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Zusammenfassung: Der Beitrag gibt einen Überblick über
Theorie und Anwendungsmöglichkeiten des Konzepts der
Flachheit für nichtlineare zeitdiskrete Systeme. Anstatt
von Zeitableitungen der Systemgrößen kann ein flacher
Ausgang im zeitdiskreten Fall von deren zukünftigen und
vergangenen Werten abhängen. Für den in der Litera-
tur meistens betrachteten – und für zahlreiche prak-
tische Anwendungen relevanten – Fall der Vorwärts-
Flachheit, bei dem man sich auf aktuelle und zukünfti-
ge Werte einschränkt, geben wir eine vollständige geo-
metrische Charakterisierung an. Damit ist es möglich,
die Vorwärts-Flachheit eines Systems rechentechnisch ef-
fizient und analog zum bekannten Test für Eingangs-
Zustands-Linearisierbarkeit zu beurteilen. Als Anwen-
dungsbeispiel betrachten wir die exakte Diskretisierung
eines mobilen Roboters.

Schlagwörter: Nichtlineare zeitdiskrete Systeme, exakte
Linearisierung, Flachheit, Geometrische Methoden

Abstract: The contribution provides an overview of the
theory and possible applications of the concept of flatness
for nonlinear discrete-time systems. In the discrete-time
case, instead of time derivatives, a flat output may depend
on future and past values of the system variables. For
the special – but practically relevant – case of forward-
flatness, which is usually considered in the literature and
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allows only a dependence on current and future values,
weprovide a complete geometric characterization. This al-
lows to check the forward-flatness of a system analogously
to the well-known test for static feedback linearizability in
a computationally efficient way. As a practical example,
we consider the exact discretization of a mobile robot.

Keywords: nonlinear discrete-time systems, exact lin-
earization, flatness, geometric methods

1 Einleitung
Das von Fliess, Lévine, Martin und Rouchon 1992 ein-
geführte Konzept der Flachheit für nichtlineare zeitkon-
tinuierliche Systeme [6, 7, 8] zählt unumstritten zu den
wichtigsten Methoden der nichtlinearen Regelungstech-
nik. Flache zeitkontinuierliche Systeme besitzen die cha-
rakteristische Eigenschaft, dass alle Systemgrößen durch
einen flachen Ausgang und dessen Zeitableitungen ausge-
drückt werden können, welcher umgekehrt von den Sys-
temgrößen und deren Zeitableitungen abhängt. Damit er-
gibt sich eine Eins-zu-eins-Korrespondenz zwischen den
Trajektorien eines flachen Systems und den Trajektorien
eines trivialen Systems. Das erlaubt auch für nichtlineare
Systeme eine einfache Trajektorienplanungund einen sys-
tematischen Entwurf von Folgeregelungen [3, 22].

Für eine Übertragung auf zeitdiskrete Systeme gibt es
im Wesentlichen zwei Möglichkeiten. Ein in der Litera-
tur häufig gewählter Zugang besteht darin, die Zeitablei-
tungen der Systemgrößen aus der bekannten zeitkontinu-
ierlichen Definition durch deren Vorwärts-Shifts, d. h. zu-
künftige Werte, zu ersetzen [11, 13, 27]. Das führt zu ei-
ner Übereinstimmung mit der in [1] für zeitdiskrete Sys-
teme definierten Linearisierbarkeit durch eine endogene
dynamische Zustandsrückführung, welche für zeitkonti-
nuierliche Systeme äquivalent zur Flachheit ist. Im Rah-
men dieses Beitrags betrachten wir als Ausgangspunkt
stattdessendieExistenz einer Eins-zu-eins-Korrespondenz
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zwischen den Lösungstrajektorien des Systems und Lö-
sungstrajektorien eines trivialen Systems [5]. Dieser Zu-
gang ist allgemeiner und erlaubt, dass der flache Aus-
gang sowohl von zukünftigen als auch vergangenen Wer-
ten (Rückwärts-Shifts) der Systemgrößen abhängen darf,
siehe auch [10]. Den Fall ohne Rückwärts-Shifts bezeich-
nen wir als Vorwärts-Flachheit.

Die Motivation für eine Übertragung des Konzepts der
Flachheit auf zeitdiskrete Systeme besteht aus regelungs-
technischer Sicht vor allem darin, dass die bei einer phy-
sikalischen Modellbildung auftretenden Systeme zwar ty-
pischerweise zeitkontinuierlich sind, aber die hergeleite-
ten Regelgesetze schließlich trotzdem zeitdiskret imple-
mentiert werden müssen (siehe z. B. [16] oder [25]). Ins-
besondere für Anwendungsfälle, bei denen die Abtast-
zeit bezogen auf die Dynamik der Solltrajektorien rela-
tiv groß ist – und somit die dem Reglerentwurf zugrun-
deliegende Annahme, dass das Regelgesetz kontinuier-
lich ausgewertet wird, an ihre Grenzen stößt – bietet es
sich an, den flachheitsbasierten Steuerungs- bzw. Rege-
lungsentwurf anhand des diskretisierten Systems durch-
zuführen. Ideal wäre dafür natürlich eine exakte Dis-
kretisierung, da diese die stückweise konstanten Stell-
größen eines digitalen Regelkreises perfekt berücksich-
tigt. Eine exakte Diskretisierung ist aber einerseits meist
schwierig zu berechnen und zerstört andererseits oft die
Eigenschaft der Flachheit. Dennoch gibt es Ausnahmen
wie zum Beispiel die in [1] betrachtete exakte Diskretisie-
rung eines mobilen Roboters. Besonders geeignet ist hin-
gegen die einfache Euler-Diskretisierung, da sie in vie-
len Fällen die Flachheit eines zeitkontinuierlichen Sys-
tems erhält. So sind z. B. die Euler-Diskretisierungen des
Laborhelikopters aus [15], des Quadrokopters aus [19],
des kinematischen Fahrzeugmodells aus [22] und der
Asynchronmaschine aus [2] allesamt vorwärts-flach und
auch die bekannten flachen Ausgänge werden erhalten.
Ein weiteres Beispiel ist das gyroskopische Pendel in
Impuls-Koordinaten, dessen Euler-Diskretisierung sogar
eingangs-zustands-linearisierbar ist. Darüber hinaus sind
auch die Euler-Diskretisierungen diverser akademischer
flacher zeitkontinuierlicher Systeme ebenfalls flach. Dass
die Euler-Diskretisierung die Flachheit eines Systems aber
nicht generell erhält, kann man schon im Eingrößenfall
einfach mit einem Gegenbeispiel zeigen, da in diesem
Fall die Eigenschaften Flachheit, Vorwärts-Flachheit und
Eingangs-Zustands-Linearisierbarkeit äquivalent sind. Im
Hinblick auf die numerische Stabilität kann natürlich
auch eine implizite Euler-Diskretisierung sinnvoll sein. Als
Beispiele, bei denen diese die Flachheit erhält, seien ex-
emplarisch wiederum die Asynchronmaschine sowie ein
hydraulisches System (siehe [17]) genannt. Bei ersterer

