von verrauschtenMessungen. Zusätzlich
stellen wir eine Erweiterung vor, um unbekannte nicht-
lineare Systeme zu regeln durch stetige Aktualisierung
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der datenbasierten Systemparametrisierung. Die einfache
und intuitive Anwendbarkeit wird an einem nichtlinearen
Vier-Tank System in der Simulation und in einem Experi-
ment demonstriert.

Schlagwörter: datenbasierte Regelung, prädiktive Rege-
lung, nichtlineare Systeme

1 Introduction
Model predictive control (MPC) is a successful modern
control technique which relies on the repeated solution
of an open-loop optimal control problem [21]. Essential
advantages of MPC are its applicability to general system
classes and the possibility to enforce constraint satisfac-
tion. In order to implement an MPC controller, typically
an accurate model of the plant is required. Since model-
ing is often themost time-consuming step in controller de-
sign and due to the increasing availability of data, control
approaches using only data and inaccurate or no model
knowledge have recently gained increasing attention [15].
Examples for such approaches are recent works on adap-
tive [2, 3] or learning-based [14] MPC.

Another promising approach for designing MPC
schemes using only measured data stems from a result
from behavioral systems theory: In [22], it is shown that
one input-output trajectory of an unknown linear time-
invariant (LTI) system can be used to parametrize all tra-
jectories, assuming that the corresponding input is per-
sistently exciting. By replacing the standard state-space
modelwith this data-dependent parametrization, it is sim-
ple to design MPC schemes which use input-output data
instead of prior model knowledge [23, 11, 7]. Such MPC
schemes have successfully been applied to challenging
real-world examples, compare [13], and open-loop robust-
ness properties have been established [12]. However, for a
reliable application to complex or safety-critical systems,
guarantees for the closed-loop behavior are crucial, which
are, however, challenging to obtain, in particular in case
of noisy data.
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In this paper, we provide an overview of recent ad-
vances in data-drivenMPC based on [22]. We focus onMPC
schemeswith guaranteed closed-loop stability and robust-
ness properties in case of LTI systems [7, 5, 6, 8, 9]. Ad-
ditionally, we demonstrate how such MPC schemes can
be modified to control unknown nonlinear systems using
onlymeasureddata.Weperforman extensive validation of
this approach in simulation and in an experiment involv-
ing the classical nonlinear four-tank system from [20].

The remainder of thepaper is structured as follows.Af-
ter providing some preliminaries in Section 2, we present
MPC schemes to control LTI systems using noise-free data,
LTI systems using noisy data, and nonlinear systems, re-
spectively, in Section 3. We then validate the presented
MPC framework with a nonlinear four-tank system in sim-
ulation (Section 4) and in an experiment (Section 5). Fi-
nally, we conclude the paper in Section 6.

2 Preliminaries

Wewrite I[a,b] for the set of all integers in the interval [a, b],
I≥0 for the set of nonnegative integers, and ℝ≥0 for the set
of nonnegative real numbers. For a vector x, we denote by
‖x‖p its p-norm. We denote an identity matrix of appropri-
ate dimension by I, we write P = P⊤ ≻ 0 if a matrix P is
positive definite, and we define ‖x‖2P := x

⊤Px. The interior
of a set X is denoted by int(X). We define K as the class of
functions α : ℝ≥0 → ℝ≥0 which are continuous, strictly in-
creasing, and satisfy α(0) = 0. For a sequence {uk}N−1k=0 , we
define the Hankel matrix

HL(u) :=
[[[[[

[

u0 u1 . . . uN−L
u1 u2 . . . uN−L+1
...

...
. . .

...
uL−1 uL . . . uN−1

]]]]]

]

and we write u[a,b] := [u⊤a . . . u⊤b ]⊤, u := u[0,N−1]. For our
theoretical results, we consider an LTI system

xk+1 = Axk + Buk , yk = Cxk + Duk (1)

with state xk ∈ ℝn, input uk ∈ ℝm, and output yk ∈ ℝp.
Throughout this paper, we make the standing assumption
that (A,B) is controllable, (A,C) is observable, and an up-
per bound on the systemorder n is known. Beyond that, no
knowledge onSystem (1) is available and, in particular, the
matricesA,B,C,D are unknown.Ameasured input-output
trajectory {udk , y

d
k }

N−1
k=0 is assumed to be available, where the

input ud is persistently exciting.

Definition 1. We say that a sequence {uk}N−1k=0 with uk ∈ ℝm
is persistently exciting of order L if rank(HL(u)) = mL.

Note that persistence of excitation of order L imposes
a lower bound on the required data length N, i. e., N ≥
(m + 1)L − 1. The following result provides a purely data-
driven parametrization of all trajectories of (1). While the
result is originally formulated and proven in the behav-
ioral framework in [22], we state a reformulation in the
state-space framework from [4].

