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Abstract: The application of machine learning, especially
of trained neural networks, requires a high level of trust
in their results. A key to this trust is the network’s abil-
ity to assess the uncertainty of the computed results. This
is a prerequisite for the use of such networks in closed-
control loops and in automation systems. This paper de-
scribes approaches for enabling neural networks to auto-
matically learn the uncertainties of their results.

Keywords: machine learning, anomaly detection, neural
networks, uncertainty

Zusammenfassung: Die Anwendung des maschinellen
Lernens, insbesondere von Neuronalen Netzen, erfordert
ein hohes Maf3 an Vertrauen in deren Ergebnisse. Ein
Schliissel zu diesem Vertrauen ist, dass solche Netze in der
Lage sind, die Unsicherheit der berechneten Ergebnisse
abzuschitzen. Dies ist eine Voraussetzung fiir den Einsatz
solcher Netze in geschlossenen Regelkreisen und in Auto-
matisierungssystemen. In diesem Beitrag werden Ansétze
beschrieben, die es Neuronalen Netzen ermoglichen, die
Unsicherheiten ihrer Ergebnisse automatisch zu lernen.

Schlagworter: Maschinelles Lernen, Anomalieerkennung,
Neuronale Netze, Unsicherheit

1 Introduction

Machine Learning (ML) has become very popular in re-
cent years and arouses high expectations from the au-
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tomation perspective [1]. But while superficially much data
seem to be generated by Cyber Physical Production Sys-
tems (CPPSs), a different picture can be seen when ML is
applied: Data intensive ML approaches such as neural net-
works or deep learning often fail, or deliver results not us-
able in a production setting, while in other domains they
show a break-through performance. This is, among others,
caused by the following reason:

Using ML in a CPPS, e. g., for compensation of anoma-
lies in context of quality assurance, means using it in a
closed control loop [2]. I. e. the ML models must predict
output values such as resource consumptions, positions,
etc. for all input values. From this, actions of the CPPS
are triggered automatically. Since no expert is involved in
the interpretation of the learning results, an additional
requirement is the quantification of the level of uncer-
tainty. This problem can be stated as “How can we de-
velop a metric which quantifies the level of uncertainty of a
ML result?” Only if this challenge is solved, modern data-
intensive algorithms such as neural networks can be ap-
plied successfully to production plants.

In this paper we will describe methods for expressing
uncertainty for two different anomaly detection use cases:
(1) a static analysis where temporal dependencies are ne-
glected (i. e., point anomalies) and (2) a dynamic analysis
where errors become only visible in the system behavior
over time (i. e., contextual anomalies).

Static analysis
For tasks such as condition-monitoring or anomaly detec-
tion, only the signal values x ¢ R" at some point in time
t are used, i.e., the analysis uses a static feature vector
only [3]. Such anomalies are also called point anomalies.
Here, the assumption is that no information is coded in the
sequence of values and all necessary information is con-
tained in the current signal values.

In this paper we will use neural network-based au-
toencoders (AE) for this task. Figure 1 shows such a net-
work structure.
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Figure 1: The general solution architecture for the static anomaly
detection.
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Figure 2: The general solution architecture for the dynamic detec-
tion.

First, the static input feature vector x is transferred
into a latent representation, normally corresponding to a
low dimensional space—this is called the encoding phase.
From this reduced representation, the original signals are
reconstructed as X—this is called the decoding phase. Dur-
ing the learning phase, the neural network is trained in a
way that minimizes a so-called loss function, a function
which quantifies how close the true value x and the esti-
mate X are. During operation, this can also be a measure
for the normality of the new data point.

Dynamic analysis

A totally different situation arises when important infor-
mation is coded in the sequence of signal values over time.
Such anomalies are also called contextual anomalies [4].
Given historical data X = {x(¢t —i),...x(t)} and a new data
vector x(t + 1), the probability is computed that x(t + 1) is
the logical continuation of the series.

Figure 2 shows the usual solution approach for such a
dynamic analysis.

