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Abstract: Subjective Logic (SL) is a powerful extend of clas-
sical probability theory that can handle small sample sizes
and, with that, the resulting statistical uncertainty. How-
ever, SL is a quite abstract theory and has found limited
attention in the field of automation so far. In this work, we
present a new urn model intuition to SL that connects SL
with the Pólya urn scheme. The application of SL-based re-
liability estimation in automation is demonstrated on two
examples from the domain of connected automated driv-
ing: first to assess external information for motion plan-
ning on-board the vehicle and second to rate connected
vehicles as agents within a large-scalemulti-agent system.

Keywords: subjective logic, small sample reasoning, con-
nected automated driving, motion planning

Zusammenfassung: Die „Subjective Logic“ (SL) ist eine
mächtige Erweiterung der klassischen Wahrscheinlich-
keitstheorie, die auch mit kleinen Stichproben umgehen
kann und dabei die statistische Unsicherheit berücksich-
tigt. Die SL ist jedoch sehr abstrakt formuliert und hat
bisher im Bereich der Automatisierungstechnik nur wenig
Aufmerksamkeit bekommen. In diesem Artikel wird eine
neue, anschauliche Herleitung für die SL beschrieben, die
auf dem Urnenmodell von Pólya aufbaut. Die Anwendung
der SL-basierten Zuverlässigkeitsschätzung in der Auto-
mation wird an zwei Beispielen aus dem Bereich der ver-
netzten und automatisierten Fahrzeuge demonstriert: zum
einen imFahrzeug zur Bewertung externer Informationen,
die in der Bewegungsplanung eingesetzt werden sollen,
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und zum anderen zur Prüfung vernetzter Fahrzeuge, die
Agenten in einem großen Multi-Agenten-System sind.

Schlagwörter: Subjective Logic, kleine Stichproben, ver-
netztes automatisiertes Fahren, Bewegungsplanung

1 Introduction

Cooperative automated driving can significantly increase
traffic efficiency and benefit the safety on the roads. How-
ever, if the restrictive requirements ofmotionplanningand
other safety-critical modules in Connected Automated Ve-
hicles (CAVs) are not met, this may result in significant
harm [36, 39]. In turn, full reliability of cooperative infor-
mation distributed through an vehicular Multi-Agent Sys-
tem (vMAS) is often assumed without questioning; how-
ever, this is not given in general [39]. While already widely
adopted in avionics and navigation [31], monitoring and
assuring the system’s functional performance plays an in-
creasing role in the automotive industry and is generally
termed Safety of the Intended Functionality (SOTIF). Thus,
to reach SOTIF for connected automated driving, account-
ing for the reliability of cooperative information is manda-
tory. We refer to reliability as the extend to which system-
atic errors, e. g., from a silent failure of a subsystem, can
be excluded. Hence, since in practice only small sample
sizes are available, the evidence-based statistical uncer-
tainty must be accounted for.

While classical probabilistic approaches can easily
model the uncertainty of state estimates in terms of covari-
ance matrices, they lack the ability to explicitly model the
evidence-based statistical uncertainty [11]. Yet, for small
sample sizes, the statistical uncertainty is crucial to keep a
probabilistically inferred result meaningful. For example,
consider a coin that is tested to be fair or unfair throwing
it three times. In this example, probabilistic inference can
never conclude that the coin is fair as a frequentist proba-
bility of 0.5 for each side of the coin can never result. Meth-
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ods like [23, 24] based on the evidence theory [35], in turn,
have an explicit representation of statistical uncertainty.
However, they suffer from unintuitive or even wrong re-
sults when the incoming information is highly contradict-
ing [40]. In connected automated driving, however, the re-
liability of a source of cooperative information often has to
be estimated quickly based on a small number ofmeasure-
ments. Furthermore, the information based on which the
reliability has to be decided might be very contradicting.

