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Abstract: This contribution is concerned with the design
of observers for a single mast stacker crane, which is
used, e. g., for storage and removal of loads in automated
warehouses. As the mast of such stacker cranes is typi-
cally a lightweight construction, the system under consid-
eration is described by ordinary as well as partial differ-
ential equations, i. e., the system exhibits a mixed finite-
/infinite-dimensional character. We will present two dif-
ferent observer designs, an Extended Kalman Filter based
on a finite-dimensional system approximation, using the
Rayleigh-Ritz method and an approach exploiting the port-
Hamiltonian system representation for the mixed finite-
/infinite-dimensional scenario where in particular the
observer-error system should be formulated in the port-
Hamiltonian framework. The mixed-dimensional observer
and the Kalman Filter are employed to estimate the de-
flection of the beam based on signals acquired by an iner-
tial measurement unit at the beam tip. Such an approach
considerably simplifies mechatronic integration as it ren-
ders strain-gauges at the base of the mast obsolete. Fi-
nally, measurement results demonstrate the capability of
these approaches for monitoring and vibration-rejection
purposes.

Keywords: infinite-dimensional systems, energy-based
observer design, Extended Kalman Filter, single mast
stacker crane

Zusammenfassung: Dieser Beitrag beschiftigt sich mit
dem Entwurf von Beobachtern fiir ein Hochregalbe-
diengerdt in automatisierten Lagerhallen. Da es sich
bei dem Mast typischerschweise um eine Leichtbau-
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konstruktion handelt, wird das betrachtete Modell von
gewohnlichen und partiellen Differentialgleichungen
beschrieben, d.h. das Modell weist einen gemischt
finite-/infinite-dimensionalen Charakter auf. Im Rahmen
dieser Arbeit werden zwei verschiedene Beobachterent-
wiirfe vorgestellt, ein Extended Kalman Filter, das auf
einer finite-dimensionalen Systemapproximation basiert,
unter Verwendung der Rayleigh-Ritz-Methode, und ei-
nen Ansatz, der die port-Hamiltonsche Systemdarstellung
fiir das finite-/infinite-dimensionale Szenario ausnutzt,
wobei inshesondere das Beobachterfehlersystem als port-
Hamiltonsches System formuliert wird. Der finite-/infinite-
dimensionale Beobachter sowie das Kalman Filter wer-
den zur Schitzung der Balkenverformung herangezogen,
wobei lokale Vibrationen durch einen an der Mastsprit-
ze angebrachten Beschleunigungssensor erfasst werden.
Schlussendlich soll anhand von Messungen an einem rea-
len Labormodell die Leistungsfiahigkeit dieser Ansitze in
Kombination mit einem Beschleunigungssensor fiir die
Uberwachung kritischer Grofen und die Méglichkeit der
Schwingungsunterdriickung demonstriert werden.

Schlagwérter: infinit-dimensionale Systeme, energieba-
sierter Beobachterentwurf, Extended Kalman Filter, Hoch-
regalbediengerat

1 Introduction

Single mast stacker cranes (SMCs), also called rack feed-
ers, are deployed in automated warehouses or logistic cen-
ters in order to move payloads to desired positions. From
an economic point of view, to improve the productivity the
intention is to decrease the access time of such stacker
cranes. To this end, stacker cranes are typically build as
lightweight constructions, consisting of driving units in
fixed ducts and flexible mast structures. Therefore, a math-
ematical model of the SMC is characteristically governed
by a combination of ordinary differential equations (ODEs)
and partial differential equations (PDEs). However, as a
consequence of the lightweight construction undesirable
beam vibrations occur. This problem is of increasing rele-
vance in practical applications as stacker cranes in auto-
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mated warehouses are ever growing in height due to floor
space constraints. Therefore, the idea is to address the
problem from a control engineering point of view. With
regard to appropriate control methods, for the governing
mathematical model it is necessary to distinguish between
scenarios allowing for an active lifting unit or not. Note
that an active lifting unit implies a more complex model,
however, it allows to decrease the access time since the
driving and lifting unit move simultaneously. For exam-
ple, in [5] a flatness-based feedforward control for the sce-
nario of an SMC with an inactive lifting unit — i. e., the lift-
ing unit remains at a constant position — has been pre-
sented, where the flatness of the mixed-dimensional prob-
lem has been shown. In contrast, in [1] and [3] a flatness-
based feedforward control for a finite-dimensional system
approximation, which was obtained by the Rayleigh-Ritz
method, has been derived, where an active lifting unit has
been taken into account. Furthermore, in [3] a passivity-
based controller has been proposed for the stabilization of
the infinite-dimensional error system, whereas in [1, 2] a
dynamic controller based on the so-called energy-Casimir
method has been derived for that purpose.

In this contribution, instead of discussing a further
control methodology for SMCs, we focus on the derivation
of proper observation strategies. A well-known approach
for linear systems governed by ODEs is the Kalman Fil-
ter. Moreover, extensions of the Kalman Filter, like the Ex-
tended Kalman Filter (EKF), have become widely used for
the state estimation of nonlinear systems, see, e. g., [4].
Therefore, the EKF can also be applied for the SMC by con-
sidering its finite-dimensional approximation.