A neural network f is trained during a training phase
onatime series {Xy,... Xy} so thatX; = f(X¢_j,... %), 1 € Nis
a good prediction for x(t + 1), i. e., the distance ||X;, 1, X;,1l
is minimized. During operation, this is a measure for the
normality of the new data point x;_;.
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Figure 3: The role of uncertainty in anomaly detection.

In both cases, the learned models must estimate the
uncertainty of the prediction. Figure 3 visualized this: In
several ML-approaches (Figure 3, left), a Euclidean dis-
tance ||X,x||, is used to identify unusual data points.
Please note that this distance incorporates a measure of
similarity, not a measure of uncertainty about the expected
similarity.

On the right hand side of Figure 3, the estimate x
comes with a measure of uncertainty, so the degree of sim-
ilarity between X and x can be quantified. In this work,
we model the uncertainty as a variance of a normally dis-
tributed random variable X.

This paper deals with two main research questions

(RQ):

Research Question 1. How can we, for adynamic anomaly
detection, encode the uncertainty of the prediction X;,4
into the metric ||X;,1, Xpq1[?

Research Question 2. How can we, for a static anomaly
detection, encode the uncertainty of the prediction X, into
the metric ||x;, X;||?

2 State of the art

To estimate prediction uncertainty in CPPSs, several meth-
ods exist which we group into three categories: (1) sta-
tistical methods, (2) machine learning approaches based
on the reconstruction error, and (3) energy-based machine
learning approaches.

(1) Uncertainty in and itself is a statistical value,
bound to several factors along the path of observation, as
was described in Section 1. To express an uncertainty esti-
mate, given an observation of data points, there are several
information to derive from the distribution of data points
itself, including the mean and spatial distribution. While
the mean expresses the average value of all observed data
points, another measure is ought to be known: the stan-
dard deviation. The standard deviation expresses the dif-
ference of each data point from said mean. By knowing the
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probability distribution, it is possible to conclude an un-
certainty measure of an observed data point based on the
difference of mean and standard deviation. Capturing the
probability distribution of technical systems however, due
to the underlying physical properties and complex interde-
pendencies, is a difficult task. By observing the system, it is
possible to estimate the likelihood, i. e., the measure how
well the statistical model fits the observation. This how-
ever requires extensive knowledge of the system’s proba-
bility behavior.

For tasks with simple probability distributions where
the distribution is known, or the a-priori likelihood estima-
tion is near to the actual probability distribution, a reliable
measure of confidence can be expected with uncertainty
and sensitivity analyses, UA and SA, respectively. With
growing complexity and lack of knowledge of the proba-
bility distribution, logically concluded, the uncertainty of
the model rises.

In literature, measuring uncertainty within the family
of traditional statistical methods often leads to sampling-
based techniques. With sampling, i.e., the selection of
representative data points to make statistical inference
about the whole model, the likelihood function is esti-
mated significantly more precise.

One way to do so is UA, usually with Monte Carlo
sampling—in this case repeated random selection of input
parameters. By selecting random variations of input pa-
rameters, the model outputs a distribution of samples.

SA uses gradual variations of input parameters to
identify the model’s response, and thus find out which pa-
rameters are most sensitive to the outcome. Input parame-
ters that result in smaller output changes are more robust,
whereas those that yield a larger change in the output in-
dicate that the uncertainty for that particular parameter is
high. Both methods however need a large amount of model
runs. Furthermore, finding out the underlying likelihood
distribution becomes difficult with complex data distri-
butions comprising more parameters where interdepen-
dancy and non-linear interactions come into play [5, 6].

