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Zusammenfassung: Der Beitrag gibt einen Uberblick iiber
Theorie und Anwendungsmoglichkeiten des Konzepts der
Flachheit fiir nichtlineare zeitdiskrete Systeme. Anstatt
von Zeitableitungen der Systemgrofien kann ein flacher
Ausgang im zeitdiskreten Fall von deren zukiinftigen und
vergangenen Werten abhdngen. Fiir den in der Litera-
tur meistens betrachteten — und fiir zahlreiche prak-
tische Anwendungen relevanten — Fall der Vorwarts-
Flachheit, bei dem man sich auf aktuelle und zukiinfti-
ge Werte einschrankt, geben wir eine vollstandige geo-
metrische Charakterisierung an. Damit ist es mdglich,
die Vorwdrts-Flachheit eines Systems rechentechnisch ef-
fizient und analog zum bekannten Test fiir Eingangs-
Zustands-Linearisierbarkeit zu beurteilen. Als Anwen-
dungsbeispiel betrachten wir die exakte Diskretisierung
eines mobilen Roboters.

Schlagworter: Nichtlineare zeitdiskrete Systeme, exakte
Linearisierung, Flachheit, Geometrische Methoden

Abstract: The contribution provides an overview of the
theory and possible applications of the concept of flatness
for nonlinear discrete-time systems. In the discrete-time
case, instead of time derivatives, a flat output may depend
on future and past values of the system variables. For
the special — but practically relevant — case of forward-
flatness, which is usually considered in the literature and
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allows only a dependence on current and future values,
we provide a complete geometric characterization. This al-
lows to check the forward-flatness of a system analogously
to the well-known test for static feedback linearizability in
a computationally efficient way. As a practical example,
we consider the exact discretization of a mobile robot.

Keywords: nonlinear discrete-time systems, exact lin-
earization, flatness, geometric methods

1 Einleitung

Das von Fliess, Lévine, Martin und Rouchon 1992 ein-
gefiihrte Konzept der Flachheit fiir nichtlineare zeitkon-
tinuierliche Systeme [6, 7, 8] zdhlt unumstritten zu den
wichtigsten Methoden der nichtlinearen Regelungstech-
nik. Flache zeitkontinuierliche Systeme besitzen die cha-
rakteristische Eigenschaft, dass alle Systemgréf3en durch
einen flachen Ausgang und dessen Zeitableitungen ausge-
driickt werden kénnen, welcher umgekehrt von den Sys-
temgroflen und deren Zeitableitungen abhédngt. Damit er-
gibt sich eine Eins-zu-eins-Korrespondenz zwischen den
Trajektorien eines flachen Systems und den Trajektorien
eines trivialen Systems. Das erlaubt auch fiir nichtlineare
Systeme eine einfache Trajektorienplanung und einen sys-
tematischen Entwurf von Folgeregelungen [3, 22].

Fiir eine Ubertragung auf zeitdiskrete Systeme gibt es
im Wesentlichen zwei Mdéglichkeiten. Ein in der Litera-
tur hdufig gewdhlter Zugang besteht darin, die Zeitablei-
tungen der Systemgrofien aus der bekannten zeitkontinu-
ierlichen Definition durch deren Vorwérts-Shifts, d. h. zu-
kiinftige Werte, zu ersetzen [11, 13, 27]. Das fiihrt zu ei-
ner Ubereinstimmung mit der in [1] fiir zeitdiskrete Sys-
teme definierten Linearisierbarkeit durch eine endogene
dynamische Zustandsriickfiihrung, welche fiir zeitkonti-
nuierliche Systeme dquivalent zur Flachheit ist. Im Rah-
men dieses Beitrags betrachten wir als Ausgangspunkt
stattdessen die Existenz einer Eins-zu-eins-Korrespondenz
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zwischen den Losungstrajektorien des Systems und Lo-
sungstrajektorien eines trivialen Systems [5]. Dieser Zu-
gang ist allgemeiner und erlaubt, dass der flache Aus-
gang sowohl von zukiinftigen als auch vergangenen Wer-
ten (Riickwarts-Shifts) der Systemgroflen abhingen darf,
siehe auch [10]. Den Fall ohne Riickwérts-Shifts bezeich-
nen wir als Vorwarts-Flachheit.

Die Motivation fiir eine Ubertragung des Konzepts der
Flachheit auf zeitdiskrete Systeme besteht aus regelungs-
technischer Sicht vor allem darin, dass die bei einer phy-
sikalischen Modellbildung auftretenden Systeme zwar ty-
pischerweise zeitkontinuierlich sind, aber die hergeleite-
ten Regelgesetze schliefilich trotzdem zeitdiskret imple-
mentiert werden miissen (siehe z.B. [16] oder [25]). Ins-
besondere fiir Anwendungsfille, bei denen die Abtast-
zeit bezogen auf die Dynamik der Solltrajektorien rela-
tiv grof ist — und somit die dem Reglerentwurf zugrun-
deliegende Annahme, dass das Regelgesetz kontinuier-
lich ausgewertet wird, an ihre Grenzen st6f3t — bietet es
sich an, den flachheitsbasierten Steuerungs- bzw. Rege-
lungsentwurf anhand des diskretisierten Systems durch-
zufiihren. Ideal wdre dafiir natiirlich eine exakte Dis-
kretisierung, da diese die stiickweise konstanten Stell-
groflen eines digitalen Regelkreises perfekt beriicksich-
tigt. Eine exakte Diskretisierung ist aber einerseits meist
schwierig zu berechnen und zerstort andererseits oft die
Eigenschaft der Flachheit. Dennoch gibt es Ausnahmen
wie zum Beispiel die in [1] betrachtete exakte Diskretisie-
rung eines mobilen Roboters. Besonders geeignet ist hin-
gegen die einfache Euler-Diskretisierung, da sie in vie-
len Féllen die Flachheit eines zeitkontinuierlichen Sys-
tems erhélt. So sind z. B. die Euler-Diskretisierungen des
Laborhelikopters aus [15], des Quadrokopters aus [19],
des kinematischen Fahrzeugmodells aus [22] und der
Asynchronmaschine aus [2] allesamt vorwiarts-flach und
auch die bekannten flachen Ausgdnge werden erhalten.
Ein weiteres Beispiel ist das gyroskopische Pendel in
Impuls-Koordinaten, dessen Euler-Diskretisierung sogar
eingangs-zustands-linearisierbar ist. Dariiber hinaus sind
auch die Euler-Diskretisierungen diverser akademischer
flacher zeitkontinuierlicher Systeme ebenfalls flach. Dass
die Euler-Diskretisierung die Flachheit eines Systems aber
nicht generell erhdlt, kann man schon im Eingréf3enfall
einfach mit einem Gegenbeispiel zeigen, da in diesem
Fall die Eigenschaften Flachheit, Vorwarts-Flachheit und
Eingangs-Zustands-Linearisierbarkeit dquivalent sind. Im
Hinblick auf die numerische Stabilitit kann natiirlich
auch eine implizite Euler-Diskretisierung sinnvoll sein. Als
Beispiele, bei denen diese die Flachheit erhilt, seien ex-
emplarisch wiederum die Asynchronmaschine sowie ein
hydraulisches System (siehe [17]) genannt. Bei ersterer
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findet man zusétzlich zum bereits aus dem zeitkontinu-
ierlichen Fall bekannten flachen Ausgang einen weiteren
vorwarts-flachen Ausgang, widhrend letzteres System so-
gar eingangs-zustands-linearisierbar ist.