A further relevant research topic is the observer design
for infinite-dimensional systems, see, e. g., [6], where an
approach based on the so-called backstepping methodol-
ogy has been presented. Furthermore, in [7] a dissipativity-
based observer-design strategy has been discussed. How-
ever, note that compared to systems governed by ODEs, in
the distributed-parameter scenario there is an enormous
rise of complexity, as, besides others, the stability analy-
sis of the infinite-dimensional observer-error systems re-
quires special attention. In fact, functional analytic meth-
ods are used to show the well-posedness of the governing
PDE system, see [8] exemplarily for a detailed closed-loop
stability investigation of a gantry crane with a heavy chain.
To ensure that the observer state indeed converges to the
system state, additionally the asymptotic stability has to
be verified, see, e. g., [9], where LaSalle’s invariance prin-
ciple for infinite-dimensional systems was used.

In this contribution, we exploit a certain port-
Hamiltonian (pH) system representation for the observer
design. It should be noted that for the infinite-dimensional
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case, in particular the so-called Stokes-Dirac scenario, see,
e. g., [11], as well as an approach based on jet-bundle struc-
tures [13, 14] have turned out to be especially suitable. The
main difference of these approaches is the choice of the
states — energy variables versus derivative coordinates —
see [10] for a detailed comparison by means of the Mindlin
plate. Furthermore, in [12] the pH system representation
based on Stokes-Dirac structures, where strain variables
are exploited for mechanical systems, has been used for
the observer design. The SMC can be modelled in a varia-
tional framework, and furthermore, since the beam deflec-
tion is of particular interest in our approach, we base our
considerations on the jet-bundle scenario.

For the purpose of structure health monitoring and
vibration rejection at least partial information about the
current distortion of the beam is required. The mentioned
controllers for the SMC presented in [1, 2] and [3] rely on
the ability to measure the bending moment at the beam
base by the use of a strain gauge. Integrating strain-gauges
for directly measuring these quantities of interest can be
challenging. Therefore, the proposed observer estimates
the corresponding signals based on acceleration measure-
ments acquired at the tip of the beam.

Thus, the main contributions of this paper are as
follows. In Section 3, we present two observers for the
model of an SMC with active lifting unit, which is briefly
introduced in Section 2. For the finite-dimensional sys-
tem approximation of the SMC, which is obtained by the
Rayleigh-Ritz method, we propose an Extended Kalman
Filter. Furthermore, based on the pH system represen-
tation we derive a mixed finite-/infinite-dimensional ob-
server. In Section 4 we provide an experimental validation
of both observers on a lab demonstrator, where each ob-
server is tested in two selected scenarios. In Scenario A
we confine ourselves to an inactive lifting unit, whereas in
Scenario B an active lifting unit is considered and further-
more, also a closed-loop experiment based on a damping
injection controller is presented. Section 5 is dedicated to
a sketch of the stability proof regarding the asymptotic be-
haviour of the observer-error system of the finite-/infinite-
dimensional observer where for simplicity we restrict our-
selves to Scenario A with an inactive lifting unit at the top.

2 Mathematical modelling

In this section we briefly recapitulate the derivation of
the mixed finite-/infinite-dimensional model based on the
variational principle together with its port-Hamiltonian
representation, as well as a finite-dimensional system
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approximation obtained by means of the Rayleigh-Ritz
method, see [1, 3] and [15] for more details. The considered
physical model, see Fig. 1, consists of three main mechan-
ical parts. The position of the rigid driving unit with mass
m,, is denoted by x!. The mast with the constant length L,
the mass density pA and the flexural rigidity EI is clamped
onto the driving unit and meets the Euler-Bernoulli hy-
pothesis. A lifting unit with the mass my,, described by its
vertical and horizontal position x> and x>, respectively, is
attached to the mast. Furthermore, the absolute position
of the mast is denoted by w, and its spatial derivatives are
represented with the subscript Y, where wyy denotes the
second spatial derivative of the deflection for instance. The
horizontal position of the tip mass m; at the beam end is
specified by the coordinate x*. The rotational moments of
inertia of the beam, the tip mass and the lifting unit are not
taken into account. Moreover, the electrical dynamics are
assumed to be much faster than the mechanical ones and
are therefore neglected. Hence, the forces F; and F,, which
are enforced by a subordinated control loop, serve directly
as manipulated variables of the actuated driving and lift-
ing unit, and are considered as control inputs. It should
be noted that we use tensor notation, i. e., upper (lower)
indices represent components of contravariant (covariant)
vectors, with powers of variables enclosed in parentheses,
e.g., (x)2

2.1 Finite-/infinite-dimensional model

Under the assumptions mentioned above the overall ki-
netic energy of the single mast stacker crane reads as

1 . 1 . .
Eyin = Emw(x1)2 5y, (27 +(6?)