However, the limitation of the described statistical
methods is bound to the complexity of the data’s distribu-
tion. Since the likelihood has to be estimated before-hand,
this task seems highly challenging for non-trivial likeli-
hood functions. Generally speaking, a model’s complex-
ity, i. e., the number of degrees of freedom of a model to
build a function, has to match the data representation of
the problem. For real-world problems with more complex
data distributions, this is not always possible with statisti-
cal methods. To accomplish this, models with higher com-
plexity, i. e., with a higher degree of freedom, e. g., neural
networks, are needed.
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(2) Reconstruction-based machine learning methods
as the autoencoder in Figure 1 measure the uncertainty
by calculating the distance between ground truth and the
reconstructed output based on the latent representation
[7]. Data samples coming from a similar data distribution
like the learnt representation, will result in a smaller dis-
tance, i. e., smaller reconstruction error, whereas anoma-
lies would result in a higher reconstruction error. This is
also being referred to as traditional or deterministic au-
toencoder [8].

This approach is widely used for unsupervised analy-
sis of static problems, referring to Section 1, where data
distributions are time-invariant, i. e., not changing or de-
pendent of time, and the learning is not human-assisted
via labels. The problem with this approach is that uncer-
tainty in this context means the imparity of known and
observed data points. Referring to (1) above, uncertainty
is a measure of two variables: mean and standard devia-
tion. Reconstruction-based methods provide an estimate
to the former, i. e., mean, only. This has the logical impli-
cation that such methods cannot draw an inference about
the standard deviation of an observed data point, without
further adaptation to the algorithm to capture variance,
e. g., with sampling techniques.

(3) Energy-based machine learning approaches use
likelihood estimation instead of the reconstruction error,
i. e., in addition to the distance to the mean, the variance of
the data is considered for uncertainty estimation. In com-
parison to the statistical methods depicted in (1), where
the likelihood has to be estimated a-priori, energy-based
methods learn to fit the corresponding likelihood function
to the probability of the data’s occurrence. The objective is
to train the model to maximize said likelihood. Logically
concluded, the more data exist to train the model, the more
accurate the fitted likelihood represents the system.

This approach includes Restricted Boltzmann Ma-
chines (RBM), the use of ensembles targeting the mean
and variance of data samples, and dropout as a statisti-
cal means to estimate uncertainty, which are further de-
scribed below [9, 10, 11].

RBMs are a type of bayesian neural networks, consist-
ing of a visible layer, i. e., the input layer, and a hidden
layer of neurons, i.e., a layer of neurons where the cal-
culation takes place to output the intended result, in the
following example. They are used to learn probability dis-
tributions of an unknown data distribution [12, 13]. In the
energy equation (1), v;, h; represent the binary states of the
visible neurons i and hidden neurons j. a; and b; repre-
sent the respective bias, i. e., a factor to shift the activation.
w;; represents the weights, a factor to transform the input,
between the neurons. Both variables are first set randomly
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Figure 4: The Restricted Boltzmann Machine is built of a visible
layer, and a hidden layer of neurons v;, and h;, respectively, with
its respective biases a;, and b;. Circles in this regard represent the
neurons, with lines in between representing the weighted connec-
tions wj; in between. The term “restricted” refers to the omission of
intra-layer connections between neurons [12, 9].

and then learned in accordance to the data the system is
trained on. The value associated with each state of the net-
work is thus referred to as the energy E of the network.

E(v,h)=- Z a;v; — z

b;h; - Z viiwg, (1)
8]

ievisible ichidden
P ~ e—E (V) (2)
W) =5 Fw
A'A

The probability of a configuration v is estimated by the
exponential energy term of the observed state divided by
the sum of the exponential energy terms of all possible ob-
servations v*. Thus, samples going outside of the learned
distribution result in a higher energy level.

1 .
L£(8,D) = N (Z log P(V"). (3)
vWeD

For a given set of parameters and data, 8 and D
respectively, the likelihood is the weighted sum of the
log-probability of observed states v. The loss function L,
i.e., the optimization function, being the negative log-
likelihood as shown in Equation (4) is minimized through

learning, and thus the likelihood is maximized.

L6, D) = -£(8, D). %)

Another method uses targets of mean and variance
to directly learn uncertainty from the dataset [10, 4]. The
network outputs two values, the predicted mean u(x) and
variance o%(x). The maximum likelihood gets calculated
using the mean negative log-likelihood as the loss func-
tion.