This challenging task can be performed using Subjec-
tive Logic (SL). SL is a recent, powerful mathematical the-
ory that extends classical probability theory as well as the
evidence theory and bridges the gap between both [11].
However, SL is a complex theorywith limited intuition and
therefore received limited attention so far. In fact, the com-
munity was quite doubtful about the theory [5]. Therefore,
after a short summary of the related work in Section 2, an
alternative intuition to SL is presented in Section 3 using
Pólya’s urn model [7]. The SL-based reliability estimation
can deal with small sample sizes and yields intuitive re-
sults even if the reliability is estimated from very contra-
dicting information. Thus, it overcomes two major draw-
backs of existing reliability estimation schemes. This is
demonstrated on twoapplications from thedomain of con-
nected and automated driving in Section 4. First, the SL-
based reliability estimation from [20] for external informa-
tion on traffic participants for motion planing on-board a
CAV is presented. It is extendedbyanSL-basedassessment
of the estimations’ reliability using the urnmodel. Second,
the SL-based estimation of the reliability of CAVs as agents
in a large-scale vMAS from [21] is summarized. The article
closes with some conclusions in Section 5.

2 Related work

Since the early works on SL [10], several tutorials, e. g.,
[12], have been published, giving some intuition to SL.
Most of it is summarized in the text book [11]. However,
as opposed to this work and to the best of our knowledge,
none of these publications neither discuss the connection
between SL and the Pólya urn scheme nor have an urn
model intuition to this theory. Instead, the bariocentric tri-
angle in combination with numerous examples is usually
used to illustrate SL. The bariocentric triangle is a triangle
with belief, disbelief and uncertainty at its corners, where
each point within that triangle represents an SL opinion.

Besides, there are several publications that present
applications to SL, mostly for trust management in com-
puter networks [2, 13, 39], information fusion [15], and

communications [3, 6]. In this context, decision making
has been addressed on an abstract level, e. g., in [39]. In
turn, in this work, a concise application to SL in the field
of automation, namely reliability estimation and decision
making under uncertainties for CAVs is presented.

So far, other methods, such as Baysian inference, the
Dempster-Shafer theory [35], or neural networkshavebeen
used for reliability estimation [24], [23], [8]. Thesemethods
come with the drawback that they either cannot explicitly
differ between statistical evidence and prior or that unin-
tuitive results occur in case of strongly contradicting in-
formation sources [40]. The presented SL-based reliability
estimation scheme overcomes these drawbacks.

Motion planning under uncertainties so far has been
addressed through classical approaches [1, 4, 30, 37,
38], set-based methods [17, 25, 27, 28], Markov Decision
Processes (MDP) [9, 34], and communication based ap-
proaches [33]. None of these works, however, accounts
for the possibility of having an unreliable environmental
model. We distinct unreliable from uncertain in the way
that uncertain refers to known statistical effects, whereas
unreliable refers to possible systematic model errors. In
this work, an example is summarized that integrates SL
reliability estimates into decisionmaking for motion plan-
ning and, thus, accounts for unreliable cooperative infor-
mation.

3 An urn model intuition to
subjective logic

In this section, the basic object of SL, the so-called Opin-
ion, as well as themost important SL operators are derived
from Pólya’s urnmodel [7] as an intuitive alternative to the
original derivation of Jøsang in [11].

Consider a classical urn with red and black balls in
it, where the probability of drawing the respective colors
has to be estimated from a sample of draws with replace-
ment. In the classical maximum likelihood approach, the
respective probabilities are calculated as the fraction of
observations of a specific color referred to the overall num-
ber of observations. As long as the sample size is suffi-
ciently large, this approach yields reasonable approxima-
tions of the true distribution, however, it fails for insuf-
ficient statistics. While prior knowledge in combination
withmaximumaposteriori estimation can improve the sit-
uation, there are still situations that cannot be handled
appropriately. For example, if the actual probabilites are
p∗ = (0.5, 0.5), but only three balls are drawn from the
urn, it is impossible to correctly estimate the probability
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from the sample, even if the correct probabilities are as-
sumed as prior a = (0.5, 0.5).

To overcome the problem of insufficient statistics,
some sort of upsampling is needed to estimate the likeli-
hood of each combination of probabilities p = (p, 1 − p),
p ∈ [0, 1], where these probabilities can be seen as the pa-
rameters of the urn model. Intuitively, the empirical esti-
mate (p̂, 1 − p̂) of red and black balls in the urn is likely to
be close to the correspondingactual distribution (p∗, 1−p∗)
for many samples. At the same time, it can be expected
that with a decreasing number of samples, the prior dis-
tribution will become increasingly important. A statistical
model suitable for suchanupsamplingwith reinforcement
is the Pólya urn scheme [7], which, however, does not ac-
count for prior knowledge.