Theorem 1 ([4, Theorem 3]). Suppose {udk , y
d
k }

N−1
k=0 is a trajec-

tory of (1), where ud is persistently exciting of order L + n.
Then, {ūk , ȳk}L−1k=0 is a trajectory of (1) if and only if there ex-
ists α ∈ ℝN−L+1 such that

[
HL(ud)
HL(yd)
] α = [ū

ȳ
] . (2)

Theorem 1 shows that Hankel matrices containing
one persistently exciting input-output trajectory span
the space of all system trajectories. This allows us to
parametrize any trajectory of an unknown system, using
only measured data and no explicit model knowledge.
While verifying the condition on ud in Theorem 1 requires
knowledge of the system order n, the result (and all further
results in this paper relying on Theorem 1) remains true if
n is replaced by a (potentially rough) upper bound.

3 Data-driven model predictive
control

In this section, we review data-drivenMPC schemes based
on Theorem 1with a special focus on the closed-loop guar-
antees that can be given for such schemes if applied to
LTI systems. We address the cases of noise-free data (Sec-
tion 3.1) and noisy data (Section 3.2) both for LTI systems.
Furthermore, we present a data-driven MPC scheme to
control nonlinear systems in Section 3.3.

3.1 Nominal data-driven MPC for LTI systems

Our goal is to track a given input-output setpoint (us, ys) ∈
U × Y which corresponds to an equilibrium of the sys-
tem (1), i. e., {uk , yk}nk=0 with (uk , yk) = (us, ys), k ∈ I[0,n]
is a valid trajectory of (1) (compare [7, Definition 3]). At
the same time, we want to satisfy pointwise-in-time con-
straints ut ∈ U, yt ∈ Y for given constraint sets U ⊆ ℝm,
Y ⊆ ℝp. MPC is a well-established method which can be
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used to achieve this task. It relies on the repeated solu-
tion of an open-loop optimal control problem, optimizing
over all possible future system trajectories at each time
step and always applying the first input component [21].
Standard MPC approaches exploit model knowledge, i. e.,
knowledge of thematricesA,B, C,D in (1), in order to solve
this optimization problem. In contrast, the MPC scheme
we consider relies on Theorem 1 which parametrizes all
possible system trajectories, using only one input-output
trajectory {udk , y

d
k }

N−1
k=0 .

Future trajectories can only be uniquely predicted if
an additional initial condition is imposed, compare [18].
Therefore, since we assume that only input-output data
of (1) and no state measurements are available, we use the
last n input-output measurements {uk , yk}t−1k=t−n to implic-
itly specify initial conditions at time t and thus, to fix a
unique system trajectory. Based on these ingredients, we
define the following optimal control problem:

min
α(t),ū(t),ȳ(t) L−1

∑
k=0‖ūk(t) − us‖2R + ‖ȳk(t) − ys‖2Q (3a)

s. t. [ū[−n,L−1](t)
ȳ[−n,L−1](t)] = [HL+n(ud)

HL+n(yd)] α(t), (3b)

[
ū[−n,−1](t)
ȳ[−n,−1](t)] = [u[t−n,t−1]y[t−n,t−1]] , (3c)

[
ū[L−n,L−1](t)
ȳ[L−n,L−1](t)] = [usnysn] , (3d)

ūk(t) ∈ U, ȳk(t) ∈ Y, k ∈ I[0,L−1]. (3e)

Problem (3) takes a common MPC form, minimizing the
difference of the predicted input-output variables ū(t), ȳ(t)
w. r. t. the setpoint (us, ys) while satisfying the constraints
in (3e). The matrices Q,R ≻ 0 are weights for tuning which
can be specified by the user. The key difference to stan-
dard model-based MPC is that the “prediction model” is
formed based on Theorem 1, i. e., by using Hankel matri-
ces in (3b). Moreover, (3c) initializes the predictions using
the last n input-output measurements, which implies that
the internal states of the predictions and of the system at
time t coincide. Due to these initial conditions, the predic-
tions have an overall length of L + n.

Further, the constraint (3d) is a terminal equality con-
straint on the last n input-output predictions, similar to
model-based MPC [21], where such conditions can be im-
posed on the state to ensure closed-loop stability. In Equa-
tion (3d), we write usn, y

s
n for column vectors containing

n times us and ys, respectively. The constraint (3d) is the
main difference of Problem (3) to other works on data-
driven MPC, e. g., in [11, 23], and it can be used to prove
closed-loop stability for the presented MPC scheme. Note

that Problem (3) does not require offline or online state
measurements and hence, the considered MPC approach
is inherently an output-feedback MPC.

For polytopic constraints, Problem (3) is a convex
quadratic program (QP) which can be solved efficiently,
similar to model-based MPC. Throughout this section, we
write ut, xt, yt for closed-loop variables at time t ∈ I≥0,
and {ū∗k (t), ȳ∗k (t)}L−1k=−n for the optimal solution predicted at
time t. Problem (3) is applied in a standard receding hori-
zon fashion which is summarized in Algorithm 1.