findet man zusätzlich zum bereits aus dem zeitkontinu-
ierlichen Fall bekannten flachen Ausgang einen weiteren
vorwärts-flachen Ausgang, während letzteres System so-
gar eingangs-zustands-linearisierbar ist.

Auch die optimierungsbasierte Trajektorienplanung
gestaltet sich einfacher als im zeitkontinuierlichen Fall.
Da die zu planenden Solltrajektorien nun Folgen anstatt
Zeitfunktionen sind, ergibt sich von vornherein ein end-
lichdimensionales Optimierungsproblem und es entfällt
die Diskretisierung eines unendlichdimensionalen Funk-
tionenraums. Entsprechend kann die Flachheit eines zeit-
diskreten Systems auch im Bereich der modellprädikti-
ven Regelung ausgenutzt werden, siehe z. B. [18]. Darüber
hinaus gibt es aber auch Anwendungen abseits der Re-
gelungstechnik, z. B. im Gebiet der Kryptographie, siehe
[10]. Aus diesem Grund betrachten wir zeitdiskrete Syste-
me ganz allgemein, unabhängig davon, ob sie durch Dis-
kretisierung eines zeitkontinuierlichen Systems entstan-
den sind.

Der Beitrag gliedert sich wie folgt: In Abschnitt 2 dis-
kutierenwir dasKonzept der Flachheit für zeitdiskrete Sys-
teme basierend auf der Eins-zu-eins-Korrespondenz zwi-
schen Systemtrajektorien und Trajektorien eines trivialen
Systems. In Abschnitt 3 geben wir für den Spezialfall der
Vorwärts-Flachheit einen rechentechnisch effizienten Test
an, der eine geradlinigeVerallgemeinerungdes bekannten
Tests für Eingangs-Zustands-Linearisierbarkeit darstellt.
In Abschnitt 4 veranschaulichenwir die vorgestellten Kon-
zepte schließlich anhand von Beispielen. Insbesondere
zeigen wir anhand der Simulation eines mobilen Roboters
mit einer zeitdiskret berechneten Vorsteuerung die mögli-
chen Vorteile des zeitdiskreten Zugangs auf.

2 Äquivalenz von Trajektorien und
Flachheit zeitdiskreter Systeme

Wir betrachten in diesem Beitrag zeitdiskrete Systeme

xi,+ = f i(x, u) , i = 1, . . . , n (1)

in Zustandsdarstellung mit dim(x) = n, dim(u) = m und
glatten Funktionen f i(x, u), welche die Submersivitätsbe-
dingung

rank(à(x,u)f ) = n (2)

erfüllen. Die Bedingung (2) ist notwendig für die Er-
reichbarkeit eines zeitdiskreten Systems und folglich auch
für dessen Flachheit, weshalb sie keine Einschränkung
darstellt. Das ist unmittelbar ersichtlich, da im Fall
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rank(à(x,u)f ) < n die durch (1) repräsentierte Abbildung
nicht surjektiv ist und somit nicht jeder Zustand x+ erreicht
werden könnte.

Wie schon in der Einleitung angemerkt, gibt es ver-
schiedene Ansätze, den Begriff der Flachheit vom zeit-
kontinuierlichen Fall auf den zeitdiskreten Fall zu über-
tragen. Eine Möglichkeit besteht darin, Zeitableitungen
durch Vorwärts-Shifts zu ersetzen. Im Rahmen dieses
Beitrags bezeichnen wir diesen Zugang als Vorwärts-
Flachheit und verfolgen stattdessen einen allgemeineren
Ansatz. Als Ausgangspunkt betrachten wir die zentrale Ei-
genschaft eines zeitkontinuierlichen Systems ẋ = f (x, u),
dass es eine Eins-zu-eins-Korrespondenz zwischen Sys-
temtrajektorien (x(t), u(t)) und Trajektorien y(t) eines tri-
vialen Systems (hinreichend glatt, aber ansonsten belie-
big)mit dim(y) = dim(u) gibt. Analog dazu bezeichnenwir
ein zeitdiskretes System (1) als flach, wenn es eine Eins-
zu-eins-Korrespondenz zwischen den Systemtrajektorien
(x(k), u(k)) und Trajektorien y(k) eines trivialen Systems
(beliebige Folgen, welche keine Differenzengleichung er-
füllen müssen) mit dim(y) = dim(u) gibt. Unter Eins-zu-
eins-Korrespondenz verstehen wir dabei, dass x(k) und
u(k) zu einem fixen Zeitschritt k von einer beliebigen, aber
finiten Anzahl von zukünftigen und vergangenen Werten
von y(k) abhängendürfen, d. h. von der ganzen Trajektorie
in einem beliebig großen, aber finiten Zeitintervall. Umge-
kehrt darf der Wert von y(k) zu einem fixen Zeitschritt k
von einer beliebigen, aber finiten Anzahl von zukünftigen
und vergangenenWerten von x(k) und u(k) abhängen. Die
Verwendung von sowohl zukünftigen als auch vergange-
nen Werten erscheint auch deshalb sinnvoll, da die Zeit-
ableitungen im zeitkontinuierlichen Fall über die Taylor-
Entwicklung ja auch eine Information über die Trajektorie
sowohl in Vorwärts- als auch Rückwärts-Richtung liefern.