1 40 1
+om (XY + =
5 ) 5

L
[antpaar @
0

while the overall potential energy is given by

E

2
pot = MpSX" +

L
% JEI(WYY)ZdY. )]
0

Therefore, the Lagrangian is considered to be of the form
L = Eyn — Epog + Eoye = LOGK) + [y 107, wyy)dY with the
internal energies (1), (2) and external contributions E,,; =
x'F, + x°F,. Moreover, the Lagrangian functional is result-
ingin £ = Lt: L + A;(t)©'dt where the quantities A; cor-
respond to the Lagrange multipliers with their associated
mechanical constraints ©' = x> — w|,. and % = x* - w|;.
Note that we use Einstein’s summation convention to im-
prove readability and w|,. denotes the beam deflection at
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Figure 1: Schematic of the Single Mast Stacker Crane.

the lifting-unit position for instance. Furthermore, follow-
ing the so-called extended Hamilton principle, i. e., solv-
ing the variational problem 6£ = 0, one can obtain the
equations of motion, which consists of the partial differ-
ential equation for the Euler-Bernoulli beam

PAW + Ewyyyy = 0, (3a)

the ordinary differential equations of the driving unit, the
lifting unit and the tip mass

m,, %" + EI wyyylo = F (3b)

My + mug + myi wyle = Fy (3c)
EI (Wyyyle = Wyyyle ) = mypi (3d)
EI wyyyl; = mi*, (e)

and are restricted to the kinematic boundary conditions
and mechanical constraints

W]y = x' wylp =0 (4a)
W =x° wl, = x* (4b)
Wyyle — Wyyle =0 Wyyly = 0. (4c)

Here, the quantities x> and x* denote the upper and the
lower limit of the lifting-unit position x*. The equations of
motion (3) and (4) correspond to a mixed finite-/infinite-
dimensional problem, where the Euler-Bernoulli beam
equation (3a) is valid on the spatial domains D; = [0, x%]
and D, = [xi,L]. Obviously, w|,. = W|X§r and wyl,2 = Wy|xgr
apply at the interface of the domains D, and D,. Addition-
ally, note that the conditions (4c) are a consequence of the
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fact that we neglected the rotational inertia of the tip mass,
the beam and the lifting unit. Moreover, for practical ap-
plications, i. e., health monitoring, fault detection or ad-
vanced control purposes, several physical quantities such
as the bending moment and the shear force are of great
interest. It should be noted that in equation (3) and (4)
the second and third spatial derivatives correspond to the
bending moment M and the shear force Q evaluated at spe-
cific spatial positions Y = h, i.e.,

M|h = EIWYYlh) Q|h = _EIWYYY|h~ (5)

2.2 Port-Hamiltonian representation

In this section the finite-/infinite-dimensional problem,
given in Section 2.1, is represented as a port-Hamiltonian
system. For this purpose, we introduce by means of regular
Legendre mappings the momenta p; = mw)'cl, Dy = mh)'cz,
p; = mi, p, = mx* and p, = pAw. Subsequently, the
Hamiltonian of the SMC can be written as

_1@) 1@ ) 1)

H =
2m, 2 my, 2 my
Hy
Ll 1 1
2 2
-— —EI dy. 6
+[ 300" ¢ S aY. ©)

0 )

The partial derivative of the finite-dimensional part

with the Hamiltonian Hy and state Xp = [xl,xz,x3,x4,
D1, D2 P30, vields o, Hy = [0,myg,0,0, rﬁ—lw, %, Z—i, %]T,

where axf = a/axf. Contrary, the infinite-dimensional part
in the port-Hamiltonian representation can be stated with
x; = [w, pb]T, where its corresponding variational deriva-
. T T

tive reads &, #; = [8,,H;, 6, ;1" = [Elwyyyy, f)’—/’i] as

8y H; = 0, H; — dy(@FH,) + dy(dy @1 H,))
and 6,, H; = 0, H; with the total derivative
dY = ay + Wyaw + WYYaVYV + Wyyya‘,l;y + Wyyyyavl:;yy

with av{" =
model represented as pH system can be written as

%1 I o] 3y Hy [GF] [GQ]
[xi]_[o 7 5};% 1o F+ o Q @
X J OH Gr Go

0/owyy. Therefore, the mixed-dimensional
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Here, the canonical skew-symmetric matrix T and the in-
ternal input matrix G,, which reads as

1
1

0 0 0 1 00O
0 0 0 0100
0 0 0 0 010
0 0 0 0 00 1
=11 0 0 0 0 o ol
0 -1 0 0 00 O
0 0 -1 0 00O
(0 0 0 -1 00 O]
[0 0o 0]
0 0 0
0O 0 0
0O 0 0
Ge=1g o 1
O—Wy|X20
o 1 0
1 o 0]

describe the internal power flow of the finite-dimensional
part and allows to incorporate the constraint forces
Q = QL Qle, Qo)™ = [Elwyyylp, EIwyyyle = wyyyle),
—Ewyyylo] T respectively. Furthermore, the internal power
flow of the infinite-dimensional part is represented by the
canonical skew-symmetric operator .7; and the external in-
puts F = [F,,F,]T can be included by means of the input

mapping Gg.