Algorithm 1. Nominal Data-Driven MPC
Offline: Choose upper bound on system order n, predic-
tion horizon L, costmatricesQ,R ≻ 0, constraint setsU,Y,
setpoint (us, ys), and generate data {udk , y

d
k }

N−1
k=0 .

Online:
1. At time t, take the past n measurements {uk , yk}t−1k=t−n

and solve (3).
2. Apply the input ut = ū∗0(t).
3. Set t = t + 1 and go back to 1).

The following result summarizes the closed-loop
properties of Algorithm 1 when applied to (1).

Theorem 2 ([7, Theorem 2]). Suppose L ≥ n, ud is persis-
tently exciting of order L + 2n, and the optimal cost of (3) is
upper bounded by1 cu‖xt − xs‖22 for some cu > 0 [7, Assump-
tion 1]. If Problem (3) is feasible at t = 0, then
– it is feasible at any t ∈ I≥0,
– the closed loop satisfies the constraints, i. e., ut ∈ U and

yt ∈ Y for all t ∈ I≥0,
– the steady-state xs is exponentially stable for the result-

ing closed loop.

Theorem 2 shows that the simple MPC scheme based
on repeatedly solving (3) stabilizes the unknown LTI sys-
tem (1), using only one a priori collected input-output
trajectory. The proof is similar to stability arguments in
model-based MPC [21] with the additional difficulty that
the cost of (3) depends on the output and is thus only
positive semi-definite in the internal state. The assump-
tion that the cost of (3) is quadratically upper bounded is
not restrictive and it holds, e. g., for compact constraints if
(us, ys) ∈ int(U ×Y) (see [7, 8] for details).

Since Theorem 1 provides an equivalent parametriza-
tion of system trajectories, its applicability is not limited to

1 We define xs as the steady-state corresponding to (us, ys).
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MPC schemes with terminal equality constraints as above.
In particular, it can be used to design more sophisticated
MPC schemeswith general terminal ingredients, i. e., a ter-
minal cost and a terminal region constraint, see [8] for de-
tails. Similar to terminal ingredients in model-based MPC,
this has the advantage of increasing the region of attrac-
tion and improving robustness in closed loop. Alterna-
tively, Theorem 1 is used to design a data-driven tracking
MPC scheme in [5], where the setpoint (us, ys) forwhich the
terminal equality constraint (3d) is imposed is optimized
online, analogously to model-based tracking MPC [17]. In
the data-driven problem setting considered in this pa-
per, such a tracking formulation has the advantage that
the given input-output setpoint need not be an equilib-
rium of the unknown system (1), which is a property that
may be difficult to verify in practice. Finally, [9] provides
closed-loop stability and robustness guarantees for a data-
driven MPC scheme without any terminal ingredients for
both noise-free and noisy input-output data.

3.2 Robust data-driven MPC for LTI systems

Theorem2only applies if themeasureddata are noise-free,
which is rarely the case in a practical application. In this
section, we consider the more challenging case of noisy
data. In particular, we assume that both the data used
for prediction as well as the initial conditions are affected
by bounded output measurement noise, i. e., we have ac-
cess to {udk , ỹ

d
k }

N−1
k=0 and {uk , ỹk}t−1k=t−n, where ỹdk = ydk + ε

d
k

and ỹk = yk + εk with the noise satisfying the bound
‖εdk‖∞ ≤ ε̄, ‖εk‖∞ ≤ ε̄ for k ∈ I≥0 for some ε̄ > 0. In or-
der to retain desirable closed-loop properties despite noisy
measurements, we consider the following modified data-
driven MPC scheme:

min
α(t),σ(t)
ū(t),ȳ(t)

L−1
∑
k=0‖ūk(t) − us‖2R + ‖ȳk(t) − ys‖2Q (4a)

+ λαε̄‖α(t)‖
2
2 +

λσ
ε̄
‖σ(t)‖22

s. t. [ ū(t)
ȳ(t) + σ(t)

] = [
HL+n (ud)
HL+n (ỹd)] α(t), (4b)

[
ū[−n,−1](t)
ȳ[−n,−1](t)] = [u[t−n,t−1]ỹ[t−n,t−1]] , (4c)

[
ū[L−n,L−1](t)
ȳ[L−n,L−1](t)] = [usnysn] , ūk(t) ∈ U. (4d)

In order to account for the noise affecting the available
data in (4b), Problem (4) contains an additional slack vari-
able σ(t). Both the slack variable and the vector α(t) are

regularized in the cost, where the regularization depends
on parameters λα, λσ > 0 as well as on the noise level ε̄.
The regularization of α(t) is needed since there exist in-
finitely many α satisfying (2) for a given input-output tra-
jectory. The noise in the data ỹd acts as amultiplicative un-
certainty w. r. t. α(t) in (4b) and thus regularizing the norm
of α(t) reduces the influence of the noise on the predic-
tion accuracy. On the other hand, the regularization of σ(t)
prevents large values of σ(t) which may also deteriorate
the prediction accuracy. Note that Problem (4) recovers the
nominal MPC scheme in Problem (3) for ε̄ → 0. In [7], an
additional (non-convex) constraint on σ(t) was required,
but it was recently shown in [9] that this constraint can be
dropped if the regularization of σ(t) depends reciprocally
on ε̄, cf. (4a). Hence, ifU is a convex polytope, Problem (4)
is a strictly convex QP.