Die Eins-zu-eins-Korrespondenz der Trajektorien
kann prinzipiell durch Abbildungen der Form

(x(k), u(k)) = F(k, y(k − r1), . . . , y(k), . . . , y(k + r2)) (3)

und

y(k) = φ(k, x(k − q1), u(k − q1), . . . ,
x(k), u(k), . . . , x(k + q2), u(k + q2))

(4)

mit geeigneten r1, r2, q1, q2 beschrieben werden. Einsetzen
von (4) in (3), oder umgekehrt, muss im Sinne der Eins-
zu-eins-Korrespondenz identisch erfüllte Gleichungen lie-
fern. Weiters müssen nach Einsetzen von (3) in die Sys-
temgleichungen (1) letztere identisch erfüllt sein, da die
Lösungstrajektorien y(k) eines trivialen Systems ja belie-
big sind. Da wir zeitinvariante Systeme betrachten, sind

wir im Folgenden aber nur an Abbildungen (3) und (4) in-
teressiert, welche nicht explizit vom Zeitschritt k abhän-
gen.Weiters ist es nicht erforderlich, sowohl in (3) als auch
in (4) gleichermaßen Vorwärts- und Rückwärts-Shifts zu
betrachten. Durch Definition eines geeigneten Rückwärts-
Shifts von y als neuer flacherAusgangkann immer erreicht
werden, dass in der Abbildung (3) nur Vorwärts-Shifts auf-
treten. Die Abbildungen (3) und (4) vereinfachen sich da-
mit zu

(x(k), u(k)) = F(y(k), . . . , y(k + r)) (5)

und

y(k) = φ(x(k − q1), u(k − q1), . . . , x(k), u(k), . . . ,
x(k + q2), u(k + q2)) .

(6)

Eine weitere Vereinfachung betrifft die Darstellung des
flachen Ausgangs (6), da die Trajektorien des Zustands
x(k)und des Eingangs u(k)nicht unabhängig voneinander
sind. Mithilfe der Systemgleichungen (1) können sämtli-
che Vorwärts-Shifts x(k+ j) der Zustandsgrößen durch x(k)
und Vorwärts-Shifts u(k), . . . , u(k + j − 1) der Eingangsgrö-
ßen ausgedrückt werden:

x(k + 1) = f (x(k), u(k))
x(k + 2) = f (f (x(k), u(k)), u(k + 1))

...

(7)

In Rückwärts-Richtung gelingt das mithilfe von
Rückwärts-Shifts der Eingänge nur für Systeme, bei de-
nen die Bedingung rank(àxf ) = n erfüllt ist. Wegen (2)
lassen sich aber immer m Funktionen g(x, u) so finden,
dass die Jacobimatrix von

x+ = f (x, u)
ζ = g(x, u)

(8)

regulär und somit (8) lokal invertierbar ist. Mit den Inver-
sen

x = ψx(x
+, ζ )

u = ψu(x
+, ζ )

(9)

sind alle Rückwärts-Shifts x(k−j)und u(k−j) der Zustands-
und Eingangsgrößen durch x(k) und Rückwärts-Shifts
ζ (k−1), . . . , ζ (k−j)der gemäß (8) definierten Systemgrößen
ζ eindeutig bestimmt:

(x(k − 1), u(k − 1)) = ψ(x(k), ζ (k − 1))
(x(k − 2), u(k − 2)) = ψ(ψ(x(k), ζ (k − 1)), ζ (k − 2))

...

(10)
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Durch Einsetzen von (7) und (10) ergibt sich für die Abbil-
dung (6), d. h. den flachen Ausgang, eine Darstellung der
Form

y(k) = φ(ζ (k − q1), . . . , ζ (k − 1), x(k), u(k), . . . , u(k + q2)) .

Die Wahl der Funktionen g(x, u) in (8) ist nicht eindeutig,
hat aber keine Auswirkung auf die Flachheit des Systems,
sondern nur auf die Darstellung des flachen Ausgangs.

Um eine mathematisch präzise Definition der
Flachheit zeitdiskreter Systeme formulieren zu kön-
nen, benutzen wir einen Raum mit Koordinaten
(. . . , ζ[−1], x, u, u[1], . . . ), wobei das Subskript den entspre-
chenden Shift bezeichnet.1 Wegen (7) and (10) entspricht
jeder Punkt dieses Raumes einer eindeutigen Lösungstra-
jektorie des Systems (1). Auf diesem Raum lässt sich nun
der für eine beliebige Funktion h gemäß (8) mit

δ(h(. . . , ζ[−2], ζ[−1], x, u, u[1], . . . )) =
h(. . . , ζ[−1], g(x, u), f (x, u), u[1], u[2], . . . )

definierte Vorwärts-Shift-Operator δ einführen. Seine In-
verse ist gemäß (9) durch

δ−1(h(. . . , ζ[−1], x, u, u[1], u[2], . . . )) =
h(. . . , ζ[−2],ψx(x, ζ[−1]),ψu(x, ζ[−1]), u, u[1], . . . )

gegeben und wird als Rückwärts-Shift-Operator bezeich-
net. Eine β-fache Anwendung von δ oder seiner Inversen
wird mit δβ bzw. δ−β bezeichnet. In der folgenden De-
finition betrachten wir, in Übereinstimmung mit der Li-
teratur über die exakte Linearisierung von zeitdiskreten
Systemen mittels statischer oder dynamischer Zustands-
rückführung, nur eine Umgebung einer Ruhelage x0 =
f (x0, u0), siehe z. B. [20] oder [1].2 Das Konzept ist aber in
vielen Fällen auch dann sinnvoll anwendbar, wenn die Be-
dingungen in der Ruhelage selbst nicht erfüllt sind.