0 1 0O 0 0 0 1
e[, o]

T
OOO]
-1 0 0 0 00 0 1

0 0

Consequently, the output of the port-Hamiltonian system
(7) collocated to the external input F; and F, reads as

_ Ye,l] _ AT _ [alef] _ [pl(mw)_l]
= =Gr0H = = 11> 8)
Ve L’e,z F 0, Hy py(my)~! (

whereas those of the constraint forces are given by y,; =
p

O, Hp = -5 Yoo = Oy, Hy = 3, Va3 = O, Hy = 2 and ys, =

oy Hy = r%' Moreover, by means of integration by parts it

can be shown that the Hamiltonian functional (6) evolves

along solutions of (7) according to .7 = ZLF, + %Fb see

[15] for a detailed computation.

Remark 1. Note that due to the expression -wy|,: in the ma-
trix G it becomes obvious that the system possesses a non-
linear characteristic regarding the coupling expression in
the principle of the conversation of momentum (3c).
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2.3 Finite-dimensional approximation

A finite-dimensional model can be obtained by approxi-
mating the deformation of the beam w(Y,t) by appropri-
ate ansatz functions. In fact, the beam deflection w(Y, t) is
approximated by the first-order Rayleigh-Ritz ansatz

wH(Y,t) = x'(t) + (V) (t) )

with a spatial ansatz function ®@,(Y) and the generalised
coordinate ! as a solution of the Euler-Bernoulli equation
(3a) fulfilling the kinematic boundary conditions and dy-
namical restrictions at the beam tip. By substituting the
ansatz (9) into the energies (1), (2), and using Einstein’s
sums convention, one can obtain the Lagrangian as

L
L(g.q) = Lig q) + j 10V, wiy)dY (10a)
0

1 -
= SMep@)"d - V() (10b)
with «,f = 1,...,3, the generalized coordinates g =
[x',3',x?] and the symmetric mass matrix M = (Mgl

As a result, the Euler-Lagrange equations of the model of
the finite-dimensional approximation of the single mast
stacker crane can be written as

M@ +Cola.9) = Q, (11)

where the mass matrix, with the ansatz abbreviation Cbl =
@, (x?) and its spatial derivations, is represented by

my mp+ mhd?l mqaydblql
M= my, +mp®  my®;0,®,q" (12)
sym. my, + my 0y ®,7")>

with the constant mass abbreviations m;; = pAL + my, +
m, + my,, my = pA I(f @,(Y)dY + m®(L) and m,, =
pA j(f ((Dl(Y))de + mk((Dl(L))z. In this approximation, the
vector C = [C,] and the input matrix G = [G,¢], where
Q, = Ga,fu'f, are given by

my,(*)?0yy ®,q" + 2m,x*0y d,q"
Elq' [ @yy®,dY + ®,C,
Clayqaill +m,g

1
C: ,G= 0
0

- O O

Therefore, with M denoting the inverse of the mass matrix
(12), the state-space system representation of the approxi-
mated model can be written as

q° ve
=| - . L@
L‘/“] [—M“ﬁ(q)Cﬁ(q, v) + M (q)Gpeu® 13)

x“ fex)
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At this point, only the determination of the ansatz function
@,(Y) is remaining. As mentioned before, a proper ansatz
for the deflection must satisfy the equation of the Euler-
Bernoulli beam, as well as the kinematic boundary con-
ditions and, as far as possible, also the dynamical restric-
tions. Therefore, our intention is to construct solutions for
the partial differential equation of the beam via separation
of variables. In this way, the resulting eigenfunctions of the
infinite-dimensional problem might be chosen as ansatz
functions. An additional challenge arises from the fact that
the eigenfunction problem in the general case depends on
the lifting position x2. This in turn means that we have to
solve nonlinear equations depending on the state of the
lifting unit in order to determine the eigenfunction, which
implies significant computing efforts. Therefore, we use as
ansatz function the first eigenmode of the Euler-Bernoulli
beam, where the lifting unit is neglected, which resultsin a
problem that is independent of x*. This simplification was
justified by numerical investigations, see [15]. Considering
the spatial domain D = [0, L], the fundamental solution
has the form

@, = Asin(yY) + Bcos(yY) + C sinh(yY) + D cosh(yY) (14)

withy? = w ‘;—‘?. The remaining task is the determination
of the coefficients [K’] = [A, B, C, D] as well as the eigenfre-
quency w. This can be achieved by substituting the ansatz
(14) in the adapted boundary constraints (3e) and (4) to ob-
tain a system of equations Gk]-(a))Kj =0,k=1,...,4.Bynu-
merically solving the nonlinear equation det(G(w)) = 0 for
the first eigenfrequency w, we obtain a non trivial solution
for K and therefore a proper ansatz function ®,(Y).

3 Observer design

The focus in this section is on the design of two observers
for the SMC. To begin with, we briefly present an Ex-
tended Kalman Filter for the finite-dimensional approx-
imated model. Afterwards, in Section 3.2 a pH observer
based on the mixed finite-/infinite-dimensional character-
istics of the SMC is presented.