For simplicity, we do not consider output constraints
in (4), i. e., Y = ℝp. It is possible to extend the pre-
sented results by including a constraint tightening which
guarantees robust output constraint satisfaction despite
output measurement noise, see [6]. Finally, we note that
MPC schemes similar to Problem (4) have been proposed
in [11, 12], but only open-loop robustness properties have
been proven. In the following, we state closed-loop prop-
erties resulting from the application of Problem (4) in a
multi-step fashion, see Algorithm 2.

Algorithm 2. Robust Data-Driven MPC
Offline: Choose upper bound on system order n, predic-
tion horizon L, cost matrices Q,R ≻ 0, regularization pa-
rameters λα, λσ > 0, constraint set U, noise bound ε̄ > 0,
setpoint (us, ys), and generate data {udk , ỹ

d
k }

N−1
k=0 .

Online:
1. At time t, take the past n measurements {uk , ỹk}t−1k=t−n

and solve (4).
2. Over the next n time steps, apply the input u[t,t+n−1] =

ū∗[0,n−1](t).
3. Set t = t + n and go back to 1).

We consider a multi-step MPC scheme due to the joint oc-
currence of model mismatch, i. e., output measurement
noise in the Hankel matrix in (4b), and terminal equal-
ity constraints. Due to this combination and the control-
lability argument used to prove stability in [7], the the-
oretical guarantees are only valid locally for a one-step
MPC scheme [7, Remark 4]. When removing the terminal
equality constraints (4d) as in [9] or replacing thembygen-
eral terminal ingredients [8], then comparable closed-loop
guarantees can also be given for a one-step scheme.
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Theorem 3 ([7, Theorem 3]). Suppose L ≥ 2n, us = 0 ∈
int(U), and ud is persistently exciting of order L + 2n. Then,
there exist a set XV ⊆ ℝn, parameters λα, λσ > 0, a suffi-
ciently small noise bound ε̄ > 0, and a function β ∈ K such
that XV is positively invariant and xt converges exponen-
tially to {x ∈ ℝn | ‖x‖2 ≤ β(ε̄)} in closed loop.

Theorem 3 should be interpreted as follows: If the pa-
rameters λα, λσ are chosen suitably and the noise bound
is sufficiently small, then the state xt converges exponen-
tially to a region around 0, i. e., the closed loop is prac-
tically exponentially stable. We consider us = 0 (which
implies ys = 0) for simplicity, but the same result holds
qualitatively if (us, ys) ̸= (0,0), compare [7, Remark 5]. The
guaranteed region of attractionXV is the sublevel set of a
practical Lyapunov functionwhich can be large (i. e., close
to the region of attraction of the nominal MPC scheme
in Section 3.1) if λα, λσ are chosen suitably and ε̄ is suf-
ficiently small. Similarly, the function β(ε̄), i. e., the size
of the region to which the closed loop converges, also de-
pends on the parameters λα, λσ, ε̄ and, in particular, it de-
creases for smaller noise levels ε̄. As is discussed in more
detail in [7], a larger magnitude of the input {udk }

N−1
k=0 gen-

erating the data and an increasing length of the data N
both improve closed-loop properties under Algorithm 2,
i. e., they increase the region of attraction and decrease
the tracking error. While these findings only reveal quali-
tative relations between different quantities, it is an impor-
tant open problem to investigate quantitative guidelines
for the appropriate selection of parameters in (4), which
is also analyzed for the example in Section 4. To summa-
rize, the MPC scheme based on repeatedly solving Prob-
lem (4) drives the system close to the desired setpoint us-
ing anoisy input-output trajectory of finite length. Sequen-
tial system identification andmodel-basedMPC is an obvi-
ous alternative toAlgorithm2. Advantages of our approach
are its simplicity, requiring no prior identification step,
while at the same time providing closed-loop guarantees
based on noisy data of finite length, which is a challeng-
ing problem in identification-basedMPC due to the lack of
tight estimation error bounds.