Definition 1. Das System (1) ist flach in der Umgebung einer
Ruhelage (x0, u0), wenn die n +m Koordinatenfunktionen x
und u lokal durch ein m-Tupel von Funktionen

yj = φj(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]) (11)

1 Für zeitkontinuierliche Systeme würde man stattdessen einen
Raummit Koordinaten (x, u, u̇, ü, . . .) benutzen.
2 Dies ist dadurch motiviert, dass bei zeitdiskreten Systemen der Zu-
stand von Zeitschritt zu Zeitschritt „springt“. Für die Systemanalyse
wichtige differentialgeometrische Werkzeuge wie der Satz über die
implizite Funktion oder das Frobenius-Theorem garantieren aber nur
lokale Aussagen. In der Umgebung einer Ruhelage ist wegen der Ste-
tigkeit von (1) sichergestellt, dass man deren Gültigkeitsbereich nicht
verlässt. Es handelt sich also um eine – für praktische Anwendungen
oftmals wenig relevante – Vorsichtsmaßnahme.

und eine finite Anzahl von deren Vorwärts-Shifts

y[1] = δ(φ(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]))

y[2] = δ
2(φ(ζ[−q1], . . . , ζ[−1], x, u, . . . , u[q2]))

...

ausgedrückt werden können. Dasm-Tupel (11) ist ein flacher
Ausgang.

Es kann gezeigt werden, dass alle Vorwärts- und
Rückwärts-Shifts eines flachen Ausgangs (11) funktional
unabhängig sind (siehe [5]). Das wiederum garantiert die
Eindeutigkeit der Abbildung (5). Diese ist außerdem eine
Submersion, d. h. die Zeilen ihrer Jacobimatrix sind linear
unabhängig, und hat die spezielle Form

xi = F ix(y, . . . , y[R−1]) , i = 1, . . . , n

uj = F ju(y, . . . , y[R]) , j = 1, . . . ,m .

Der Multi-Index R = (r1, . . . , rm) soll verdeutlichen, dass
die Anzahl der auftretenden Vorwärts-Shifts der einzel-
nen Komponenten eines flachen Ausgangs unterschied-
lich sein kann. Der Unterschied zwischen Flachheit und
Vorwärts-Flachheit besteht nun lediglich darin, dass ein
vorwärts-flacher Ausgang unabhängig von den Größen ζ
bzw. deren Rückwärts-Shifts sein muss.

Definition 2. Das System (1) ist vorwärts-flach, wenn es die
Bedingungen vonDefinition 1mit einemflachenAusgangder
Form y = φ(x, u, . . . , u[q2]) erfüllt.

Anmerkung 1. Alternativ ist auch eine Definition von Flach-
heit bzw. Vorwärts-Flachheit für zeitdiskrete Systeme im
Rahmen des in [7] oder [23] benutzten algebraischen Zu-
gangs denkbar. Dabei sind formal auch Analogien zu den
in [23] und [24] betrachteten Totzeitsystemen zu erwarten,
da bei diesen ebenfalls Zeitverschiebungen eine Rolle spie-
len. Allerdings muss betont werden, dass die Lösungen von
Totzeitsystemen Zeitfunktionen und keine Folgen sind.

Wie bei zeitkontinuierlichen Systemen ist auch im
zeitdiskreten Fall die Eigenschaft der Flachheit eng mit
dem Problem der exakten Linearisierung mittels dyna-
mischer Zustandsrückführung verknüpft. In [1] wird eine
zeitdiskrete dynamische Zustandsrückführung

z+ = α(x, z, v)
u = β(x, z, v)

(12)

als endogenbezeichnet,wenndieGrößen z und v als Funk-
tionen von x, u und Vorwärts-Shifts von u ausgedrückt
werden können. Dazu passend ist ein System (1) genau
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dann vorwärts-flach, wenn es mittels einer solchen en-
dogenen Zustandsrückführung exakt linearisiert werden
kann. In [5] wird aber gezeigt, dass auch für flache Syste-
me gemäß der allgemeineren Definition 1 immer eine ex-
akt linearisierende dynamische Zustandsrückführung der
Form (12) existiert, welche zwar nicht endogen im Sinne
von [1] ist, aber immerhin die Eigenschaft besitzt, dass die
Trajektorien des geschlossenen Kreises in einer Eins-zu-
eins-Korrespondenz zu den Trajektorien des Originalsys-
tems stehen und auch die Submersivität erhalten bleibt.
Da das prinzipiell mit der aus dem zeitkontinuierlichen
Fall bekannten Definition einer endogenen dynamischen
Zustandsrückführung übereinstimmt, stellt sich die Fra-
ge, ob die in [1] benutzte Definition einer endogenen dyna-
mischen Zustandsrückführungmit der Einschränkung auf
Vorwärts-Shifts nicht zu restriktiv ist. Im Sinne dieses Bei-
trags würde sich dafür der Begriff vorwärts-endogen an-
bieten.

Es lässt sich zeigen, dass für lineare Systeme
und nichtlineare Eingrößensysteme die Eigenschaften
Flachheit, Vorwärts-Flachheit und Eingangs-Zustands-
Linearisierbarkeit äquivalent sind und somit immer ei-
ne Transformation auf Brunovsky-Normalform möglich
ist [5]. Die wesentliche Schwierigkeit besteht also wie bei
zeitkontinuierlichen Systemen im Nachweis der Flach-
heit bzw. der Konstruktion von flachen Ausgängen für
nichtlineare Mehrgrößensysteme. Während es für den
allgemeinen Fall gemäß Definition 1 noch keine einfach
verifizierbaren notwendigen und hinreichenden Bedin-
gungen gibt, wurde dieses Problem für den Spezialfall der
Vorwärts-Flachheit in [12] basierend auf Ergebnissen aus
[14] vollständig gelöst. Ein alternativer Ansatz findet sich
in [26]. Darüber hinaus wurde in [4] gezeigt, dass jedes
vorwärts-flache System (1) mit m ≤ 2 Eingängen durch ei-
ne Zustands- und Stellgrößentransformation sogar in eine
strukturell flache Normalform gebracht werden kann.

3 Geometrische Charakterisierung
von vorwärts-flachen Systemen

In diesem Abschnitt geben wir eine vollständige diffe-
rentialgeometrische Charakterisierung für vorwärts-flache
Systeme an. Bevor wir in Abschnitt 3.2 eine Verallge-
meinerung des bekannten Tests für Eingangs-Zustands-
Linearisierbarkeit (siehe [9] oder [20]) auf vorwärts-flache
Systemevorstellen, gehenwir inAbschnitt 3.1 auf die dafür
benötigten mathematischen Konzepte ein.