3.1 Extended Kalman Filter

This section is dedicated to the observer design based on
the finite-dimensional system approximation (11). As men-
tioned, the aim is to design an algorithm in order to esti-
mate the shear force and the bending moment at the bot-
tom of the flexible beam, respectively, which are of particu-
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lar importance with regard to vibration suppression. If the
ansatz function is used for the deflections in (5), the prob-
lem corresponds to estimate the Ritz variable g', see

M|y = EIdyy®,(0)7", Qlg = —~Eldyyy®;(0)g'.  (15)
With the objective to do state estimation without measur-
ing the bending moment by the use of a strain gauge, our
effort is to develop an observation strategy with the ac-
celeration a|; of the beam tip as alternative measurement
unit. Therefore, the idea is to abstract the velocity g by
the given measurements including the acceleration and
utilize it as input for the observer. This issue will be ex-
plained in detail in Section 4. For a finite-dimensional ob-
server design, we rely on a nonlinear version of the well-
known Kalman Filter, namely the Extended Kalman Filter.
Originally developed for linear systems, the Kalman Filter
assumes that the probability density function of the state
and the noises are Gaussian distributed. The crucial ad-
vantage in this assumption consists in the fact that the lin-
ear equations obtain the Gaussian distribution of the state,
which can be fully described by its two first stochastic mo-
ments, namely the expectation X and the variance P, x ~
(X, P). Therefore, instead of transforming the whole prob-
ability density function from one time step to the next and
inferring measurements, the Kalman filter restricts the pre-
diction and measurement update to the first two stochastic
moments. For this purpose we consider a discretization of
the system (13) as

X1 = [ Wi, W) (16a)
Vi = hie e vie) (16b)
with the time index k, the system state x, = [x},q}, X7,

X, @y, 3317 € R®, the output quantities y, = [x}, gy, x7]" €

R, the input i, = [F,, F,]T € R? as well as the process and
measurement noise w, € R® and v, € R, respectively. In
the following, we denote an estimation of the state with
X, and the a posteriori and a priori estimation with X and
X, . These terms are of particular importance, because the
Taylor series expansions of the equations (16) along these
states corresponds to the linearised system

Xys1 = Fka + Lka + I:lk (173)

Yk = Hka + Mka (17b)

with the Jacobi matrices F; = Y o Ly = I o Hy =
oh oh N ™

a_xk‘;(;’ M = B—V"LA(; and the input &t = fi (X, u;, 0) — FXx;.

Under the assumption of mean-free Gaussian process and
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measurement noise, i. e., wy ~ (0, Q;) and vy ~ (0, Ry), the
prediction step reads as

P,y = FP{F{ + LQuLy

Xpey1 = fie(ie Uy, 0)

(18a)
(18h)

where the measurement update can be written as, see [4],

Ky = Py H] (H P Hy + MiRM])™ (19a)
)21‘: = )2,; + I<k (yk - hk(f(,;, O)) (19b)
P} = Pp - K H Py (19¢)

3.2 Infinite-dimensional observer

The underlying idea is to exploit the port-Hamiltonian sys-
tem representation and its collocated outputs for the ob-
server design, by using a copy of the plant extended by an
observer-correction term K, where it is assumed that the
driving unit position x, the lifting unit position x* and the
velocity of the beam tip w|; = % are available as measure-
ment quantities. If the system were linear, the observer-
error system could be formulated in the pH framework in a
straightforward manner, however as stated in Remark 1 the
overall model exhibits a nonlinear characteristics. By ex-
ploiting the fact that x? is available as measurement quan-
tity, we immediately obtain a linear system with the re-
duced observer state X = [!, %>, X%, Py, D3, Dy W, Pp] " -

Remark 2. It should be stressed, that due to the measure-
ment x> we omit the corresponding balance of linear mo-
mentum (3c). However, as (3d) remains, the coupling of the
active lifting unit and the beam is still valid.

The observer-correction terms K = [k', k%]T are intro-
duced such that on the one hand, k? is collocated to the
velocity of the beam tip in order to impose a dissipative
behaviour on the observer error, and on the other hand,
k' can be used to overcome steady-state errors of the driv-
ing unit position. As a result of the chosen structure of the
observer, which reads as

X :[Jf o] o, +[GF]F +[GQ]Q+[GK]R
X; 0 Jll6A ol ' [o 0

with

0 0 0 1 00 0 00
0 0 0 010 0 00

;|0 0 000 1] . 1000

1.1 o o0 o o ol 2 |o o 1|’
0 -1 0 0 0 O 010
(0 0 -1 0 0 O] 1 0 0]
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Table 1: SMC laboratory model and observer parameter.
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Symbol Value Symbol Value Symbol Value Symbol Value
m,, 13.1kg L 0.53m my 0.32kg o 3000
my, 0.86 kg El 14.97 Nm? pA 2.1kg/m B 20

the constraint shear forces Q = [Ql;,QleQlol" =
[EDWyyy |1, EIGVyyyle = Wyyyle), —EWyyylo]", the input
matrix Gr = [0,0,0,1,0, O]Tand