L(X>Y) = _Inge(yn|Xn) =

log 0g(X) (v — pg(x))?
2 205(x)

+ constant.  (5)
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Figure 5: Architecture of a feed-forward neural network with an input
layer and its input x, two hidden layers and an output layer. Circles
represent neurons. Lines represent the neurons’ inter-layer connec-
tions. The neurons of the output y are distributional parameters:
mean p and variance o2.

Using ensembles, i. e., several networks, of the same
trained model, but with varying initialization of the neu-
ral network, the variance of data points can be measured.
Using variation in the model’s initializations and architec-
ture with the same unaltered data input, orthogonal to the
UA approach, the learnt data distribution is induced with
variance in every single data point. This leads to statisti-
cal inference. Testing unknown data points outside of the
learnt data distribution therefore will result in an inhe-
rently different outcome. Through different initialization,
anomalies cannot reach the same outcome, and thus re-
ceive a higher uncertainty value. However, the training of
ensembles can be computationally expensive in compari-
son to single neural network methods.

Another method to make statistic inference is using
dropout. Dropout, which is the stochastic omission of neu-
rons, can be used as a simple regularization method, i. e.,
to enhance the generalization ability of the network [14].
If dropout is applied on every layer in both training and
testing phase, it can moreover be used for uncertainty es-
timation [11]. Through the stochastic omission of neurons,
every training procedure uses a slightly different neural
network. These slightly different networks can be seen
as sub-networks. Training on the same data, every sub-
network learns to output the same result, while for data
outside of the known data distribution, i.e., anomalies,
the result of each sub-network will vary significantly. This
approach can also be interpreted as ensemble model com-
bination [14].

In addition to the requirements due to the observed
dataset, irrespective of the quality of results, choosing
an approach is also bound to the problem intended to
solve. Generally speaking, for classification and regres-
sion tasks for static analyses, simple feed-forward network
architectures are used. Additionally, Convolutional Neu-
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ral Networks can be mentioned at this point [15]. Regres-
sion tasks for static cases are handled similarly. For dy-
namic analyses, a recurrent architecture, such as Long
Short-Term Memory, Gated Recurrent Units, or Sequence-
to-Sequence architectures such as Transformers are men-
tioned in [16, 17], and [18].

While some networks and algorithms are inherently
designed and used for uncertainty estimation, e. g., RBM,
other techniques are independent of the network’s ar-
chitecture, i.e., can be built on top of existing architec-
tures, e. g., stochastic dropout and ensemble model com-
bination. Also, the techniques used vary in their tasks to
be solved. While reconstruction-based machine learning
techniques are used for static analyses, and are suited for
unsupervised learning in settings where anomalous data
is scarce, energy-based machine learning techniques can
also be used for dynamic analyses and when training data
exist abundantly. There are also other approaches such as
Variational Autoencoder and Generative Adversarial Net-
works [8, 19], which however would be out of the scope of
this paper.

For the contribution part of this paper, we exemplarily
show two approaches, one for each case, i. e., static and
dynamic analysis, respectively. In addition to the research
questions RQ1 and RQ2, we ascertain if for both static and
dynamic analyses the standard algorithms, without fur-
ther adjustment, i. e., out-of-the-box, achieve satisfactory
results in anomaly detection. We see the research gap in
whether adjustments to the algorithms are specific to the
challenges of CPPSs.

3 Solutions

For the dynamic analysis part, we use an LSTM compar-
ing a reconstruction based metric and a metric incorporat-
ing the variance of the prediction. Similarly, for the static
analysis part we compare the ability of an Autoencoder
(AE) to detect anomalies with that of a modified version,
i. e., Denoising Autoencoder (DAE). We then compare the
results with an RBM as an energy-based approach.

We use artificially generated datasets, and in addition
a real-world dataset for the dynamic analysis, to analyze
the influence of uncertainties on the performance of the
different solutions.