3.1 Projizierbare Vektorfelder und
Distributionen

Der differentialgeometrische Test für Vorwärts-Flachheit
benutzt eine Interpretation des Systems (1) als Abbildung

f : X × U → X + (13)

von einerMannigfaltigkeitX ×U mit Koordinaten (x, u) auf
eine Mannigfaltigkeit X + mit Koordinaten x+. Die zentra-
le mathematische Aufgabe bei diesem Test besteht darin,
festzustellen, ob ein gegebenes Vektorfeld3

v = vix(x, u)àxi + v
j
u(x, u)àuj (14)

aufX ×U durch die (punktweise definierte) Tangentialab-
bildung f∗ : T (X × U) → T (X +) auf ein eindeutiges Vek-
torfeld

w = wi(x+)àxi,+ (15)

auf X + abgebildet wird oder nicht.4 Für die Komponenten
der beiden Vektorfelder gilt dann

wi(x+) ∘ f (x, u) = àxk f
ivkx (x, u) + àuj f

ivju(x, u) ,

und wir bezeichnen die Vektorfelder als f -verwandt bzw.
das Vektorfeld (14) als „projizierbar“. Das Vektorfeld (15)
bezeichnen wir auch als „Pushforward“ von (14) und
schreiben w = f∗(v).

Ob ein Vektorfeld (14) projizierbar ist oder nicht, lässt
sich einfach feststellen, indemman aufX ×U spezielle Ko-
ordinaten einführt. Dazu wählt man eine Transformation
der Form

θi = f i(x, u) , i = 1, . . . , n
ξ j = hj(x, u) , j = 1, . . . ,m ,

(16)

wobei die m Funktionen hj(x, u) so gewählt werden müs-
sen, dass die Jacobimatrix

[
àxf àuf
àxh àuh

]

regulär ist. Da die Zeilen der Jacobimatrix von f wegen der
Submersivitäts-Bedingung (2) linear unabhängig sind, ist
eine solche Erweiterung immer möglich und garantiert,

3 Für eine kompaktere Darstellung benutzen wir im Folgenden die
Einsteinsche Summenkonvention, d. h. in (14) erfolgt eine Summati-
on über i = 1, . . . , n und j = 1, . . . ,m.
4 Da die Dimension von X + um dim(u) = m kleiner ist als jene von
X × U , besitzen nur spezielle Vektorfelder (14) diese Eigenschaft.
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dass (16) lokal invertierbar ist. Mit den neuen Koordina-
ten (θ, ξ ) auf X × U nimmt die Abbildung (13) die einfache
Form

xi,+ = θi , i = 1, . . . , n (17)

an. Das bedeutet, dass alle Punkte mit demselben Wert
der Koordinaten θ auf denselben Punkt von X + abgebil-
det werden, unabhängig vom Wert der Koordinaten ξ . In
adaptierten Koordinaten (16) hat ein Vektorfeld (14) imAll-
gemeinen die Form

v = ai(θ, ξ )àθi + b
j(θ, ξ )àξ j

und gemäß (17) führt eine Anwendung der Tangentialab-
bildung f∗ auf

f∗(v) = a
i(θ, ξ )àxi,+ , (18)

d. h. der Termbj(θ, ξ )àξ j wird abgeschnitten.Offensichtlich
ist (18) genau dann ein wohldefiniertes Vektorfeld auf X +,
wenn die Funktionen ai unabhängig von ξ sind. In diesem
Fall ergibt Ersetzen von θ durch x+ gemäß (17) das gesuch-
te zu (14) f -verwandte Vektorfeld (15). Ein Vektorfeld (14)
ist also genau dann projizierbar, wenn es in adaptierten
Koordinaten (16) die Form

ai(θ)àθi + b
j(θ, ξ )àξ j (19)

hat. Der Pushforward (15) eines solchen Vektorfeldes ist
durch ai(x+)àxi,+ gegeben.

Analog zu projizierbaren Vektorfeldern bezeichnen
wir eine Distribution D auf X × U als “projizierbar”, wenn
die Distribution eine aus projizierbaren Vektorfeldern be-
stehende Basis besitzt. Die Existenz einer solchen Ba-
sis garantiert, dass der Pushforward f∗(D) einer projizier-
baren Distribution eine wohldefinierte Distribution auf
X + ist. Bei dem in Abschnitt 3.2 vorgestellten Test für
Vorwärts-Flachheit machen wir unter anderem Gebrauch
von der Eigenschaft, dass der Pushforward einer projizier-
baren, involutiven Distribution wieder involutiv ist. Wei-
ters benötigen wir noch das folgende Theorem, welches
sicherstellt, dass bei diesem Test keine Freiheitsgrade auf-
treten.

Theorem 1. Die größte projizierbare Subdistribution DP ⊂
D einer Distribution D auf X × U ist eindeutig bestimmt.
Wenn D involutiv ist, dann ist auch DP involutiv.

Der Beweis kann in adaptierten Koordinaten (16) ge-
führt werden und ist in [12] zu finden.

3.2 Verallgemeinerung des Tests für
Eingangs-Zustands-Linearisierbarkeit

Die Erweiterung des Tests für Eingangs-Zustands-
Linearisierbarkeit auf vorwärts-flache Systeme basiert auf
der folgenden, in [14] hergeleiteten, notwendigen Bedin-
gung.

Theorem 2. Die auf X × U definierte Eingangs-Distribution
span{àu} eines vorwärts-flachen Systems (1) mit rank(àuf ) =
m enthält ein nichttriviales, bezüglich der Abbildung (13)
projizierbares Vektorfeld v = vju(x, u)àuj .