>

0 1 000100
=15 o] 6|

-1 0 0O 0 0 0 0 1

the error system with state X = [X', %>, %", py, D3, Py W Pp

C a3 1_o1 3 53 4 _ o4 A B P
e, Xx=[x -x,x-%X,x"=X",py —P1,P3 — D3Py — Dy W —
W, pp — Dp], can be deduced as

8- S e 2]
X; 0 Jil[6:H, 0 0
where the outputs (21) are collocated to the observer-
correction terms k' and k>

3] -t o]0

k X~

(20)

(1)

Subsequently, we show that by a proper choice of K, it
suffices to use the beam tip velocity w|; and the driving-
unit position x' = wl, regarding the error-injection
terms for the observer. For the design of the observer
we utilize a Lyapunov functional that consists of the er-
ror Hamiltonian Z = %mlw(fol)z + %mﬁ(f’ﬂz + %mik([u)z +
(f %ﬁ({ab)z + %EI (Wyy)?dY extended by a term depending
on the error of the deflection at the bottom of the mast,
i. e., we have
- N S
I, = H + 5(W|0) . 22)
Remark 3. Note that the necessity of the additional term in
(22) turns out within detailed well-posedness investigations.
If we omit this term, we are not able to detect steady state
errors since we have no information about the error deflec-
tion. Furthermore, the equivalence of the energy norm ||x|| »,
where 7, = §||X||§( can be used as a Lyapunov functional
with regard to stability investigations, and the natural norm
llx|l,, of an appropriate function space X, wherey € X, can-
not be shown. This fact implies that the observer-error sys-
tem would not be well-posed. To overcome this, we incorpo-
rate the term %(Wlo)z.

If we investigate the formal change of the Lyapunov
functional (22), which corresponds to the collocated en-
ergy ports and the derivation of the incorporated term
of Remark 3, 9?;, = —%kl - %122 + a%WIO, we find
that the choice k! = aw|, and k* = ﬂi—‘; = Bw|; with
0 < B € R, renders the evolution of (22) along solu-
tions of the error system (20) to ,7?; =-B (%)2 < 0, and
therefore the energy functional (22) does not increase. It
should be stressed, that this finding does not yet imply
that the observer-error system is asymptotically stable. In-
stead, the well-posedness and the asymptotic stability in
the light of LaSalle’s invariance principle has to be inves-
tigated. However, we want to emphasize that this proof of
the asymptotic stability is not trivial, since for LaSalle’s in-
variance principle the solution of two mixed-dimensional
systems with time variant domains [0,x(t)] and [xi(t),L]
must be determined. We therefore confine ourselves with
the non-increasing energy functional and show the appli-
cability of the observer by means of experiments on the
laboratory model and present a more detailed stability in-
vestigation only for a special scenario in Section 5.

4 Experimental results

In the following, the application of both observers are val-
idated by measurement results obtained from a labora-
tory model of a single mast stacker crane, where the pa-
rameters are stated in Table 1. It should be mentioned
that several control strategies for equilibrium point sta-
bilization as well as for trajectory tracking purposes have
been successfully implemented for the finite and mixed-
dimensional problem, see, e.g., [1] and [3]. Exemplarily,
an IDA-PBC law from [3] is given by

1-a

Fle = —CiX} — Xy — Q, (23a)

1

Fyp = —CXo — ay0t5X, (23b)

with the error terms xé =x! —x}i, xﬁ = xz—xfi and Q, = Q-Qy,
where the index d represents reference trajectories, and
ci(&§)é > 0foré # 0,i = 1,2 and ¢;(0) = O as well as
a;, a3 > 0 are degrees of freedom. Therefore, the knowl-
edge of the shear force and the bending moment is not
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only beneficial for structural health monitoring applica-
tions, but also for advanced control strategies, such as,
e. g., vibration rejection, see (23), where the shear force
Q = Elwyyyl, is required. As mentioned in Section 3.1, the
finite-dimensional scenario give us a direct proportional
relation between the Ritz coordinate ¢! and the bending
moment, which is measurable by a strain gauge, as well as
the shear force Q, see (15). Moreover, the Ritz coordinate
is also associated with the relative deflection w,,(Y,t) =
w(Y, t)-x'(t) = D,(Y)g'(t), see (9), which furthermore give
us a relation between the deflection of the beam at a spe-
cific position Y and the shear force. The laboratory model
possesses a strain gauge in order to measure the bending
moment and the shear force, respectively, although, it is
not a favoured and common tool. Instead, IMUs for mea-
suring the acceleration at the tip of the beam may be a vi-
able alternative for high bay racks with unguided masts.
Therefore, an obvious intention is to apply acceleration
measurements for the abstraction of the shear force and
the bending moment. It is well known that double integra-
tion of noisy acceleration signals is not advisable. It should
be mentioned that there exists methods, such as comple-
mentary filters, see, e.g., [19], to determine the position
from acceleration measurements. However, for the sensor
configuration of the laboratory model under consideration
it turned out that this approach is not suitable.