Hence, to overcome the problem of insufficient statis-
tics while accounting for prior knowledge, we extend the
classical urn model by two further urns, see Figure 1. The
second urn initially contains as many special balls (col-
ored green in our example) as the cardinalityW of the sam-
ple space, i. e.,W = card{X} = 2 in our example. The third
urn contains red and black balls according to the prior dis-
tribution. A small sample is drawn from the first urn, it is
put into the secondurn, and additionally, balls of the same
kind are replaced in the first urn. Then, the upsampling
starts: From the second urn, balls are drawn according to

Figure 1: Basic urn model based on the Pólya scheme [7] illustrating
SL opinions. The SL opinion is retrieved be repeating the upsam-
pling steps 2 and 3 infinitely.

the Pólya urn scheme, i. e., each ball drawn from the urn
is replaced by two of the same kind. However, whenever a
green ball is drawn, the green ball is put back, but instead
of a second green ball, a ball from the third urn is drawn
andput into the secondurn. Balls drawn from the thirdurn
are always replaced by a ball of the same kind afterwards,
so that the distribution in the third urn represents the prior
again.

This method can be extended to the multi-dimen-
sional case (W > 2) by adding balls of further colors to the
first and third urn and adjust the number of special balls in
the second urn according toW . Then, for an infinite num-
ber of upsampling steps, the likelihood of the generalized
combination of probabilities p ∈ [0, 1]W follows a Dirich-
let distribution with the parameters r = {ri}i=1,...,W [29].
Hereby, ri describes the expected number of balls from a
specific color before upsampling, if the green balls are re-
placedbyballs drawnwith replacement from the thirdurn.
The likelihood of the generalized combination of probabil-
ities p can be imagined as the probability that the balls in
the first urn actually follow the probability distribution p.
Hence, it is a probability on probabilities and therefore is
considered a second order probability [11].

Speaking in terms of evidence theory, before upsam-
pling, the fraction of the balls in one of the W colors
referred to the total number of balls represents the re-
spective element of the statistical evidence or belief mass
b = [b1, . . . , bW ]T . In turn, the fraction of green balls u
represents statistical uncertainty, as a green ball can act
as any colored ball. Mathematically, the urn model can be
described completely by the 3-tuple

ω = (b, u,a), bi =
ri

∑Wj=1 rj +W
, u = W

∑Wj=1 rj +W
, (1)

where a describes the prior distribution. In turn, the urn
model can be projected to a classical probability. For that,
instead of upsampling, the green balls in the second urn
are replaced by balls drawn from the third urn. Then, the
fractions as above are used to determine the projected
probability distribution

P = b + u ⋅ a . (2)

This leads to the definition of an opinion as the basic
SL element and its projected probability:

Definition 1 (Subjective Logic Opinion [11]). LetX be a do-
main with card{X} ≥ 2. Let X further be a random variable
inX. Then, the ordered triple ω = (b, u,a) according to (1) is
termed Subjective Logic Opinion or opinion in short. More-
over, the probability distribution P calculated from ω by (2)
is termed projected probability of ω.
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Furthermore, the equivalent mapping theorem proven
in [11] is a direct consequence from the urn model:

Theorem 1 (Equivalent Mapping (cf. [11])). Let ω = (b, u,a)
be an opinion and Dir(p, r,a) a Dirichlet distribution over
the same x ∈ X. Then, for u ̸= 1, the equivalent mapping

b = r
W+∑Wj=1 rj

u = W
W+∑Wj=1 rj

}
}
}
⇐⇒ {

r= Wb
u

1= u +∑Wj=1 bj
(3)

transforms the Dirichlet distribution into its equivalent
opinion and vice versa. ◼

Additionally, operators need to be defined to combine
such SL opinions. To do so, consider again the aforemen-
tioned urn model. A first sample A of, e. g., three red balls
is drawn from the first urn, and an opinion ωA on A is cre-
ated. Later on, a second sample B is drawn from the urn,
e. g., two black balls and a red ball, and a second opinion
ωB is created. As the two samples are statistically indepen-
dent, in classical probabilistic reasoning, A and B would
be joint to estimate the distribution of the first urn. For
the given example, this would yield (0.66,0.33). For SL, an
operator ⊕ corresponding to this intuition can be derived,
combining the observations from A and B according to

rA⊕B = rA + rB . (4)