3.1 Dynamic analysis

Time-series data extracted from CPPSs in most cases con-
tain a certain amount of noise, either caused by the mea-
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Figure 6: Example for homo- and heteroscedastic uncertainty.

Predicting uncertainty

- Samples

Figure 7: Example for prediction in context of uncertainty. For a sig-
nal containing a normal distributed heteroscedastic noise, the mean
X; as well as the standard deviation o is predicted.

surement itself, or variances in underlying processes. In
cases where this kind of uncertainty is not constant, i.e.,
heteroscedastic, a prediction is difficult, as it will likely
show similar noise. It is hardly possible to distinguish be-
tween certain and uncertain predictions X; by monitoring
a fixed distance to the sensor value x;, as this distance can
be shifting with x. Referring to Figure 3 in the introduction
of this paper, a prediction with a large Euclidean distance
to the ground truth, can be certain in case the normal be-
havior of the CPPS shows a high variance in this specific
operational mode.

Figure 6 shows the same signal added with ho-
moscedastic and heteroscedastic uncertainty. The hetero-
scedastic case shows Gaussian noise where ¢? is a linear
function of x. This dependency can be seen in similarity
to the prediction of X: It is another function that has to be
learned from the dataset and thus be predicted.

In case of comparing new samples to the predictions
made, the learned confidence interval helps to classify
whether the new samples were expected as shown in Fig-
ure 7. The shaded area shows a 20 confidence interval. This
will later be used for anomaly detection.

To predict data points from a time-series of multiple
sensors of a CPPS, a recurrent neural net (RNN) architec-
ture can be applied. An RNN uses internal states to encode
temporal information between the data points. Similarly
to an autoencoder (Figure 1), these internal, i. e., hidden,



226 —— S.A.Multaheb et al., Expressing uncertainty in NN for production systems

@ NN Layer O Gate
e S ~ Ri+1 Ot+1
1 h '

: }ﬁ@—’ tanh) (o) L ;
: ﬁ»@] . :
' () + |Fully Connected Layer
: Ct—1 (F—a—St :
1 | 4 '
:~ LSTM Cell t ’: h;
Y hea
LSTM Cell| o o o |LSTM Cell LSTM Cell
t—n t—1 Ct—1 t
Xt—n Xt—1 Xt

Figure 8: Neural network architecture for dynamic data using an
LSTM layer as an RNN.

states of the RNN have to be decoded into a prediction of
X;,1- For this task, a feed-forward architecture containing
one or more layers is used. This architecture implies that
the sensor signals are generated from a latent space, i.e.,
hidden states, inside the CPPS.

For our approach, we use a Long Short-Term Memory
network (LSTM), which is a common type of RNN [16]. As
depicted in Figure 8, the LSTM layer takes the time-series
{X¢, > X¢_n} as input and encodes a hidden representa-
tion h, of it. To incorporate a measure of uncertainty, the
fully connected layer decodes the hidden states into a pre-
diction for the sensor values X;,; and their standard de-
viation 0¢,4. The following part will first explain how the
LSTM decodes a time series into a hidden representation
followed by a derivation of a loss function that incorpo-
rates the @;,, output to enable the presented neural net-
work to be trained.

The zoomed representation in Figure 8 (dashed lines)
shows an LSTM cell architecture as used in [20]. The cen-
tral element that characterizes the family of RNNs is the
use of a memory cell [21]. In case of an LSTM it is realized
as a cell state ¢ which models internal states of the CPPS.
The interconnection of the cells through ¢ and h enables
information to flow forward from past time steps to the cur-
rent time step t. The LSTM cell at time step ¢ takes the input
samples X, the previous hidden representation h_;, and
the previous cell state ¢;_; into account to build the cell
state ¢;.

Gates control the information flow inside the LSTM
cell and enable the network to take important information
from a certain point in time into account, e. g., the begin-
ning of a transient phase, and neglect other points in time,
e. g., stationary phases. The gates are realized as neural
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network layers according to Equation (6).

f, = o(Wgx, + Ush,_; + Ve, _y),
i = o(Wix¢ + Uihy 4 + Vice ), (6)

Ot = O'(WOXt + Uoht71 + Voct).