In fact, our intention is to exploit filtered measure-
ments of the beam tip acceleration a|; of the laboratory
model as well as the positions X!, x* of the driving unit
and lifting unit as input signals for the Extended Kalman
Filter and the energy-based infinite-dimensional observer,
where the velocity of the beam tip is obtained according to
the discrete transfer function

1-— e(—Wu T,)

Wrell(2) = al;(z) - x'(z)

Z— e Wola) 7 — e:wum
with the cutoff frequencies w, = 200s™ and w, =
15”1, Furthermore, it should be noted that with respect to
the infinite-dimensional observer the shear force and the
bending moment can be approximately obtained by the
use of the Finite-Difference method for (5). For compari-
son and validation of the two introduced observers from
Section 3 we present the results from two experiments.

Scenario A (inactive lifting unit): In the first experiment,
we propose a scenario of an SMC with inactive lifting unit
moving horizontally from x! = 01m to x' = 025m,
while the lifting unit remained constant at the beam tip,
i.e., x> = L. For this purpose, a PD control law was used
for reference tracking of the driving unit, where the de-
sired trajectory x}i(t) stems from a double integration of
a trapezoidal acceleration profile. Figure 2 shows a com-
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Figure 2: Scenario A: Comparison of the EKF and the pH observer in
a open-loop scenario with inactive lifting unit at the beam tip.

parison between the two proposed observers and measure-
ments by means of the driving unit position and the beam
tip deflection, where the subscripts EKF and pH indicate
the observer quantities of the Extended Kalman Filter and
the port-Hamiltonian observer, respectively. Note that the
bending moment measured by the strain gauge serves as
reference measurement for the beam deflection, where the
relation between the bending moment and beam deflec-
tion stems from the Ritz ansatz function as explained at the
beginning of this section. Furthermore, it should be noted
that the (not very sophisticated) chosen trajectory plan-
ning was used on purpose, although we are aware of the
fact that there exists proper methods like flatness based
trajectory planning, see [3, 5, 1]. However, our main inten-
tion is to verify the capability of the observers and there-
fore we chose trajectories such that the eigenfrequencies
of the model are stimulated.

Scenario B (active lifting unit): In the second experi-
ment, we demonstrate the capability of both observers for
an active lifting unit, where the driving unit as well as the
lifting unit were driven simultaneously from x' = 0.1 mand
x*=0.1mtox' = 0.3m and x* = 0.15m using the same PD
trajectory planning as in Scenario A. Furthermore, in or-
der to show the applicability of the proposed observers for
vibration rejection purposes, the control law (23) is acti-
vated at the time ¢ = 5s where the shear force stems from
the Extended Kalman Filter and the infinite-dimensional
observer, respectively. It should be stressed that the vibra-
tion rejection control law could have been enabled much
earlier, but our purpose was primarily to highlight the be-
havior of the observers. A slight difference in the trajecto-
ries is due to two separate closed-loop recordings on the
real laboratory model.
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Figure 3: Scenario B: Comparison of the EKF and the pH observer in
a closed-loop vibration rejection scenario with active lifting.

Remark 4. In general, spillover phenomena in early-
lumping approaches can lead to drastic problems, e.g.,
the excitation of high-frequency natural oscillations that
can provoke closed-loop instability, see [15]. However, for
the EKF, which is based on the finite-dimensional model, no
such effects turned out to be crucial.

5 Stability investigations

The aim in this section is to present a sketch of the
well-posedness and stability investigations of the mixed-
dimensional observer, where we confine ourselves to Sce-
nario A, where the lifting unit is located at the top, i.e.,
x?> = L. Note that the stability proof for a similar prob-
lem treated within the Stokes-Dirac scenario is presented
in [20]. As a consequence, the PDE (3a) is valid on the do-
main D = [0, L], the (error) momentum p, can be intro-
duced as p,, = (my, + mk))?“, and therefore, the (error) prin-
ciple of momentum (3e) for the tip mass reads
(my, + mX* = p, = ENryyyly, — B, (24)
The error principle unit for the driving unit follows to
(m,)X' = p; = ~ElVryyylo — awlo, (25)

whereas those of the lifting unit can be omitted.