3.3 Data-driven MPC for nonlinear systems

Arguably, one of the biggest challenges in learning-based
and data-driven control is the development of methods
to control unknown nonlinear systems with closed-loop
guarantees. In the following, we address this issue with
an MPC scheme based on Theorem 1 which we then apply
in the subsequent sections to a practical example. We do

not provide theoretical results for the closed-loop behav-
ior under the presented MPC scheme, which is an issue of
our current research. Let us assume that, instead of (1), the
considered system takes the form

xt+1 = f (xt) + g(xt)ut , yt = h0(xt) + h1(xt)ut (5)

with unknown vector fields f , g, h0, h1 of appropriate di-
mensions. In the following, our goal is to track a desired
output setpoint2 yT , i. e., yt → yT for t → ∞, while sat-
isfying input constraints ut ∈ U, t ∈ I≥0. To this end,
we consider an MPC scheme based on Theorem 1, simi-
lar to the approaches in the previous sections. In order to
account for the nonlinear nature of the dynamics, we up-
date the (noisy) data {udk , ỹ

d
k }

N−1
k=0 used for prediction online

based on current measurements. In this way, we exploit
the fact that the nonlinear system (5) can be locally ap-
proximated as a linear system (assuming the vector fields
are sufficiently smooth). Given past N input-output mea-
surements {uk , ỹk}t−1k=t−N of (5) at time t ≥ N, we consider
the following open-loop optimal control problem:

min
α(t),σ(t)
ū(t),ȳ(t)
us(t),ys(t)

L
∑
k=0‖ūk(t) − us(t)‖2R + ‖ȳk(t) − ys(t)‖2Q (6a)

+ ‖ys(t) − yT‖2S + λα‖α(t)‖
2
2 + λσ‖σ(t)‖

2
2

s. t. [ ū(t)
ȳ(t) + σ(t)

] = [
HL+n+1 (u[t−N ,t−1])
HL+n+1 (ỹ[t−N ,t−1])] α(t), (6b)

[
ū[−n,−1](t)
ȳ[−n,−1](t)] = [u[t−n,t−1]ỹ[t−n,t−1]] , (6c)

[
ū[L−n,L](t)
ȳ[L−n,L](t)] = [usn+1(t)ysn+1(t)] , (6d)

N−L−n−1
∑
i=0 αi(t) = 1, u

s(t) ∈ Us, (6e)

ūk(t) ∈ U, k ∈ I[0,L]. (6f)

The key difference of Problem (6) to the MPC schemes con-
sidered in the previous sections is that the data used for
prediction in (6b) are updated online, thus providing a lo-
cal linear approximation of the unknown nonlinear sys-
tem (5). Note that (6) contains a slack variable σ(t) as well
as regularizations of σ(t) and α(t), similar to the robust
MPCproblem (4) for LTI systems. This is due to the fact that
the error caused by the local linear approximation of (5)
can also be viewed as output measurement noise similar
to Section 3.2.

2 Input setpoints can be included by augmenting the output with a
feedthrough term.
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As an additional difference, Problem (6) includes an
artificial setpoint us(t), ys(t) which is optimized online
and which enters the terminal equality constraint (6d).
The constraint (6d) is specified over n + 1 steps such that
(us(t), ys(t)) is an (approximate) equilibrium of the sys-
tem and thus, the overall prediction horizon is of length
L + 1. At the same time, the distance of ys(t) w. r. t. the
actual target setpoint yT is penalized, where the matrix
S ≻ 0 is a design parameter. The input setpoint us(t) lies
in some constraint setUs ⊆ int(U). The idea of optimizing
us(t), ys(t) online is inspired bymodel-based [17] and data-
driven [5] tracking MPC, where artificial setpoints can be
used to increase the region of attraction or retain closed-
loop properties despite online setpoint changes. In the
present problem setting, such an approach has the ad-
vantage that, if S is sufficiently small, then the optimal
artificial setpoint (us∗(t), ys∗(t)) appearing in the termi-
nal equality constraint (6d) remains close to the optimal
predicted input-output trajectory (ū∗(t), ȳ∗(t)) and hence,
close to the initial state xt . This means that the MPC first
drives the system close to the steady-statemanifold, where
the linearity-based model (6b) is a good approximation of
the nonlinear system dynamics (5) and therefore, the pre-
diction error is small. Then, the artificial setpoint is slowly
shifted towards the target setpoint yT along the steady-
state manifold and hence, the MPC also steers the closed-
loop trajectory towards yT .

Finally, (6e) implies that the weighting vector α(t)
sums up to 1. The explanation for this modification is that
the linearization of (5) at a pointwhich is not a steady-state
of (5) generally leads to affine (not linear) system dynam-
ics. Theorem 1 provides a data-driven system parametriza-
tion which only applies to linear systems. In order to
parametrize trajectories of an affine system based onmea-
sured data, the constraint (6e) needs to be added since it
implies that the constant offset is carried through from the
measured data to the predictions. Problem (6) can now be
applied in a standard receding horizon fashion which is
summarized in Algorithm 3.