The matrices W, U, V of every gate are weights of the NN
layer and thus learned during the training phase of the net-
work. The sigmoid function limits the gates values to an in-
terval of [0, 1]. Depending on their particular value, infor-
mation is neglected or accepted. In case of the forget gate
f; = 1 and the input gate i; = 0, the cell state c; is calcu-
lated only from the previous cell state ¢;_;. In the opposite
case where f; = 0, i; = 1, only the hidden representation
h;_, and the input samples x; are taken into account. Be-
fore they pass the input gate i;, they are weighted by u, w
which are learned during the training process.

For cases where the gates take values 0 < a < 1, ¢; is
calculated from new inputs as well as the cell state of the
previous cell. The tanh multiplication acts as a regulariza-
tion as it restricts the cell states within an interval of [-1, 1].
Which features of ¢; contribute to the hidden representa-
tion vector h; is controlled through the output gate o;.

The dimensions of h; and ¢; determine the number of
internal states. If it is chosen less than the number of sen-
sors (dim(xy)), the LSTM is forced to learn a reduced latent
representation, similar to the decoder part of the autoen-
coder in Figure 1. To train the shown network by reduc-
ing the prediction loss, the loss function has to incorporate
0¢,1- This can be achieved by expressing the loss function
as a maximum likelihood approach considering three un-
derling assumptions:

(1) All relevant hidden states h; can be learned from the
data.
(2) Gaussian distribution for covariance of the error X;; —

X1 (€. g., white noise).

(3) Knowing the hidden states h;, the remaining noise on
each sensor x;' is independent (e. g., white noise).

With these assumptions, the probability for x;,, is given by
the multivariate Gaussian distribution in Equation (7).

Po(Xealhe Xp) =

i S \2
Mo 3() | o
i t+1 t+1

We enforce the NN to compute x,, and o', ,, with re-
gard to the maximum likelihood, to describe the data by
expressing the loss function as the negative log maximum
likelihood of Equation (7). This results in the integration
of the standard deviation into the mean square error loss
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Table 1: Comparison of a distance-based metric (MSE) to the energy-
based likelihood metric (MLE) for two artificial datasets (Art. DS) and
an lon Mill Etching System (IMES DS). The upper rows show the F1
measures of MLE and MSE. The lower columns the metric that was
used to distinguish normal from anomalous data.

Art. DS1 Art. DS 2 IMES DS
F1 MSE 0.13 0.62 0.52
F1 MLE 0.7 0.62 0.7
Metric MSE 0,4 - MAX 1,6 - MEAN 1,6 - MEAN
Metric MLE 20 1o 20

function (MSE) as proposed by [4]. By dividing through
0},,, and the log term as a penalty term in Equation (8),
the maximum-likelihood-error loss (MLE) is formed.

X - % 2 ;
1 1
Lm:z [(%) +2logo;+l]. (8)
1 t+1

While using the standard MSE loss function for the
combination of an LSTM network followed by a fully con-
nected layer cannot properly model noise in a signal, a left-
over loss at the end of the learning phase will be present.
The MLE loss forces the NN to reduce this leftover loss by
learning o, that fits best to the noisy sensor data. Map-
ping the hidden representation of the LSTM into o', and
i, by a fully connected layer can be interpreted as map-
ping to a specific internal state of the CPPS into prediction
and standard deviation. In case of heteroscedastic uncer-
tainty as shown in Figure 6, the linear function changing
the variance, as well as x, = f(x;) itself is learned.

As the introduced NN architecture is able to predict
the standard deviation gy, together with the sensor values
X¢.1, @ confidence interval as shown in Figure 7 can be ap-
plied to the prediction. It acts as a measure of uncertainty
for predictions made, and can be used to make further de-
cisions, e.g., classifying measured data points to detect
anomalies. Furthermore, in control loops a high standard
deviation in certain operational modes can be taken as
mistrust in the NN model, leading to using a backup model
with lower performance [22].