Anders formuliert gibt es bei einem vorwärts-flachen
System immer eine zumindest eindimensionale, projizier-
bare Subdistribution D ⊂ span{àu}. Diese Distribution auf
X × U kann durch Anwendung des Frobenius-Theorems
mittels einer Stellgrößentransformation

(ū1, ū2) = Φu(x, u) (20)

mit dim(ū2) = dim(D) in die Form D = span{àū2 } gebracht,
d. h. „ausgerichtet“ bzw. „begradigt“, werden. Ebenso
kann die zugehörige Distribution Δ = f∗(D) auf X + mittels
einer Zustandstransformation

(x̄1, x̄2) = Φx(x) (21)

mit dim(x̄2) = dim(Δ) in die Form Δ = span{àx̄+2 } gebracht
werden. Diese Zustandstransformation muss gemäß dem
Transformationsgesetz für zeitdiskrete Systeme gleicher-
maßen für x und x+, d. h. sowohl auf X × U als auch auf
X +, durchgeführt werden. In diesen neuen Koordinaten
hat das System (1) die Form

x̄i1 ,+1 = ̄f
i1
1 (x̄1, x̄2, ū1) , i1 = 1, . . . , n −m2

x̄i2 ,+2 = ̄f
i2
2 (x̄1, x̄2, ū1, ū2) , i2 = 1, . . . ,m2

(22)

mit dim(ū2) = dim(x̄2) = m2. Die Besonderheit der Sys-
temdarstellung (22) besteht darin, dass das Gesamtsystem
genau dann vorwärts-flach ist, wenn das Subsystem

x̄+1 = ̄f1(x̄1, x̄2, ū1) (23)

mit denm Eingängen (x̄2, ū1) vorwärts-flach ist (siehe z. B.
[13]). Die Form (22) kann auch als Zerlegung in ein Sub-
system (23) und eine endogene dynamische Zustandsrück-
führung interpretiert werden. Somit ist das Problem der
Untersuchung der Vorwärts-Flachheit des ursprünglichen
Systems übergeführt auf die Untersuchung der Vorwärts-
Flachheit des kleineren Systems (23). Dieses System muss
– nach der Elimination ggf. auftretender redundanter Ein-
gänge – wieder die notwendige Bedingung gemäß Theo-
rem2 erfüllenundkann somit, sofern es vorwärts-flach ist,
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selbst wieder zerlegt werden. Eine wiederholte Zerlegung
ermöglicht nach höchstens n − 1 Schritten eine Beurtei-
lung der Vorwärts-Flachheit des ursprünglichen Systems
(1) und liefert im Falle eines positiven Ergebnisses auch
gleich einen vorwärts-flachen Ausgang (siehe [14]).

DerNachteil dieserVorgangsweisebesteht aus rechen-
technischer Sicht jedoch darin, dass zur Konstruktion der
Transformationen (20) und (21) jeweils die Distributionen
D und Δmittels des Frobenius-Theorems begradigt werden
müssen. Das erfordert wiederum die Lösung von im Allge-
meinen nichtlinearen (aber oft einfachen) gewöhnlichen
Differentialgleichungen.DieGrundidee besteht nundarin,
nur zu prüfen, ob die wiederholten Zerlegungen möglich
sind oder nicht, ohne die entsprechenden Transforma-
tionen tatsächlich auszuführen. Das führt zu einem Test,
basierend auf einer Sequenz von Distributionen, welcher
als Spezialfall den bekannten Test für Eingangs-Zustands-
Linearisierbarkeit einschließt. Zur Berechnung dieser Se-
quenz von Distributionen benötigen wir neben der Abbil-
dung (13) auch eine gemäß

xi,+ = xi , i = 1, . . . , n

definierte Abbildung

π : X × U → X + .

Wir setzen voraus, dass die im Folgenden konstruierten
Distributionen lokal konstante Dimension haben.

Algorithmus 1.
Schritt 0: Berechnung der größten Subdistribution

D0 ⊂ E0 = span{àu} ,

welche bezüglich der Abbildung (13) projizierbar ist. Wegen
Theorem 1 ist D0 eindeutig bestimmt und involutiv, weshalb
der Pushforward

Δ1 = f∗(D0)

eine wohldefinierte, involutive Distribution auf X + ist.

Schritt k ≥ 1: Konstruktion der involutiven Distribution5

Ek = π
−1
∗ (Δk)

5 Mit π−1∗ (Δ) wird das Urbild einer Distribution Δ un-
ter der Tangentialabbildung π∗ bezeichnet. Wenn Δ =
span{vi1(x

+)àxi,+ , . . . , vid(x+)àxi,+ } eine d-dimensionale Distributi-
on auf X + ist, dann ist π−1∗ (Δ) die (d + m)-dimensionale Distribution
span{vi1(x)àxi , . . . , v

i
d(x)àxi , àu1 , . . . , àum } auf X × U . D. h. bei den

vorhandenen Vektorfeldern wird x+ durch x ersetzt und zusätzlich
kommen die Vektorfelder àu1 , . . . , àum hinzu.

aufX ×U und Berechnung der größten bezüglich der Abbil-
dung (13) projizierbaren Subdistribution

Dk ⊂ Ek .

Wegen Theorem 1 ist Dk eindeutig und involutiv. Weiters gilt
Dk−1 ⊂ Dk und folglich ist der Pushforward

Δk+1 = f∗(Dk) (24)

eine wohldefinierte, involutive Distribution auf X + mit

Δk ⊂ Δk+1 . (25)

Stop sobald für ein k = k̄ gilt

dim(Δk̄+1) = dim(Δk̄) .

Wegen (25) und dim(X +) = n endet der Algorith-
mus nach höchstens n Schritten. Man erhält eine eindeuti-
ge, verschachtelte Sequenzvonprojizierbaren, involutiven
Distributionen

D0 ⊂ D1 ⊂ . . . ⊂ Dk̄−1 (26)

aufX ×U und eine eindeutige, verschachtelte Sequenz von
involutiven Distributionen

Δ1 ⊂ Δ2 ⊂ . . . ⊂ Δk̄ (27)

aufX +,welcheüber dieBeziehung (24) verknüpft sind.Die
Sequenz (27) stellt eineVerallgemeinerungder in [9] einge-
führten Sequenz zur Überprüfung eines zeitdiskreten Sys-
tems (1) auf Eingangs-Zustands-Linearisierbarkeit dar.

Theorem 3. Ein System (1) mit rank(àuf ) = m ist genau
dann eingangs-zustands-linearisierbar,wennDk = Ek , k ≥ 0
und dim(Δk̄) = n.

Für Eingangs-Zustands-Linearisierbarkeit ist also eine
Voraussetzung, dass in jedem Schritt die gesamte Distri-
bution Ek projizierbar ist. Für einen Beweis siehe [9] oder
[20]. DurchWeglassenderBedingungDk = Ek ergeben sich
notwendige und hinreichende Bedingungen für Vorwärts-
Flachheit.