Auch die optimierungsbasierte Trajektorienplanung
gestaltet sich einfacher als im zeitkontinuierlichen Fall.
Da die zu planenden Solltrajektorien nun Folgen anstatt
Zeitfunktionen sind, ergibt sich von vornherein ein end-
lichdimensionales Optimierungsproblem und es entfillt
die Diskretisierung eines unendlichdimensionalen Funk-
tionenraums. Entsprechend kann die Flachheit eines zeit-
diskreten Systems auch im Bereich der modellpradikti-
ven Regelung ausgenutzt werden, siehe z. B. [18]. Dariiber
hinaus gibt es aber auch Anwendungen abseits der Re-
gelungstechnik, z.B. im Gebiet der Kryptographie, siehe
[10]. Aus diesem Grund betrachten wir zeitdiskrete Syste-
me ganz allgemein, unabhangig davon, ob sie durch Dis-
kretisierung eines zeitkontinuierlichen Systems entstan-
den sind.

Der Beitrag gliedert sich wie folgt: In Abschnitt 2 dis-
kutieren wir das Konzept der Flachheit fiir zeitdiskrete Sys-
teme basierend auf der Eins-zu-eins-Korrespondenz zwi-
schen Systemtrajektorien und Trajektorien eines trivialen
Systems. In Abschnitt 3 geben wir fiir den Spezialfall der
Vorwarts-Flachheit einen rechentechnisch effizienten Test
an, der eine geradlinige Verallgemeinerung des bekannten
Tests fiir Eingangs-Zustands-Linearisierbarkeit darstellt.
In Abschnitt 4 veranschaulichen wir die vorgestellten Kon-
zepte schliefllich anhand von Beispielen. Insbesondere
zeigen wir anhand der Simulation eines mobilen Roboters
mit einer zeitdiskret berechneten Vorsteuerung die mogli-
chen Vorteile des zeitdiskreten Zugangs auf.

2 Aquivalenz von Trajektorien und
Flachheit zeitdiskreter Systeme

Wir betrachten in diesem Beitrag zeitdiskrete Systeme

Xi’+=fi(x,u), i=1...,n )
in Zustandsdarstellung mit dim(x) = n, dim(u) = m und
glatten Funktionen f*(x, u), welche die Submersivititsbe-
dingung

rank(d, ,,f) = n 2

erfiillen. Die Bedingung (2) ist notwendig fiir die Er-
reichbarkeit eines zeitdiskreten Systems und folglich auch
fiir dessen Flachheit, weshalb sie keine Einschrankung
darstellt. Das ist unmittelbar ersichtlich, da im Fall
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rank(9,,)f) < n die durch (1) représentierte Abbildung
nicht surjektiv ist und somit nicht jeder Zustand x* erreicht
werden konnte.

Wie schon in der Einleitung angemerkt, gibt es ver-
schiedene Ansitze, den Begriff der Flachheit vom zeit-
kontinuierlichen Fall auf den zeitdiskreten Fall zu {iber-
tragen. Eine Moglichkeit besteht darin, Zeitableitungen
durch Vorwarts-Shifts zu ersetzen. Im Rahmen dieses
Beitrags bezeichnen wir diesen Zugang als Vorwarts-
Flachheit und verfolgen stattdessen einen allgemeineren
Ansatz. Als Ausgangspunkt betrachten wir die zentrale Ei-
genschaft eines zeitkontinuierlichen Systems x = f(x, u),
dass es eine Eins-zu-eins-Korrespondenz zwischen Sys-
temtrajektorien (x(t), u(t)) und Trajektorien y(t) eines tri-
vialen Systems (hinreichend glatt, aber ansonsten belie-
big) mit dim(y) = dim(u) gibt. Analog dazu bezeichnen wir
ein zeitdiskretes System (1) als flach, wenn es eine Eins-
zu-eins-Korrespondenz zwischen den Systemtrajektorien
(x(k),u(k)) und Trajektorien y(k) eines trivialen Systems
(beliebige Folgen, welche keine Differenzengleichung er-
fiillen miissen) mit dim(y) = dim(u) gibt. Unter Eins-zu-
eins-Korrespondenz verstehen wir dabei, dass x(k) und
u(k) zu einem fixen Zeitschritt k von einer beliebigen, aber
finiten Anzahl von zukiinftigen und vergangenen Werten
von y(k) abhdngen diirfen, d. h. von der ganzen Trajektorie
in einem beliebig grofien, aber finiten Zeitintervall. Umge-
kehrt darf der Wert von y(k) zu einem fixen Zeitschritt k
von einer beliebigen, aber finiten Anzahl von zukiinftigen
und vergangenen Werten von x(k) und u(k) abhdngen. Die
Verwendung von sowohl zukiinftigen als auch vergange-
nen Werten erscheint auch deshalb sinnvoll, da die Zeit-
ableitungen im zeitkontinuierlichen Fall {iber die Taylor-
Entwicklung ja auch eine Information iiber die Trajektorie
sowohl in Vorwarts- als auch Riickwarts-Richtung liefern.