In [23] a NN similar to Figure 8 is used to detect anoma-
lies on two artificial and one real world dataset. With ref-
erence to Figure 7, a fixed decision border together with an
MSE loss function is compared to the MLE loss function in
Equation (8) using an automatically generated uncertainty
interval |x.,, - X, | > k-al,,.

Table 1 shows the F1 scores together with the metric
used. Artificial dataset 1 contains a sine and a saw-tooth
signal with Gaussian noise of different intensity levels
added to each signal. Six anomalies are added to the sine
signal as shown in Figure 9.
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Figure 9: Anomalies in sine signal of DS1: (1) Higher Noise,
(2) Higher Amplitude, (3) Higher Frequency, (4) Lower Amplitude,
(5) Offset, (6) No Signal.

Artificial dataset 2 contains ten signals that are gene-
rated from a latent random-walk on surface in a three di-
mensional room which is mapped into 10-D space through
a sinusoidal function. After a phase of normal behavior,
an error of two intensities is added to the latent space. The
results shown refer to the high intensity error, as this case
can be properly identified as an anomaly. For low inten-
sity errors both metrics show poor results. The real world
dataset consists of 231 days of operation of an Ion Mill Etch-
ing System. As several recipes for products are operated,
the most frequent one (recipe No. 67 with 51% of the time)
is used. The degeneration processes of a pressure signal is
identified and marked as anomalous before this leads to
non-acceptable product quality.

For all datasets it is shown that the learned uncer-
tainty interval of the MLE Approach is at least equal or bet-
ter than a fixed border for every sensor. In DS 1 the anoma-
lies, added to one of two signals, are detected very well.
DS 2 shows similar results for MSE and MLE. The manipu-
lation of the latent space for the anomalous case results in
a well detectable anomalous system behavior as all sensor
signals show anomalous behavior. Similar to DS 1 the IMES
DS shows good results for the MLE metric. This can be ex-
plained as many sensors behave normal and only one sen-
sor shows anomalous behavior. The choice of metric also
shows that 20 is a reliable hyperparameter for anomaly de-
tection. This reduces the amount of setting manual thresh-
olds, and makes the method suitable for practical CPPS in-
tegration.

3.2 Static analysis

For the static analysis case, we use a Denoising Autoen-
coder [8]. We compare this result with a standard Autoen-
coder, and a Restricted Boltzmann Machine to include an
energy-based approach.
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Figure 10: Representation of the basic principle of a Denoising Au-
toencoder.

As already shown in Fig. 1, the autoencoder is a stack
of layers of neurons, with at least one hidden layer, con-
sisting of an encoder and a decoder architecture. We used
an altered approach, i. e., a Denoising Autoencoder (DAE).
The difference to the vanilla autoencoder depicted in Sec-
tion 1 is limited to the input. We use X, € R" which repre-
sent damaged data points. The objective of the DAE is to
reconstruct the unaltered data distribution x for the train-
ing and validation phase. Through a stochastic function
q, i. e., Gaussian noise function, the initial data input x is
transformed to a manipulated version X which serves as in-
put to the encoder-decoder architecture. With the encoder
network f, the altered input X gets encoded into a latent
representation z, before decoded to the output y with the
decoder network gj.

The data used are generated through a random walk
algorithm, in reference to Section 3.1, and normalized in
accordance to its mean and variance. In total 50 sensors
were simulated, with 50,000 signal values each. The ar-
chitecture consisted of 3 encoder layers reducing in terms
of number of neurons, the latent representation layer, con-
sisting of 10 neurons, and 3 decoder layers with increasing
number of neurons back to the same number of outputs
as the initial number of input neurons. Before the data
go into the encoder, Gaussian noise is being applied. We
applied noise only in the training and validation phase.
We used the Adam optimizer with a learning rate of 107
and a weight decay of 107*, and trained for 100 epochs
with a batch size of 50. We minimize the reconstruction
error L(X,y) as a mean squared error (MSE) through train-
ing of the network. Additionally, an equal size of valida-
tion dataset, and test dataset, consisting of normal and
anomalous data points, respectively, are used for the eval-
uation.