It is worth noting that Algorithm 3 only requires solv-
ing the strictly convex QP (6) online, although the under-
lying control problem involves the nonlinear system (5). In
this work, we do not address the issue of enforcing that
the data (u, y) collected in closed loop and used for predic-
tion in (6b) are persistently exciting. It is an obvious prac-
tical problem that, upon convergence of the closed loop,
the input may eventually be constant and, in particular,
not persistently exciting of a sufficient order, which is also
an important issue in adaptive MPC [2]. For the nonlinear
four-tank system investigated in Sections 4 and 5,we apply

Algorithm 3. Nonlinear Data-Driven MPC
Offline: Choose upper bound on system order n, predic-
tion horizon L, cost matricesQ,R, S ≻ 0, regularization pa-
rameters λα, λσ > 0, constraint setsU,Us, setpoint yT , and
generate data {uk , ỹk}N−1k=0 .
Online:
1. At time t ≥ N, take the past N measurements
{uk , ỹk}t−1k=t−N and solve (4).

2. Apply the input ut = ū∗0(t).
3. Set t = t + 1 and go back to 1).

the presented MPC without additional modifications en-
forcing closed-loop persistence of excitation, but we plan
to analyze this issue in future research.

4 Simulation study

In this section, we apply the MPC scheme for nonlinear
systems discussed in Section 3.3 to a simulation model
of the four-tank system originally considered in [20]. The
continuous-time system dynamics can be described as

ẋ1 = −
a1
A1
√2gx1 +

a3
A1
√2gx3 +

γ1
A1

u1, (7)

ẋ2 = −
a2
A2
√2gx2 +

a4
A2
√2gx4 +

γ2
A2

u2,

ẋ3 = −
a3
A3
√2gx3 +

1 − γ2
A3

u2,

ẋ4 = −
a4
A4
√2gx4 +

1 − γ1
A4

u1,

where xi is the water level of tank i in cm, ui the flow rate of
pump i in cm3/s, and the other terms are system parame-
ters, whose values are taken from [20] and summarized in
Table 1. The output of the system is given by y = [x1 x2]

⊤.
For the following simulation study, we assume that this
output can be measured exactly without noise since this
allows us to better investigate and illustrate the interplay
between the nonlinear system dynamics and suitable de-
sign parameters of Problem (6) leading to a good closed-
loop operation. In Section 5, we show that the proposed

Table 1: Parameter values of the simulation model (7).

A1 = A2: A3 = A4: a1: a2:
50.27 cm2 28.27 cm2 0.233 cm2 0.242 cm2

a3 = a4: γ1 = γ2: g:
0.127 cm2 0.4 981 cm2/s
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MPC scheme is also applicable in a real-world experiment
with noisy measurements.

We now apply the nonlinear MPC scheme from Sec-
tion 3.3 (compare Algorithm 3) to the discrete-time nonlin-
ear systemobtained via Euler discretizationwith sampling
time Ts = 1.5 seconds of (7). Our goal is to track the set-
point yT = [15 15]

⊤ while satisfying the input constraints
ut ∈ U = [0, 60]2. To this end, we apply an input sequence
sampled uniformly from3 uk ∈ [20, 30]2 over the first N
time steps to collect initial data, where the system is ini-
tialized at x0 = 0. Thereafter, for each t ≥ N, we solve Prob-
lem (6), apply the first component of the optimal predicted
input, andupdate the data {uk , yk}t−1k=t−N used for prediction
in (6b) in the next time step based on the current measure-
ments. We use the parameters

N = 150, L = 35, Q = I , R = 2I , (8)

S = 20I , λα = 5 ⋅ 10
−5, λσ = 2 ⋅ 105,

and we choose the equilibrium input constraints as Us =
[0.6, 59.4]2. Further, the value of n used in (6) (i. e., our es-
timate of the system order) is chosen as 3. This suffices for
the application of data-drivenMPC since the lag of (the lin-
earization of) the above system is 2 and the implicit predic-
tion model remains valid as long as n is an upper bound
on the lag (compare [18] for details). The closed-loop in-
put and output trajectories under the MPC scheme with
these parameters can be seen in Fig. 1. After the initial ex-
citation phase t ∈ I[0,N−1], the MPC successfully steers the
output to the desired target setpoint. First, we note that
updating the data used for prediction in (6b) is a crucial
ingredient of our MPC approach for nonlinear systems. In
particular, if we do not update the data online but only use
the first N input-output measurements {uk , yk}N−1k=0 for pre-
diction, then the closed loop does not converge to the de-
sired output yT and instead yields a significant permanent
offset due to the model mismatch. For comparison, Fig. 1
also shows the closed-loop trajectory starting at time t =
N resulting from a nonlinear tracking MPC scheme with
full model knowledge and state measurements from [16],
where the parameters are as above except for S = 200I
andR = 0.1I. The twoMPC schemes exhibit similar conver-
gence speed although the data-driven MPC uses “less ag-
gressive” parameters due to the slack variable σ(t) which
implicitly relaxes the terminal equality constraint (6d). It
has been observed in the literature, e. g., [13], that the

3 This interval is chosen sufficiently large and does not contain zero
due to the fact that too small inputs imply that the outputs are also
small and thus lie in a region where the sensors of the experimental
setup in Section 5 are less accurate.