5.1 Well-posedness investigations

First, the observer-error dynamics are reformulated as
an abstract Cauchy problem, which allows to apply the
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variant of the Lumer-Phillips theorem according to [16,
Theorem 1.2.4]. Therefore, we consider the state space
X = HZO,L) x L*0,L) x R x R, where H} = {W €
H?(0,L)| Wylg = O} because of the boundary condi-
tion (4a), and the state vector y = [xpX2X3 )(4]T
[Vv,ﬁb,ﬁl,m]T. Note that H'(0, L) denotes a Sobolev space
of functions whose derivatives up to order [ are square in-
tegrable. Thus, the state space X is equipped with the nat-
ural (standard) norm

XI5 = (W, W) g2 + Py Po)p2 + (B + (Ba)* (26)
with (W, W) = (W, W) 2 + (Wy, Wy )2 + (Wyy, Wyy) 2. How-
ever, for our purposes it is of advantage to introduce the
(energy) norm

- - 1 . .
X1 = EI (Wyy, Wyy) o + od Po Do)

1

— @7)
my + my

alol + —— (b’ + B4,
mW

where we have the equivalence /7, = % ||)(||f\/. Since we
are able to find constants ¢;,¢, > 0 such that ¢ ||)(||,21 <
II)(IIQ <6 ||)(||$, is fulfilled, the energy norm (27) is equiv-
alent to the natural norm (26), cf. Remark 3, and conse-
quently, X serves as a proper Hilbert space equipped with
the inner product (x,x) » = ||)(||2X. Next, to reformulate the
error dynamics as an abstract Cauchy problem of the form
X @) =Ax (), x (0) = xo € X, we introduce the linear oper-
ator A: D(A) c X - X with

w /ﬁf?b
MEIEE

D1 —Elwyyylo - “W|0

Py Elwyyylp — Wl

where D(A) denotes the (dense) domain of A

D(A) = {x € XIw e (H*(0,L) N HZ(0, L)), py, € HA(0,L),

Al My o o4
p = pApb|O’p

%ﬁbh,ﬂwwh = o}.

Regarding the Lumer-Phillips theorem [16, Theorem 1.2.4]
it has to be shown that the domain D(.A) is dense in X, the
operator A is dissipative and 0 € p(.A), the resolvent set
of A. Similar to [8, Proof of Lemma 2.2], it can be shown
that D(A) is dense in X. Furthermore, the equivalence
A, = 5 Inll% implies (x, Ax) » = -B(W|.)*, and therefore, it
follows that the operator .4 is dissipative. To prove that O €
p(A), it can be shown that for every y = [, 2> X3 X4] Tex
we can uniquely solve Ay = y fory = [W,DPy,Dp.04)7 €
D(A), and verify that .A™' maps bounded set in X into
bounded set of V" = (H*(0,L) N HZ(0, L)) x HZ(0, L) x Rx R,
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i.e., A7! exists and is bounded, and thus, O cannot be
an eigenvalue of A. Consequently, we are able to apply
the variant of the Lumer-Phillips theorem according to [16,
Theorem 1.2.4], and thus, the linear operator A is the in-
finitesimal generator of a Cy-semigroup of contractions.
Moreover, to ensure that the observer state converges to
the system state, in the following the asymptotic stability
of the observer error is verified.

5.2 Asymptotic stability

Next, regarding the investigation of the asymptotic stabil-
ity of the observer error we use LaSalle’s invariance prin-
ciple for infinite-dimensional systems, see [17, Theorem
3.64, 3.65], which can be applied since the solution tra-
jectories are precompact. This follows from the fact that
the boundedness of A~! implies that 4! is also compact,
see [17, p.201] and [18, Remark 4.2]. Thus, we investigate
theset S = {y ¢ X I,%%_. = 0}, where we consequently
have Ww|; = 0, and therefore, w|; = 0 has to hold. Since
for that case from (24) we find EIwyyy|; = O, it follows
that the dynamics in the set S are restricted to w = ,%pb’
Py = ~ElWyyyy, P; = —EIWyyy |y — aW|, together with the
boundary conditions wy|, = 0, EIwyy = 0, EIWyyy = O.
In light of LaSalle’s invariance principle, the objective is
to verify that the only possible solution in S is the trivial
one. An investigation of the eigenvectors and eigenfunc-
tions allows to introduce the ansatz function (14), which
identically fulfills the boundary conditions and can be
used for the ansatz w(Y,t) = x! + d)k(Y)qk(t). Due to
the fact that we have infinitely many imaginary eigenval-
ues, we are able to introduce the ansatz w(Y,t) = X' +
Yo (ag cos (At) + by sin (A t)) @, for the beam velocity. A
careful investigation of w(L, t) = O allows to conclude that
this is only possible for a; = b; = 0 Vk. That is, we have
verified that the only possible solution is the trivial one,
which concludes the proof of the asymptotic stability of
the observer-error system in the scenario of an inactive lift-
ing unit.

6 Conclusion

In this contribution, two different observer strategies for
a single mast stacker crane have been presented. First,
based on the finite-dimensional system approximation an
EKF has been proposed. Further, considering the mixed-
dimensional character of the system, an observer has been
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derived by means of a port-Hamiltonian system represen-
tation. The collocated observer inputs were chosen such
that the energy functional of the observer-error is non-
increasing. A sketch of well-posedness and asymptotic sta-
bility investigations is given for the special scenario with
inactive lifting mass at the beam tip. Both observers were
verified in experiments on a laboratory model, where an
acceleration measurement of the beam tip has been ex-
ploited. Finally, we want to stress that the estimated quan-
tities can be successfully used for vibration rejection.

Funding: This work has been supported by the Austrian
Science Fund (FWF) under grant number P 29964-N32.
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