DE GRUYTER OLDENBOURG

10°°
4 —— Anomalous
~—— Normal
3
€3]
Q2
=
1
0

20000 30000 40000 50000

Sensor Entries

0 10000

Figure 11: Visual representation of one exemplary sensor with the
distances of prediction and ground truth of the normal (orange;
validation dataset) and anomalous (blue; test dataset) data points.
Prediction after the training of the DAE.

Table 2: Comparison of the Denoising Autoencoder (DAE) with a
standard Autoencoder (AE), and a Restricted Boltzmann Machine
(RBM) with the same random-walk point anomalies dataset.

AE DAE RBM

F1 Score 0.75 0.88 0.93

Categorizing data points as normal or anomalous is es-
timated through the MSE, serving as the distance between
ground truth and predicted values, and a threshold that
is set at the standard deviation of 10 above the mean of
the validation error. Predictions going beyond the thresh-
old are viewed as anomalies, with the Euclidean distance
serving as an estimate for uncertainty. One of the sensor’s
distance error is depicted exemplarily in Figure 11.

We found that adding Gaussian noise leads to higher
F1 scores. By using the noise-induced input X, we achieve
robustness to a partial manipulation of the input data. The
manipulation also serves generalization purposes through
the augmentation of training data due to the stochastic
transformation of the input [8]. We used different levels
of gaussian noise, and found 20 % to be a good estimate.
The results are based on the top three averaged F1 scores.
For the confusion matrices in Figure 12, we used the aver-
age of the respective results. Additionally, we show in Ta-
ble 2, that the RBM on the same data performs better than
both autoencoder. This goes back to the inherent ability
of energy-based methods to learn probability distributions
from an unknown data distribution, referring to Section 2.
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Figure 12: (a) Evaluating the confusion matrix of the DAE shows a
robust detection of anomalies. 93.81% of all anomalies were de-
tected, whereas only 83.01% of non-anomalous data points were
classified as such. This means around 16.99 % detections of anoma-
lies are in fact wrong and only 6.19 % of detected anomalies are

in fact non-anomalous. (b) It is noticeable that the vanilla autoen-
coder, i. e., without denoising ability, performs significantly worse
in detecting normal data, i. e., the false positive rate is significantly
higher. The true positive rate shows no significant difference to the
DAE.

4 Conclusion

For static, as well as dynamic data, we presented to what
extent uncertainty can be expressed in neural networks re-
garding the task of anomaly detection.

For dynamical data we presented an approach using
an LSTM network combined with an energy-based loss
function derived from a maximum likelihood expression
of the remaining prediction uncertainty. Experimental re-
sults on three different datasets, comparing the MLE met-
ric to the MSE metric, corroborate that the approach is able
to encode uncertainty and suits the application of anomaly
detection (RQ1).

For the static analysis we showed that the Denois-
ing Autoencoder, as well as the Restricted Boltzmann Ma-
chine is suitable for anomaly detection. Experiments show
that both approaches are well able to detect anomalies in
multi-dimensional artificial data (RQ2). While in security-
related tasks and environments, e. g., airport, medical in-
dustry, the relatively high false positive rate of the stan-
dard autoencoder might be acceptable, for CPPSs it can
lead to high costs in manual inspections. We showed the
advantage of adding noise to the training data to achieve
an autoencoder with higher generalization abilities, i. e.,
a Denoising Autoencoder, by achieving a significantly
lower false-positive rate. We further showed the advantage
of an energy-based machine learning model, i.e., RBM,
over reconstruction-based machine learning approaches
in anomaly detection.

S.A. Multaheb et al., Expressing uncertainty in NN for production systems =—— 229

It has to be noted that any alteration to the hyperpa-
rameters or the training data used will lead to different re-
sults and an inferior representation of the internal states of
the CPPS. In this case the assumptions made in Section 3.1
are violated.
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