Theorem 4. Ein System (1) mit rank(àuf ) = m ist genau
dann vorwärts-flach, wenn dim(Δk̄) = n.

Für einen ausführlichen Beweis siehe [12]. Mit Theo-
rem 4 kann die Vorwärts-Flachheit eines Systems (1) ana-
log zur Eingangs-Zustands-Linearisierbarkeit rechentech-
nisch effizient überprüft werden, ohne tatsächlich einen
vorwärts-flachen Ausgang berechnen zumüssen. Die Kon-
struktion der Distributionen (26) und (27) erfordert nur die
Lösung von algebraischen Gleichungen. Im Falle eines po-
sitiven Ergebnisses kann durch Begradigen der Distribu-
tionen mit dem Frobenius-Theorem ein vorwärts-flacher
Ausgang berechnet werden.
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4 Beispiele
In diesem Abschnitt veranschaulichen wir die vorgestell-
ten Konzepte anhand von zwei Beispielen. Zuerst erklären
wir die Anwendung des Tests für Vorwärts-Flachheit aus
Abschnitt 3.2 nochmals mithilfe eines akademischen Bei-
spiels. Anschließend betrachten wir ein praktisches Bei-
spiel, welches flach aber nicht vorwärts-flach ist, und zei-
gen Simulationsergebnisse für eine zeitdiskret entworfene
Vorsteuerung.

4.1 Akademisches Beispiel

Zur Illustration des Tests für Vorwärts-Flachheit gemäßAl-
gorithmus 1undTheorem4benutzenwir das akademische
Beispiel

x1,+ = u2

x2,+ = u1
(x1+1)(u2+1)

x3,+ = x1x2 + x1 + x2

x4,+ = x1(x4 + 1) + x3

x5,+ = x4 + x5 + u2 .

(28)

Zuerst benötigenwir aufX ×U adaptierte Koordinaten (16).
Eine mögliche Wahl ist

θi = f i(x, u) , i = 1, . . . , 5
ξ 1 = x1

ξ 2 = x4 .
(29)

Schritt 0: Die Distribution E0 = span{àu1 , àu2 } ist in adap-
tierten Koordinaten (29) durch

E0 = span{àθ1 + àθ5 , àθ2 }

gegeben, wobei hier bereits durch Skalierung bzw. Linear-
kombination der beiden Vektorfelder eine einfache, nor-
mierte Basis gewählt wurde. Man erkennt, dass die Dis-
tribution von projizierbaren Vektorfeldern der Form (19)
aufgespanntwird und somit vollständig projizierbar ist. Es
gilt also D0 = E0. Der Pushforward Δ1 = f∗(D0) dieser Dis-
tribution ist gemäß Abschnitt 3.1 die wohldefinierte Distri-
bution

Δ1 = span{àx1,+ + àx5,+ , àx2,+ }
auf X +.

Schritt 1: Die Distribution E1 = π−1∗ (Δ1) ist durch

E1 = span{àx1 + àx5 , àx2 , àu1 , àu2 }

gegeben und hat in adaptierten Koordinaten (29) die Form

E1 = span{àθ1 + àθ5 , àθ2 , àθ3 , àθ4 +
1

ξ 2+1àθ5 +
1

ξ 2+1àξ 1 } .

Durch geeignete Linearkombination der Vektorfelder wur-
de bereits wieder eine spezielle Basis erzeugt, anhand de-
rer man erkennt, dass es eine dreidimensionale projizier-
bare Subdistribution

D1 = span{àθ1 + àθ5 , àθ2 , àθ3 } ⊂ E1

gibt. Für den Pushforward Δ2 = f∗(D1) ergibt sich

Δ2 = span{àx1,+ + àx5,+ , àx2,+ , àx3,+ } .
Schritt 2: Die Distribution E2 = π−1∗ (Δ2) ist durch

E2 = span{àx1 + àx5 , àx2 , àx3 , àu1 , àu2 }

gegeben und hat in adaptierten Koordinaten (29) die Form

E2 = span{àθ1 − àξ 1 , àθ2 , àθ3 , àθ4 , àθ5 + àξ 1 } .

Hierwurde ebenfalls durch Linearkombinationen eine Ba-
sis erzeugt, bei der alle Vektorfelder die Form (19) haben
und somit projizierbar sind. Dementsprechend giltD2 = E2
und der Pushforward Δ3 = f∗(D2) ist die Distribution

Δ3 = span{àx1,+ , àx2,+ , àx3,+ , àx4,+ , àx5,+ }
auf X +. Wegen dim(Δ3) = n = 5 ist damit bereits die
Dimension des Zustandsraums erreicht und das System
gemäß Theorem 4 vorwärts-flach. Durch Begradigen der
berechneten Distributionen mit dem Frobenius-Theorem
kann der vorwärts-flache Ausgang

y = (x4, x5 − x1)

ermittelt werden, siehe dazu [12] oder [4]. Anhand der Sys-
temgleichungen (28) kann man sich einfach davon über-
zeugen, dass durch diesen flachen Ausgang tatsächlich
sämtliche Zustands- und Stellgrößen parametriert werden
können. Aus der Differenz der letzten und der ersten Sys-
temgleichung erhält man die Parametrierung von x5, aus
welcher unmittelbar jene von x1 folgt. Aus der vierten Glei-
chung ergibt sich dann die Parametrierung von x3 und
aus der dritten Gleichung wiederum die Parametrierung
von x2. Die Parametrierung der Stellgrößen u1 und u2 folgt
schließlich aus den ersten beiden Gleichungen.
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4.2 Mobiler Roboter

Als praktisches Beispiel betrachten wir die exakte Diskre-
tisierung einesmobilen Roboters, welche in [1] und [21] be-
reits im Rahmen der Linearisierung mittels dynamischer
Zustandsrückführung diskutiert wurde. Die zeitkontinu-
ierlichen Systemgleichungen haben die Form

ẋ1 = u1 cos(x3)

ẋ2 = u1 sin(x3)