This can be transfered to the opinion domain using the
equivalent mapping theorem (3):

bA⊕B,i =
rA⊕B,i

W +∑Wj=1 rA⊕B,j

=

WbA,i
uA
+ WbB,i

uB
W

uAuB
(uAuB + uB(1 − uA) + uA(1 − uB)

=
bA,iuB + bB,iuA
uA + uB − uAuB

, (5a)

uA⊕B =
uAuB

uA + uB − uAuBx
, (5b)

aA⊕B =
aAuB + aBuA − (aA + aB)uAuB

uA + uB − 2uAuB
. (5c)

Here, (5c) covers the generalized case that different base
rates a are assumed for ωA and ωB, i. e., the balls in the
third urn are differently distributed for A and B, respec-
tively. This leads to the definition of the Aleatory Cumula-
tive Belief Fusion (CBF) operator.

Definition 2 (Cumulative Belief Fusion [11]). Let ωA andωB
be opinions over the same variable X in the domainX. Then,
the operator ⊕ in

ωA
x ⊕ ω

B
x = (bA⊕B, uA⊕B,aA⊕B) (6)

Figure 2: Extended model with fourth urn illustrating SL opinions
and their operators. This step replaces step 1 in Fig. 1(a), the other
steps from Fig. 1 remain the same.

with0 < uA < 1and0 < uB < 1 is called aleatory cumulative
belief fusion (CBF) and bA⊕B, uA⊕B, and aA⊕B are calculated
according to (5). For accumulating multiple opinions from a
setO, the shorthand⨁∀o∈O ωo = ωo,1 ⊕ ωo,2 ⊕ . . . is used.

So far, undistorted observability has been assumed,
i. e., the color of the balls drawn from the first urn was ev-
ident. However, in many practical situations, this undis-
torted observability is not given, e. g., due tomeasurement
noise. To reflect this imperfect observation, the following
procedure, which is depicted in Figure 2, replaces the first
step: An additional—i. e., fourth—urn is added to the setup
containing white and gray balls. As before, a sample is
drawn from the first urn, but the drawn balls are not put
into the second urn directly. Instead, for each of the drawn
balls from the first urn, one ball is drawn from the fourth
urn. Whenever a white ball is drawn, a ball of the same
color as its corresponding ball in the original sample is
put into the second urn. However, if a gray ball is drawn,
a ball differently colored than in the original sample (and
non-green) is added to the second urn. This process hap-
pens secretly, so that only the balls being put in the second
urn are known as observation. Finally, the upsampling is
conducted as described previously and an opinion is cre-
ated. If multiple entities observe the same sample, each
observed sample is individually created by drawing white
and gray balls from the additional urn and transformed to
an individual opinion by upsampling for each entity.

Opposed to multiple samples of the first urn, multi-
ple observations of the same sample drawn from the first
urn obviously are statistically dependent. Hence, the CBF
operator (6) is not applicable and it is not possible to re-
duce the statistical uncertainty by evaluating multiple ob-
servations of the same sample. However, the accuracy of
the knowledge on the available evidence can be increased
by averaging out the noise added to the second urn. The
observation accuracy of the entities A and B observing
the same sample might differ. This corresponds to differ-
ent fractions of white and gray balls in the additional urn.
If prior knowledge on the observation accuracies is avail-
able, this can be used to infer a more accurate estima-
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tion of the actually available evidence by weighting the
observed evidence according to the observation accuracy
using

rA⊕B =
wA ⋅ rA + wB ⋅ rB

wA + wB
(7)

with wA and wB being weights of the observed evidences,
respectively. In the opinion space, (7) maps to

ωA ⊕ ωB =
{{{
{{{
{

b = bAwAuB+bBwBuA
wBuA+wAuB

u = (wA+wB)uAuB
wBuA+wAuB

a = aAwA+aBwB
wBuA+wAuB

(8)

using the equivalent mapping (3). This leads to the defini-
tions of the Average Belief Fusion operators:

Definition 3 (Average Belief Fusion [11]). Let ωA and ωB be
opinions over the same variable X in the domainX. Then, if
wA = wB = 1, uAx ̸= 0, and u

B
x ̸= 0 hold, the operator ⊕ in (8)

is called aleatory Average Belief Fusion (ABF).
For wA = (1 − uA) and wB = (1 − ub), the operator ⊕ is

called uncertainty weighted average belief fusion. Similar
to the CBF operator, the shorthand⨁

o∈O
ω is used for fusing

multiple opinions with the ABF operator.