Figure 1: Closed-loop input-output trajectory, resulting from data-
driven MPC (DD-MPC, Algorithm 3) and model-based nonlinear MPC
(NMPC, [16]) to the four-tank system in simulation.

choice of the regularization parameter λα has an essen-
tial impact on the closed-loop performance of data-driven
MPC. In the following, we investigate in more detail how
the specific choice of λα influences the closed-loop perfor-
mance. To this end, we perform closed-loop simulations
for a range of values λα and, for each of these simula-
tions, we compute the corresponding cost as the deviation
of the closed-loop output from the target setpoint yT , i. e.,
J = ∑500t=N‖yt − yT‖2S. For comparison, we note that the pa-
rameters in (8) lead to a closed-loop cost of J = 1.42 ⋅ 105,
whereas the model-based nonlinear MPC shown in Fig. 1
leads to J = 3.1 ⋅ 104. Fig. 2 shows the closed-loop cost de-
pending on the parameter λα with all other parameters as

Figure 2: Closed-loop cost J depending on the parameter λα .
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in (8). Although the cost strongly depends on λα, it can be
seen that a wide range of values λα ∈ [2 ⋅ 10−5,0.01] leads
to a good performance, i. e., J ≤ 1.5 ⋅ 105. If λα is chosen
too small, then the robustness w. r. t. the nonlinearity de-
teriorates and the influence of numerical inaccuracies in-
creases, which leads to a cost increase. This is in accor-
dance with Theorem 3 which requires that λα is suitably
chosen (in particular, it cannot be arbitrarily small). On
the other hand, if λα is chosen too large then the closed-
loop cost increases significantly since too small choices
of the vector α(t) shift the input and output to which the
closed loop converges towards zero, i. e., large values of
λα increase the asymptotic tracking error. To summarize,
since a wide range of values λα leads (approximately) to
the minimum achievable cost, tuning the parameter λα is
easy for the present example.

Next, we analyze howdifferent choices of other design
parameters influence the closed-loop cost. Table 2 displays
ranges for various parameters for which the cost J is less
than 1.5 ⋅ 105, when keeping all other parameters as in (8).
The data length N needs to be sufficiently large such that
the input is persistently exciting, but choosing it too large
deteriorates the performance since then the data used for
prediction in (6b) cover a larger region of the state-space
and the implicit linearity-based “model” is a less accurate
approximation of the nonlinear dynamics (7). This is in
contrast to the results on robust data-drivenMPC for linear
systems in Section 3.2, where larger data lengths always
improve the closed-loop performance (cf. [7]). Similarly,
too large values for the prediction horizon L are detrimen-
tal since they imply that the predicted trajectories are fur-
ther away from the initial state, where the prediction accu-
racy deteriorates. On the other hand, too short horizons L
lead to worse robustness due to the terminal equality con-
straints (6d). The assumed system order n cannot be larger
than 4 due to the dependence of the required persistence
of excitation on n and since larger values of n effectively
shorten the predictionhorizondue to the terminal equality
constraints (6d), which are specified over n + 1 time steps.
If N and L are increased to N = 190 and L = 40, then the
closed-loop output still converges to yT , e. g., for the upper
bound 10 on the system order.

Table 2: Parameters leading to a closed-loop cost J ≤ 1.5 ⋅ 105.
N: L: assumed system order:
I[130,159] I[32,41] I[2,4]
s̄: λα: λσ :[16,3 ⋅ 102] [2 ⋅ 10−5,0.01] [4 ⋅ 102,106]

Further, Table 2 displays values of ̄s leading to a good
closed-loopperformance if thematrix S is chosen as S = ̄sI.
The value ̄s cannot be arbitrarily large since it needs to be
small enough such that the artificial setpoint (us(t), ys(t))
and therefore the predicted trajectories remain close to the
initial state, where the prediction accuracy of the data-
dependent model (6b) is acceptable (compare the discus-
sion in Section 3.3). On the other hand, for too small val-
ues of ̄s, the asymptotic tracking error increases since the
artificial steady-state is close to the initial condition and
thus, the regularization of αw. r. t. zero dominates the cost
of (6). Moreover, the parameter λσ can be chosen in a rela-
tively large range. To summarize, the MPC scheme shown
in Section 3.3 can successfully control the nonlinear four-
tank system from [20] in simulation, and the influence of
system and design parameters on the closed-loop perfor-
mance confirms our theoretical findings.