Die Eins-zu-eins-Korrespondenz der Trajektorien
kann prinzipiell durch Abbildungen der Form

(X(k)> u(k)) = F(k’ Y(k - rl)’ e ’)’(k), e rY(k + rz)) (3)
und

y(k) = ok, x(k - q1), uk - qy), ...,

(4)
x(k), u(k), ..., x(k + q,), u(k + g,))

mit geeignetenry, 1,, q;, g, beschrieben werden. Einsetzen
von (4) in (3), oder umgekehrt, muss im Sinne der Eins-
zu-eins-Korrespondenz identisch erfiillte Gleichungen lie-
fern. Weiters miissen nach Einsetzen von (3) in die Sys-
temgleichungen (1) letztere identisch erfiillt sein, da die
Losungstrajektorien y(k) eines trivialen Systems ja belie-
big sind. Da wir zeitinvariante Systeme betrachten, sind
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wir im Folgenden aber nur an Abbildungen (3) und (4) in-
teressiert, welche nicht explizit vom Zeitschritt k abhadn-
gen. Weiters ist es nicht erforderlich, sowohl in (3) als auch
in (4) gleichermaflen Vorwirts- und Riickwirts-Shifts zu
betrachten. Durch Definition eines geeigneten Riickwarts-
Shifts von y als neuer flacher Ausgang kann immer erreicht
werden, dass in der Abbildung (3) nur Vorwarts-Shifts auf-
treten. Die Abbildungen (3) und (4) vereinfachen sich da-
mit zu

(x(k), u(k)) = F(y(k), ..., y(k + 1)) )

und

y(k) = p(x(k — qy), u(k — qy), ..., x(k), u(k), ...

(6)
x(k + qp), u(k + q3)) .

Eine weitere Vereinfachung betrifft die Darstellung des
flachen Ausgangs (6), da die Trajektorien des Zustands
x(k) und des Eingangs u(k) nicht unabhéngig voneinander
sind. Mithilfe der Systemgleichungen (1) konnen samtli-
che Vorwdrts-Shifts x(k +j) der Zustandsgréfien durch x(k)
und Vorwarts-Shifts u(k), ..., u(k + j — 1) der Eingangsgro-
Ben ausgedriickt werden:

x(k +1) = f(x(k), u(k))
x(k +2) = f(f(x(k), u(k)), u(k + 1)) @)

In Riickwirts-Richtung gelingt das mithilfe von
Riickwarts-Shifts der Eingdnge nur fiir Systeme, bei de-
nen die Bedingung rank(o,f) = n erfiillt ist. Wegen (2)
lassen sich aber immer m Funktionen g(x,u) so finden,
dass die Jacobimatrix von

x"=fx,u)

8
{=gxu) ®

regulédr und somit (8) lokal invertierbar ist. Mit den Inver-
sen

X = lpx(x+’()
u= wu(X+)()

sind alle Riickwarts-Shifts x(k—j) und u(k—j) der Zustands-
und Eingangsgroflen durch x(k) und Riickwarts-Shifts
{(k-1),...,{(k—j)der gemaf (8) definierten Systemgrofien
{ eindeutig bestimmt:

©)

(x(k = 1), u(k — 1)) = P(x(k), {(k - 1))

etk — 2),u(k - 2)) = Papoxk), (k- D), {k~2) (1)
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Durch Einsetzen von (7) und (10) ergibt sich fiir die Abbil-
dung (6), d. h. den flachen Ausgang, eine Darstellung der
Form

y(k) = ‘P(((k - q1)> RS ((k - 1)’X(k)’ u(k)’ .

Sulk +qy)).

Die Wahl der Funktionen g(x, u) in (8) ist nicht eindeutig,
hat aber keine Auswirkung auf die Flachheit des Systems,
sondern nur auf die Darstellung des flachen Ausgangs.

Um eine mathematisch prazise Definition der
Flachheit zeitdiskreter Systeme formulieren zu Kkoén-
nen, benutzen wir einen Raum mit Koordinaten
(.- §ap XU Uy, - .. ), wobei das Subskript den entspre-
chenden Shift bezeichnet.! Wegen (7) and (10) entspricht
jeder Punkt dieses Raumes einer eindeutigen Losungstra-
jektorie des Systems (1). Auf diesem Raum lésst sich nun
der fiir eine beliebige Funktion h gemaf (8) mit

S(h( Y ([_2], C[_l],X, u, U[l], cee )) =
h(.... G180 W), FO, W), upys Uy, - - )

definierte Vorwarts-Shift-Operator 6 einfiihren. Seine In-
verse ist gemaf (9) durch

671(h(- s ([_1]:)(, U, Uy Uppgs - - ) =
h(... §ap Wi 06 §oap)s Wy, 06 Gy o upgys - - )

gegeben und wird als Riickwarts-Shift-Operator bezeich-
net. Eine -fache Anwendung von § oder seiner Inversen
wird mit 6% bzw. §# bezeichnet. In der folgenden De-
finition betrachten wir, in Ubereinstimmung mit der Li-
teratur iiber die exakte Linearisierung von zeitdiskreten
Systemen mittels statischer oder dynamischer Zustands-
riickfiihrung, nur eine Umgebung einer Ruhelage x, =
f(xy, up), siehe z. B. [20] oder [1]. Das Konzept ist aber in
vielen Fallen auch dann sinnvoll anwendbar, wenn die Be-
dingungen in der Ruhelage selbst nicht erfiillt sind.