ẋ3 = u2
(30)

und sind auch als kinematisches Einachsmodell eines
Fahrzeugs bekannt. Die Zustandsgrößen x1, x2 und x3 be-
schreiben Position und Winkel des mobilen Roboters. Bei
den Stellgrößen u1 und u2 handelt es sich um die trans-
latorische Geschwindigkeit und die Winkelgeschwindig-
keit. Eine exakte Diskretisierung des Systems (30) mit ei-
ner allgemeinen Abtastzeit T > 0 durch Berechnung der
Lösung für im Abtastintervall konstante Stellgrößen führt
zunächst auf

x1,+ = x1 + u1T cos (x3 + u2 T2 )
sin(u2 T2 )

u2 T2

x2,+ = x2 + u1T sin (x3 + u2 T2 )
sin(u2 T2 )

u2 T2

x3,+ = x3 + u2T ,

(31)

vgl. [21] oder [28]. Durch eine anschließende Stellgrößen-
transformation

ū1 = 2u1
sin(u2 T2 )

u2

ū2 = x3 + u2 T2

erhält man das System

x1,+ = x1 + ū1 cos(ū2)

x2,+ = x2 + ū1 sin(ū2)

x3,+ = 2ū2 − x3 .

(32)

Es sei weiters angemerkt, dass für u2 = 0 im Grenzüber-
gang

lim
u2→0

sin(u2 T2 )

u2 T2
= 1

gilt und somit weder in (31) noch in der Stellgrößentrans-
formation eine Singularität auftritt.

Zuerst wollen wir mit Algorithmus 1 nachweisen, dass
das System (32) nicht vorwärts-flach ist. Dazu benötigen

wir adaptierte Koordinaten (16) und treffen dafür dieWahl

θi = f i(x, ū) , i = 1, . . . , 3

ξ 1 = ū1

ξ 2 = ū2 .

In diesenKoordinatenhabendie Eingangs-Vektorfelder àū1
und àū2 die Form

cos(ξ 2)àθ1 + sin(ξ
2)àθ2 + àξ 1

und

−ξ 1 sin(ξ 2)àθ1 + ξ
1 cos(ξ 2)àθ2 + 2àθ3 + àξ 2 .

Für die Distribution E0 = span{àū1 , àū2 } ergibt sich damit

E0 = span{àθ1 −
2 sin(ξ 2)

ξ 1 àθ3 + cos(ξ
2)àξ 1 −

sin(ξ 2)
ξ 1 àξ 2 ,

àθ2 +
2 cos(ξ 2)

ξ 1 àθ3 + sin(ξ
2)àξ 1 +

cos(ξ 2)
ξ 1 àξ 2 } ,

wobei bereits eine durch Linearkombinationen normierte
Basis gewählt wurde. Man kann erkennen, dass es keine
Linearkombination der beiden Vektorfelder gibt, welche
die Form (19) hat, d. h. projizierbar ist. Somit gibt es kei-
ne nicht-triviale projizierbare Subdistribution. Wir erhal-
ten folglich D0 = {0} und der Algorithmus stoppt bereits
nach dem ersten Schritt mit Δ1 = f∗(0) = {0}.

Obwohl das System nicht vorwärts-flach ist kannman
aber zeigen, dass es flach im Sinne der allgemeineren De-
finition 1 ist. Mit der Wahl

ζ 1 = x3

ζ 2 = x1

für die Größen ζ aus (8) existiert ein flacher Ausgang6

y = (ζ 1[−1], x
1 sin ( ζ

1[−1]+x3
2 ) − x

2 cos ( ζ
1[−1]+x3
2 )) . (33)

Die zugehörige Parametrierung der Systemgrößen hat die
Form

x = Fx(y
1, y2, . . . , y1[2], y

2
[1])

ū = Fū(y
1, y2, . . . , y1[3], y

2
[2]) .

Durch Einsetzen dieser Parametrierung in die Inverse

u1 = ū1
T
(ū2−x3)

sin(ū2−x3)

u2 = 2
T (ū

2 − x3)

6 Für eine andereWahl der Größen ζ wäre der flache Ausgang natür-
lich derselbe, würde aber formelmäßig anders aussehen.
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Abb. 1: Vorsteuerung basierend auf zeitkontinuierlichem System.

der zu Beginn benutzten Stellgrößentransformation ergibt
sich die Parametrierung der ursprünglichen Stellgrößen

u = Fu(y
1, y2, . . . , y1[3], y

2
[2]) .

Für T → 0 gilt ζ 1[−1] = x
3
[−1] → x3 und der flache Ausgang

(33) des zeitdiskreten Systems (32) geht über in denflachen
Ausgang

y = (x3, x1 sin(x3) − x2 cos(x3)) (34)

des zeitkontinuierlichen Systems (30).
Um zu verdeutlichen, dass ein Entwurf basierend auf

einem diskretisierten System vorteilhaft sein kann, wurde
für das zeitkontinuierliche System (30) und das exakt dis-
kretisierte System (32) mithilfe der flachen Ausgänge (34)
und (33) jeweils eine Trajektorienplanung durchgeführt.
Die Abtastzeit wurde dabei wie in [21] mit T = 0.5 s festge-
legt. Die resultierenden Vorsteuerungen wurden in einer
Simulation auf das zeitkontinuierliche System (30) auf-
geschaltet, wobei die zeitkontinuierlich berechnete Vor-
steuerung u(t) nur zu den Abtastzeitpunkten t = kT ausge-
wertet und dazwischen konstant gehalten wurde. Die Er-
gebnisse sind in Abb. 1 und Abb. 2 dargestellt und zeigen
die Trajektorie des mobilen Roboters in der Ebene. Wäh-
rend es durch den Effekt des Abtastens und Haltens mit
der zeitkontinuierlich berechneten Vorsteuerung zu einer
deutlichen Abweichung von der Solltrajektorie kommt, ist
mit der zeitdiskret berechnetenVorsteuerungdurchdie ex-
akte Diskretisierung erwartungsgemäß keine Abweichung
erkennbar.

Abb. 2: Vorsteuerung basierend auf exakt diskretisiertem System.

Finanzierung: Die Arbeit wurde durch den österreichi-
schen Wissenschaftsfonds (FWF) im Rahmen der Projekte
P 29964 und P 32151 unterstützt.
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