5 Experimental application

In the following, we apply the MPC scheme presented
in Section 3.3 in an experimental setup to the four-tank
system by Quanser. This system possesses qualitatively
the same dynamics as (7), but the parameter values dif-
fer (compare [1] for details). Nevertheless, as we show in
the following, the presented nonlinear data-driven MPC
schemecan successfully control the systemusing the same
design parameters as in Section 4 due to its ability to adapt
to changing operating conditions, in particular by updat-
ing the data used for prediction online. We use the same
sampling time Ts = 1.5 seconds as in Section 4. Similar
to Section 4, we first apply an open-loop input sampled
uniformly from uk ∈ [20, 30]2 in order to generate data
of length N = 150. Thereafter, we compute the input ap-
plied to theplant via anMPCschemebasedonProblem (6),
where the design parameters are chosen exactly as in Sec-
tion 4, i. e., as in (8). In addition to only tracking the set-
point yT = [15 15]

⊤ in the time interval t ∈ I[0,600], we
include an online setpoint change for the time interval
t ∈ I[601,1200] to yT = [11 11]

⊤. We note that the compu-
tation time for solving the strictly convex QP (6) is negli-
gible compared to the sampling time of 1.5 seconds. The
resulting closed-loop input-output trajectory is displayed
in Fig. 3. After the initial exploration phase of length N,
the closed-loop output first converges towards the setpoint
[15 15]

⊤ and after time t = 600, the output converges to-
wards the second setpoint [11 11]

⊤, i. e., theMPC approx-
imately solves our control problem. Similar to the simula-
tion results in Section 4, the closed loop has a large steady-
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Figure 3: Closed-loop input-output trajectory, resulting from the
application of the data-driven MPC scheme presented in Section 3.3
to the four-tank system in an experiment.

state tracking error if at all times only the first N = 150
data points are used for prediction, underpinning the im-
portance of updating the measured data in (6b) online
when controlling nonlinear systems. However, Fig. 3 also
illustrates a drawback of the presented approach which
always relies on the last N input-output measurements.
Upon convergence, the closed-loop input is approximately
constant and, although the qualitative persistence of exci-
tation condition in Definition 1 is still fulfilled, some of the
singular values of the input Hankel matrix are very small,
which deteriorates the prediction accuracy and hence the
closed-loop performance (compare also the discussion at
the end of Section 3.3). Therefore, the closed-loop output
does not exactly converge to the setpoint but oscillates
within a small region around yT . Moreover, when the set-
point change is initiated at time t = 600, the past N = 150
input-output data points contain only little information
about the system behavior, which deteriorates the tran-
sient closed-loop behavior. It is possible to overcome these
issues, e. g., by stopping the data updates after the set-
point is reached or by explicitly enforcing closed-loop per-
sistence of excitation. We plan to investigate the benefit of
such measures in future research.

Comparing Figures 1 and 3, we observe an important
advantage of the presented MPC framework. Clearly, the
two four-tank systems [20] and [1] have different parame-
ters, e. g., the steady-state inputs leading to the output yT

differ significantly. In particular, themodel (7) does not ac-
curately describe the four-tank system [1], e. g., due to dif-
fering pumpflow rates, differing tube diameters,manufac-
turing inaccuracies, aging, and since the model (7) is not
even an exact representation of the physical reality for the
four-tank system considered in [20]. In order to implement
a (nonlinear) model-based MPC as in [20], all of the men-
tioned quantities need to be carefully modeled which can
be a challenging and time-consuming task. On the other
hand, estimating an accurate model based on an open-
loop experiment is also difficult due to the nonlinear na-
ture of (7) and since only input-output measurements are
available, see, e. g., [10]. In contrast, the proposed MPC
leads to an acceptable closed-loop performance without
anymodifications compared to the simulation in Section 4
due to the fact that it naturally adapts to the operating
conditions. Thismakes ourMPC framework both very sim-
ple to apply, since nomodeling or nonlinear identification
tasks need to be carried out, and reliable, since the frame-
work allows for rigorous theoretical guarantees (although
so far only for linear systems).

6 Conclusion

We presented an MPC framework to control unknown sys-
tems using only measured data. We discussed simple MPC
schemes for LTI systems which admit strong theoretical
guarantees in closed loop bothwith andwithoutmeasure-
ment noise. Further, we proposed a modification which
can be used to control unknown nonlinear systems by re-
peatedly updating the data used for prediction and ex-
ploiting local linear approximations. Finally, we applied
this approach in simulation and in an experiment to a non-
linear four-tank system. Important advantages of the pre-
sented framework are its simplicity, the fact that no ex-
plicitmodel knowledge is required, the low computational
complexity (solving a QP), the possibility to adapt to on-
line changes in the systemdynamics, and the applicability
to (unknown) nonlinear systems. In particular, obtaining
accurate models of nonlinear systems using noisy input-
output data is a very challenging and largely open research
problem. On the other hand, the presented framework ad-
mits desirable theoretical guarantees for LTI systems, and
analogous results for nonlinear systems are the subject of
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our current research. Another interesting direction for fu-
ture research is thepractical and theoretical comparison to
MPC based on (online) system identification, e. g., [2, 19].
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