Definition 1. Das System (1) ist flach in der Umgebung einer
Ruhelage (xy,ugy), wenn die n + m Koordinatenfunktionen x
und u lokal durch ein m-Tupel von Funktionen

Y =@ CGgo s G Kot (n

s Ujg,1)

1 Fiir zeitkontinuierliche Systeme wiirde man stattdessen einen
Raum mit Koordinaten (x, u, 1, ii, . . .) benutzen.

2 Dies ist dadurch motiviert, dass bei zeitdiskreten Systemen der Zu-
stand von Zeitschritt zu Zeitschritt ,,springt®. Fiir die Systemanalyse
wichtige differentialgeometrische Werkzeuge wie der Satz {iber die
implizite Funktion oder das Frobenius-Theorem garantieren aber nur
lokale Aussagen. In der Umgebung einer Ruhelage ist wegen der Ste-
tigkeit von (1) sichergestellt, dass man deren Giiltigkeitsbereich nicht
verldsst. Es handelt sich also um eine - fiir praktische Anwendungen
oftmals wenig relevante — Vorsichtsmafinahme.
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und eine finite Anzahl von deren Vorwdirts-Shifts

Vi) = 6(@(Gg,1>- > Gpapp X Us -5 Upg,)))
Vi = 8@ Goap Xo U Uggy))

ausgedriickt werden konnen. Das m-Tupel (11) ist ein flacher
Ausgang.

Es kann gezeigt werden, dass alle Vorwarts- und
Riickwérts-Shifts eines flachen Ausgangs (11) funktional
unabhéngig sind (siehe [5]). Das wiederum garantiert die
Eindeutigkeit der Abbildung (5). Diese ist auerdem eine
Submersion, d. h. die Zeilen ihrer Jacobimatrix sind linear
unabhéngig, und hat die spezielle Form

X' =F,....Ygq)> i=L...n

W=F,...yg)» j=L....m.

Der Multi-Index R = (ry,...,r,,) soll verdeutlichen, dass
die Anzahl der auftretenden Vorwirts-Shifts der einzel-
nen Komponenten eines flachen Ausgangs unterschied-
lich sein kann. Der Unterschied zwischen Flachheit und
Vorwadrts-Flachheit besteht nun lediglich darin, dass ein
vorwdrts-flacher Ausgang unabhédngig von den Gréf3en {
bzw. deren Riickwérts-Shifts sein muss.

Definition 2. Das System (1) ist vorwdrts-flach, wenn es die
Bedingungen von Definition 1 mit einem flachen Ausgang der
Formy = ¢(x,u,..., ”[qz]) erfiillt.

Anmerkung 1. Alternativ ist auch eine Definition von Flach-
heit bzw. Vorwdrts-Flachheit fiir zeitdiskrete Systeme im
Rahmen des in [7] oder [23] benutzten algebraischen Zu-
gangs denkbar. Dabei sind formal auch Analogien zu den
in [23] und [24] betrachteten Totzeitsystemen zu erwarten,
da bei diesen ebenfalls Zeitverschiebungen eine Rolle spie-
len. Allerdings muss betont werden, dass die Lésungen von
Totzeitsystemen Zeitfunktionen und keine Folgen sind.

Wie bei zeitkontinuierlichen Systemen ist auch im
zeitdiskreten Fall die Eigenschaft der Flachheit eng mit
dem Problem der exakten Linearisierung mittels dyna-
mischer Zustandsriickfiihrung verkniipft. In [1] wird eine
zeitdiskrete dynamische Zustandsriickfiihrung

zh =ax,z,v)
(12)
u=Bx,2zv)

als endogen bezeichnet, wenn die Grofien z und v als Funk-
tionen von x, u und Vorwarts-Shifts von u ausgedriickt
werden konnen. Dazu passend ist ein System (1) genau
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dann vorwirts-flach, wenn es mittels einer solchen en-
dogenen Zustandsriickfiihrung exakt linearisiert werden
kann. In [5] wird aber gezeigt, dass auch fiir flache Syste-
me gemdf der allgemeineren Definition 1 immer eine ex-
akt linearisierende dynamische Zustandsriickfithrung der
Form (12) existiert, welche zwar nicht endogen im Sinne
von [1] ist, aber immerhin die Eigenschaft besitzt, dass die
Trajektorien des geschlossenen Kreises in einer Eins-zu-
eins-Korrespondenz zu den Trajektorien des Originalsys-
tems stehen und auch die Submersivitdt erhalten bleibt.
Da das prinzipiell mit der aus dem zeitkontinuierlichen
Fall bekannten Definition einer endogenen dynamischen
Zustandsriickfiihrung iibereinstimmt, stellt sich die Fra-
ge, ob die in [1] benutzte Definition einer endogenen dyna-
mischen Zustandsriickfiihrung mit der Einschrankung auf
Vorwarts-Shifts nicht zu restriktiv ist. Im Sinne dieses Bei-
trags wiirde sich dafiir der Begriff vorwarts-endogen an-
bieten.

Es ldsst sich zeigen, dass fiir lineare Systeme
und nichtlineare Eingréflensysteme die Eigenschaften
Flachheit, Vorwirts-Flachheit und Eingangs-Zustands-
Linearisierbarkeit dquivalent sind und somit immer ei-
ne Transformation auf Brunovsky-Normalform mdglich
ist [5]. Die wesentliche Schwierigkeit besteht also wie bei
zeitkontinuierlichen Systemen im Nachweis der Flach-
heit bzw. der Konstruktion von flachen Ausgidngen fiir
nichtlineare Mehrgroflensysteme. Wahrend es fiir den
allgemeinen Fall gemaf} Definition 1 noch keine einfach
verifizierbaren notwendigen und hinreichenden Bedin-
gungen gibt, wurde dieses Problem fiir den Spezialfall der
Vorwirts-Flachheit in [12] basierend auf Ergebnissen aus
[14] vollstandig gelost. Ein alternativer Ansatz findet sich
in [26]. Dariiber hinaus wurde in [4] gezeigt, dass jedes
vorwirts-flache System (1) mit m < 2 Eingédngen durch ei-
ne Zustands- und Stellgrof3entransformation sogar in eine
strukturell flache Normalform gebracht werden kann.

3 Geometrische Charakterisierung
von vorwarts-flachen Systemen

In diesem Abschnitt geben wir eine vollstandige diffe-
rentialgeometrische Charakterisierung fiir vorwarts-flache
Systeme an. Bevor wir in Abschnitt 3.2 eine Verallge-
meinerung des bekannten Tests fiir Eingangs-Zustands-
Linearisierbarkeit (siehe [9] oder [20]) auf vorwérts-flache
Systeme vorstellen, gehen wir in Abschnitt 3.1 auf die dafiir
bendétigten mathematischen Konzepte ein.
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3.1 Projizierbare Vektorfelder und
Distributionen

Der differentialgeometrische Test fiir Vorwarts-Flachheit
benutzt eine Interpretation des Systems (1) als Abbildung

fraxxu -t (13)
von einer Mannigfaltigkeit X x/ mit Koordinaten (x, u) auf
eine Mannigfaltigkeit X* mit Koordinaten x*. Die zentra-
le mathematische Aufgabe bei diesem Test besteht darin,
festzustellen, ob ein gegebenes Vektorfeld?

v =vL06u)dy + V(6 )d, (14)
auf X x U/ durch die (punktweise definierte) Tangentialab-
bildung f, : T(X xU) — T(X™") auf ein eindeutiges Vek-
torfeld

w=w (") (15)

auf X" abgebildet wird oder nicht.” Fiir die Komponenten
der beiden Vektorfelder gilt dann

wi(x*) o f(x,u) = 0 f VE GG u) + 0,V (x,u),

und wir bezeichnen die Vektorfelder als f-verwandt bzw.
das Vektorfeld (14) als ,,projizierbar®. Das Vektorfeld (15)
bezeichnen wir auch als ,,Pushforward“ von (14) und
schreiben w = f, (v).

Ob ein Vektorfeld (14) projizierbar ist oder nicht, ldsst
sich einfach feststellen, indem man auf X' x/ spezielle Ko-
ordinaten einfiihrt. Dazu wahlt man eine Transformation
der Form

Gi
é’i

fi(x,u), i=1...,n
Wxu, j=1,...,m,

(16)

wobei die m Funktionen # (x,u) so gewdhlt werden miis-
sen, dass die Jacobimatrix

[ ]

reguldr ist. Da die Zeilen der Jacobimatrix von f wegen der
Submersivitits-Bedingung (2) linear unabhingig sind, ist
eine solche Erweiterung immer moéglich und garantiert,

3 Fiir eine kompaktere Darstellung benutzen wir im Folgenden die
Einsteinsche Summenkonvention, d. h. in (14) erfolgt eine Summati-
oniiberi=1,..., nundj=1,..., m.

4 Da die Dimension von X* um dim(u) = m kleiner ist als jene von
X x U, besitzen nur spezielle Vektorfelder (14) diese Eigenschaft.
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dass (16) lokal invertierbar ist. Mit den neuen Koordina-
ten (0, &) auf X x U nimmt die Abbildung (13) die einfache
Form

17)

an. Das bedeutet, dass alle Punkte mit demselben Wert
der Koordinaten 0 auf denselben Punkt von X" abgebil-
det werden, unabhidngig vom Wert der Koordinaten &. In
adaptierten Koordinaten (16) hat ein Vektorfeld (14) im All-
gemeinen die Form

v =d'(6,8)05 + b (6,8)0y

und gemif3 (17) fiihrt eine Anwendung der Tangentialab-
bildung f, auf

f.v) = d'©,8)d,., (18)
d.h.derTerm b/ (6, & )a‘fj wird abgeschnitten. Offensichtlich
ist (18) genau dann ein wohldefiniertes Vektorfeld auf x*,
wenn die Funktionen a' unabhingig von ¢ sind. In diesem
Fall ergibt Ersetzen von 6 durch x* gemif (17) das gesuch-
te zu (14) f-verwandte Vektorfeld (15). Ein Vektorfeld (14)
ist also genau dann projizierbar, wenn es in adaptierten
Koordinaten (16) die Form

a'(0)9 +b(6,£)9 (19)
hat. Der Pushforward (15) eines solchen Vektorfeldes ist
durch a'(x")0,:- gegeben.

Analog zu projizierbaren Vektorfeldern bezeichnen
wir eine Distribution D auf X' x ¢/ als “projizierbar”, wenn
die Distribution eine aus projizierbaren Vektorfeldern be-
stehende Basis besitzt. Die Existenz einer solchen Ba-
sis garantiert, dass der Pushforward f, (D) einer projizier-
baren Distribution eine wohldefinierte Distribution auf
X" ist. Bei dem in Abschnitt 3.2 vorgestellten Test fiir
Vorwarts-Flachheit machen wir unter anderem Gebrauch
von der Eigenschaft, dass der Pushforward einer projizier-
baren, involutiven Distribution wieder involutiv ist. Wei-
ters bendtigen wir noch das folgende Theorem, welches
sicherstellt, dass bei diesem Test keine Freiheitsgrade auf-
treten.

Theorem 1. Die grofste projizierbare Subdistribution Dp ¢
D einer Distribution D auf X x U ist eindeutig bestimmt.
Wenn D involutiv ist, dann ist auch Dp involutiv.

Der Beweis kann in adaptierten Koordinaten (16) ge-
fiihrt werden und ist in [12] zu finden.
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3.2 Verallgemeinerung des Tests fiir
Eingangs-Zustands-Linearisierbarkeit

Die Erweiterung des Tests fiir Eingangs-Zustands-
Linearisierbarkeit auf vorwérts-flache Systeme basiert auf
der folgenden, in [14] hergeleiteten, notwendigen Bedin-
gung.

Theorem 2. Die auf X x U definierte Eingangs-Distribution
span{o, } eines vorwdrts-flachen Systems (1) mit rank(d,f) =
m enthdlt ein nichttriviales, beziiglich der Abbildung (13)
projizierbares Vektorfeld v = VI (x,u)d,.

Anders formuliert gibt es bei einem vorwarts-flachen
System immer eine zumindest eindimensionale, projizier-
bare Subdistribution D ¢ span{o,}. Diese Distribution auf
X x U kann durch Anwendung des Frobenius-Theorems
mittels einer Stellgrof3entransformation

(1_11, ﬂz) = CDM(X, u) (20)

mit dim(i1,) = dim(D) in die Form D = span{aﬂz} gebracht,
d.h. ,ausgerichtet® bzw. ,begradigt“, werden. Ebenso
kann die zugehorige Distribution A = f, (D) auf X mittels
einer Zustandstransformation

(X1, X;) = Dy (X) (21)

mit dim(x,) = dim(A) in die Form A = span{a)-q} gebracht
werden. Diese Zustandstransformation muss gemaf3 dem
Transformationsgesetz fiir zeitdiskrete Systeme gleicher-
maflen fiir x und x*, d. h. sowohl auf X x ¢/ als auch auf
X", durchgefiihrt werden. In diesen neuen Koordinaten
hat das System (1) die Form

it Flhis o - .
X" = 1.1(X1’X2>u1)» ip=1...,n-m,

X2 = Fo(x, %y, g, 1) @)
2 T 2 VDAL UL U2

h=1...,m
mit dim(i,) = dim(x,) = m,. Die Besonderheit der Sys-
temdarstellung (22) besteht darin, dass das Gesamtsystem
genau dann vorwarts-flach ist, wenn das Subsystem
X = fi(xy, %y, ) (23)
mit den m Eingédngen (X,, it;) vorwarts-flach ist (siehe z. B.
[13]). Die Form (22) kann auch als Zerlegung in ein Sub-
system (23) und eine endogene dynamische Zustandsriick-
filhrung interpretiert werden. Somit ist das Problem der
Untersuchung der Vorwdrts-Flachheit des urspriinglichen
Systems iibergefiihrt auf die Untersuchung der Vorwarts-
Flachheit des kleineren Systems (23). Dieses System muss
—nach der Elimination ggf. auftretender redundanter Ein-
ginge — wieder die notwendige Bedingung geméf} Theo-
rem 2 erfiillen und kann somit, sofern es vorwarts-flach ist,
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selbst wieder zerlegt werden. Eine wiederholte Zerlegung
ermoglicht nach héchstens n — 1 Schritten eine Beurtei-
lung der Vorwdrts-Flachheit des urspriinglichen Systems
(1) und liefert im Falle eines positiven Ergebnisses auch
gleich einen vorwirts-flachen Ausgang (siehe [14]).

Der Nachteil dieser Vorgangsweise besteht aus rechen-
technischer Sicht jedoch darin, dass zur Konstruktion der
Transformationen (20) und (21) jeweils die Distributionen
D und A mittels des Frobenius-Theorems begradigt werden
miissen. Das erfordert wiederum die Losung von im Allge-
meinen nichtlinearen (aber oft einfachen) gewohnlichen
Differentialgleichungen. Die Grundidee besteht nun darin,
nur zu priifen, ob die wiederholten Zerlegungen méglich
sind oder nicht, ohne die entsprechenden Transforma-
tionen tatsachlich auszufiihren. Das fiihrt zu einem Test,
basierend auf einer Sequenz von Distributionen, welcher
als Spezialfall den bekannten Test fiir Eingangs-Zustands-
Linearisierbarkeit einschliefit. Zur Berechnung dieser Se-
quenz von Distributionen bendétigen wir neben der Abbil-
dung (13) auch eine geméif

definierte Abbildung
X xU > X

Wir setzen voraus, dass die im Folgenden konstruierten
Distributionen lokal konstante Dimension haben.

Algorithmus 1.
Schritt 0: Berechnung der grofSten Subdistribution

Dy c E, = span{g,},

welche beziiglich der Abbildung (13) projizierbar ist. Wegen
Theorem 1ist D, eindeutig bestimmt und involutiv, weshalb
der Pushforward

A = f,.(Dg)

eine wohldefinierte, involutive Distribution auf X ist.

Schritt k > 1: Konstruktion der involutiven Distribution’

E =1, ()

5 Mit n;l(A) wird das Urbild einer Distribution A un-
ter der Tangentialabbildung m, bezeichnet. Wenn A =
span{vi(x*)ax,»,h...,vfi(x*)axi,+} eine d-dimensionale Distributi-
on auf X'* ist, dann ist n;l(A) die (d + m)-dimensionale Distribution
span{vi(x)axi,...,v;(x)ax,-,aul,...,aum} auf X x U. D.h. bei den
vorhandenen Vektorfeldern wird x* durch x ersetzt und zusitzlich
kommen die Vektorfelder 9,4, ...,d,m hinzu.
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auf X x U und Berechnung der grofiten beziiglich der Abbil-
dung (13) projizierbaren Subdistribution

DkCEk-

Wegen Theorem 1ist Dy, eindeutig und involutiv. Weiters gilt
Dy_; ¢ Dy und folglich ist der Pushforward

Ak+1 =f*(Dk)

eine wohldefinierte, involutive Distribution auf X* mit

(24)

Ak C Ak+l . (25)

Stop sobald fiir ein k = k gilt

Wegen (25) und dim(X*) = n endet der Algorith-
mus nach héchstens n Schritten. Man erhilt eine eindeuti-
ge, verschachtelte Sequenz von projizierbaren, involutiven
Distributionen

DycDyc...cDy, (26)

auf X xU/ und eine eindeutige, verschachtelte Sequenz von
involutiven Distributionen

Ay chyc...chy 27

auf X*, welche iiber die Beziehung (24) verkniipft sind. Die
Sequenz (27) stellt eine Verallgemeinerung der in [9] einge-
fiihrten Sequenz zur Uberpriifung eines zeitdiskreten Sys-
tems (1) auf Eingangs-Zustands-Linearisierbarkeit dar.

Theorem 3. Ein System (1) mit rank(d,f) = m ist genau
dann eingangs-zustands-linearisierbar, wenn D) = E;, k > 0
und dim(A;) = n.

Fiir Eingangs-Zustands-Linearisierbarkeit ist also eine
Voraussetzung, dass in jedem Schritt die gesamte Distri-
bution E;, projizierbar ist. Fiir einen Beweis siehe [9] oder
[20]. Durch Weglassen der Bedingung D, = E ergeben sich
notwendige und hinreichende Bedingungen fiir Vorwdrts-
Flachheit.

Theorem 4. Ein System (1) mit rank(d,f) = m ist genau
dann vorwdrts-flach, wenn dim(4p) = n.

Fiir einen ausfiihrlichen Beweis siehe [12]. Mit Theo-
rem 4 kann die Vorwiérts-Flachheit eines Systems (1) ana-
log zur Eingangs-Zustands-Linearisierbarkeit rechentech-
nisch effizient iiberpriift werden, ohne tatsdchlich einen
vorwdrts-flachen Ausgang berechnen zu miissen. Die Kon-
struktion der Distributionen (26) und (27) erfordert nur die
Loésung von algebraischen Gleichungen. Im Falle eines po-
sitiven Ergebnisses kann durch Begradigen der Distribu-
tionen mit dem Frobenius-Theorem ein vorwérts-flacher
Ausgang berechnet werden.
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4 Beispiele

In diesem Abschnitt veranschaulichen wir die vorgestell-
ten Konzepte anhand von zwei Beispielen. Zuerst erkldaren
wir die Anwendung des Tests fiir Vorwdarts-Flachheit aus
Abschnitt 3.2 nochmals mithilfe eines akademischen Bei-
spiels. Anschliefiend betrachten wir ein praktisches Bei-
spiel, welches flach aber nicht vorwdrts-flach ist, und zei-
gen Simulationsergebnisse fiir eine zeitdiskret entworfene
Vorsteuerung.

4.1 Akademisches Beispiel

Zur Mustration des Tests fiir Vorwarts-Flachheit gemaf3 Al-
gorithmus 1und Theorem 4 benutzen wir das akademische
Beispiel

X1,+ _ Ll2
2+ _ u'
X = O +1) (u?+1)
= x4 (28)
XM= ) X0
Xt =xt e x +udl.

Zuerst ben6tigen wir auf X xi/ adaptierte Koordinaten (16).
Eine mogliche Wahl ist

6 = flxu), i=1...,5
go= K (29)
&£ = Xt

Schritt 0: Die Distribution E, = span{d,,d,.} ist in adap-
tierten Koordinaten (29) durch

E, = span{dg + Jgs, Og2}

gegeben, wobei hier bereits durch Skalierung bzw. Linear-
kombination der beiden Vektorfelder eine einfache, nor-
mierte Basis gewdhlt wurde. Man erkennt, dass die Dis-
tribution von projizierbaren Vektorfeldern der Form (19)
aufgespannt wird und somit vollstdndig projizierbar ist. Es
gilt also D = E,. Der Pushforward A; = f,(D,) dieser Dis-
tribution ist gemaf Abschnitt 3.1 die wohldefinierte Distri-
bution

A; = span{o,1+ + 0,5+, 02+ }

auf xX*.

Schritt 1: Die Distribution E; = 7, (4,) ist durch

El = span{axl + 8X5, axz, 8u1 s auz}
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gegeben und hat in adaptierten Koordinaten (29) die Form
El = span{891 + 895,592,503,894 + ﬁaes + ﬁa‘fl} .

Durch geeignete Linearkombination der Vektorfelder wur-
de bereits wieder eine spezielle Basis erzeugt, anhand de-
rer man erkennt, dass es eine dreidimensionale projizier-
bare Subdistribution

D, = span{0g + 0g5, 02,93} C E;
gibt. Fiir den Pushforward A, = f, (D) ergibt sich
A, = span{oi+ + 05, 0j2+, 03+ } .
Schritt 2: Die Distribution E, = ,'(A,) ist durch
E, = span{o,: + 0,5, 052,043, 0,1, 0,2}
gegeben und hat in adaptierten Koordinaten (29) die Form
E, = span{dyg — 01, 0g2, O3, Ogs» Ogs + Oz} .

Hier wurde ebenfalls durch Linearkombinationen eine Ba-
sis erzeugt, bei der alle Vektorfelder die Form (19) haben
und somit projizierbar sind. Dementsprechend gilt D, = E,
und der Pushforward A; = f, (D,) ist die Distribution

A3 = span{ax1,+ > Oy2+5 BX3,+ , ax4,+ 5 axs,+ }

auf x*. Wegen dim(A;) = n = 5 ist damit bereits die
Dimension des Zustandsraums erreicht und das System
gemadfd Theorem 4 vorwarts-flach. Durch Begradigen der
berechneten Distributionen mit dem Frobenius-Theorem
kann der vorwarts-flache Ausgang

y =040 - x

ermittelt werden, siehe dazu [12] oder [4]. Anhand der Sys-
temgleichungen (28) kann man sich einfach davon tiber-
zeugen, dass durch diesen flachen Ausgang tatsachlich
sdamtliche Zustands- und Stellgr6f3en parametriert werden
konnen. Aus der Differenz der letzten und der ersten Sys-
temgleichung erhilt man die Parametrierung von x°, aus
welcher unmittelbar jene von x* folgt. Aus der vierten Glei-
chung ergibt sich dann die Parametrierung von x> und
aus der dritten Gleichung wiederum die Parametrierung
von x°. Die Parametrierung der StellgréRen u! und u? folgt
schliefllich aus den ersten beiden Gleichungen.
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4.2 Mobiler Roboter

Als praktisches Beispiel betrachten wir die exakte Diskre-
tisierung eines mobilen Roboters, welche in [1] und [21] be-
reits im Rahmen der Linearisierung mittels dynamischer
Zustandsriickfiihrung diskutiert wurde. Die zeitkontinu-
ierlichen Systemgleichungen haben die Form

=l cos(x3)

2 = ul sin(x®) (30)

X =u

und sind auch als kinematisches Einachsmodell eines
Fahrzeugs bekannt. Die ZustandsgréRen x*, x* und x> be-
schreiben Position und Winkel des mobilen Roboters. Bei
den StellgréRen u! und u? handelt es sich um die trans-
latorische Geschwindigkeit und die Winkelgeschwindig-
keit. Eine exakte Diskretisierung des Systems (30) mit ei-
ner allgemeinen Abtastzeit T > 0 durch Berechnung der
Losung fiir im Abtastintervall konstante Stellgr6f3en fiihrt
zundchst auf

T
sin(uz—)
' = xt + u'T cos (x3+uzz) 2
7) T
2L
2
T
s1n<u2—) (31)
Xt =x* +ulTsin (x3 + uzg) T2
uZ_
2
! 2
= +u°T,

vgl. [21] oder [28]. Durch eine anschlieende Stellgrof3en-
transformation

erhdlt man das System

XM= x

x> =% + it sin@@)

! 2
=2 - X,

Lot cos(ﬂz)

(32)

Es sei weiters angemerkt, dass fiir u> = 0 im Grenziiber-
gang

lim
w—0 u

gilt und somit weder in (31) noch in der Stellgréf3entrans-
formation eine Singularitat auftritt.

Zuerst wollen wir mit Algorithmus 1 nachweisen, dass
das System (32) nicht vorwarts-flach ist. Dazu benétigen
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wir adaptierte Koordinaten (16) und treffen dafiir die Wahl

0 =foom), i=1,...,3
flzﬂl
5221—12

In diesen Koordinaten haben die Eingangs-Vektorfelder o,
und d;. die Form

cos(&%)9g: + sin(¢))dg + dp
und
~&'sin(&))0g + &' cos(£%)9g + 205 + 02 .

Fiir die Distribution E, = span{dy, 0,2} ergibt sich damit

. 2 s 2
E, = span{oy — 25121({ )893 + COS({Z)asl - %ﬁ"()afz,

O + zc%l({z)aes + Sin(‘fz)afl + %(152)6{2}’

wobei bereits eine durch Linearkombinationen normierte
Basis gewdhlt wurde. Man kann erkennen, dass es keine
Linearkombination der beiden Vektorfelder gibt, welche
die Form (19) hat, d. h. projizierbar ist. Somit gibt es kei-
ne nicht-triviale projizierbare Subdistribution. Wir erhal-
ten folglich D, = {0} und der Algorithmus stoppt bereits
nach dem ersten Schritt mit A; = £, (0) = {0}.

Obwohl das System nicht vorwarts-flach ist kann man
aber zeigen, dass es flach im Sinne der allgemeineren De-
finition 1 ist. Mit der Wahl

¢
IS

_

X3
1
X

fiir die GroRen ¢ aus (8) existiert ein flacher Ausgang®

1 3 1 3
y = (([1_1],)(1 sin(([‘”T”) -x cos(q‘l%)). (33)

Die zugehorige Parametrierung der Systemgrofien hat die
Form

1 2
Yp Vi)
u= Fa(yl»yzwu,)/b],y[zz]) .

X = Fx(yl,yz,...

Durch Einsetzen dieser Parametrierung in die Inverse

1

1 (52_,3
w = r'—x")

sin(?-x3)

@ -x°)

|:|

2
u =

| L SI]

6 Fiir eine andere Wahl der Grofen { ware der flache Ausgang natiir-
lich derselbe, wiirde aber formelméaflig anders aussehen.
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Abb. 1: Vorsteuerung basierend auf zeitkontinuierlichem System.

der zu Beginn benutzten Stellgréf8entransformation ergibt
sich die Parametrierung der urspriinglichen Stellgr6f3en

u= Fu(yl,yz, .. ,y%ﬂ,yé]).

Fir T — 0 gilt ([{1] = x[3_1] — x> und der flache Ausgang
(33) des zeitdiskreten Systems (32) geht tiber in den flachen
Ausgang

y = 0, x" sin(x®) - x* cos(x*)) (34)
des zeitkontinuierlichen Systems (30).

Um zu verdeutlichen, dass ein Entwurf basierend auf
einem diskretisierten System vorteilhaft sein kann, wurde
fiir das zeitkontinuierliche System (30) und das exakt dis-
kretisierte System (32) mithilfe der flachen Ausginge (34)
und (33) jeweils eine Trajektorienplanung durchgefiihrt.
Die Abtastzeit wurde dabei wie in [21] mit T = 0.5s festge-
legt. Die resultierenden Vorsteuerungen wurden in einer
Simulation auf das zeitkontinuierliche System (30) auf-
geschaltet, wobei die zeitkontinuierlich berechnete Vor-
steuerung u(t) nur zu den Abtastzeitpunkten ¢t = kT ausge-
wertet und dazwischen konstant gehalten wurde. Die Er-
gebnisse sind in Abb. 1 und Abb. 2 dargestellt und zeigen
die Trajektorie des mobilen Roboters in der Ebene. Wih-
rend es durch den Effekt des Abtastens und Haltens mit
der zeitkontinuierlich berechneten Vorsteuerung zu einer
deutlichen Abweichung von der Solltrajektorie kommt, ist
mit der zeitdiskret berechneten Vorsteuerung durch die ex-
akte Diskretisierung erwartungsgemaf keine Abweichung
erkennbar.
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Abb. 2: Vorsteuerung basierend auf exakt diskretisiertem System.

Finanzierung: Die Arbeit wurde durch den Gsterreichi-
schen Wissenschaftsfonds (FWF) im Rahmen der Projekte
P 29964 und P 32151 unterstiitzt.
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