Another effect that comes with an imperfect observa-
tion is the systematic overestimation of the available evi-
dence, as not every ball put into the secondurn actually re-
flects statistical evidence from the first urn. If prior knowl-
edge about the observation accuracy is available, this error
can be corrected by using the trust discounting operator:

Definition 4 (Trust Discounting [11]). Let ω̂ be an opinion
over a variable X on domainX and let pd ∈ [0, 1] be a prob-
ability. Then, the operator T (ω̂, pd) with

ωtd = T (ω̂, pd) =
{{
{{
{

b = pd b̂
u = 1 − pd ∑

W
j=1 b̂

a = â
(9)

is called Trust Discounting operator.

Speaking in terms of the urn model, the discounting
probability pd describes the fraction of white balls in the
additional urn. Bymultiplying the belief mass with pd, the
number of balls added to the second urn due to drawing a
gray ball is removed in a stochastic sense. Thus, fictional
statistical evidence fades into uncertainty.

From the urn model, furthermore, it becomes clear
that with an increasing fraction of gray balls, the gap be-
tween actual and assumed evidence grows until merg-
ing two opinions does not improve the inferred result any
more. This particularly holds if the fraction is unknown

and thus cannot be corrected for. Therefore, a consistency
criterion is needed with which it can be decided whether
or not the fusion of two opinions is reasonable. One pos-
sible consistency criterion is the likelihood that the opin-
ions converge into the same probability density for an in-
finite number of samples drawn from the first urn. This
likelihood is primarily determined by the statistical un-
certainty, i. e., the number of balls from the first urn that
have not yet been observed already, and the resulting pro-
jected probability inferred from the observed sample. The
smaller the difference between the projected probabilities
(2), the likelier it is that they would end up in the same
distribution. At the same time, it becomes less likely that
differing projected probabilities would still end up in the
same distribution with increasing number of balls already
observed from the first urn.

In practice, the consistency check is often used as
alarm mechanism. Therefore, it comes handier to formu-
late an inconsistencymeasure so that further steps are trig-
gered whenever the measure exceeds a certain threshold.
This leads to the definition of the Degree of Conflict (DC):

Definition 5 (Degree of Conflict [11]). Let ωA and ωB be
opinions over the variable XA and XB in the domainX. Then,
the measure

DC(ωA,ωB) =
1
2

W
∑
j=1
|pA,j − pB,j|(1 − uA)(1 − uB) (10)

is called Degree of Conflict (DC).

With these intuitively derived definitions of SL ele-
ments and operators, many applications from automation
canbe realizedalready.However, there exist evenmore op-
erators and measures if the presented ones are not suffi-
cient, see e. g., [11].

4 Exemplary SL applications for
connected automated vehicles

So far, a new urn model interpretation of SL was given to
improve the intuition for the theory. In this section, twoap-
plications are given to exemplarily illustrate how SL can
be used in the context of connected automated driving.
To estimate the reliability of the cooperative information,
some sort of redundancy is required. As redundancy raises
cost in most cases, only small sample sizes of redundant
information are usually available. Specifically in the case
of CAVs, the availability of redundant information is addi-
tionally strongly dependent on the situation, e. g., a com-
mon field of view from external and on-board sensors or
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information from several CAVs on the same objects. Since
SL can deal with small sample sizes and features the sta-
tistical uncertainty to weight the result of a reliability test
according to the statistical evidence supporting the result,
SL is particularlywell suited to beused inCAVs for such sit-
uations and outplays classical probabilistic approaches,
which do not provide that information. Set-based meth-
ods, in turn, complement SL and canbe used togetherwith
SL to improve safety, as we will show in the first applica-
tion example.

Thefirst example given in Subsection4.1 bases on [20],
where SL is used on-board a CAV to assess the reliability of
cooperative information from off-board sources. Here, we
extend the results of [20] by further experiments and show
how the reliability of the reliability estimation can be as-
sessed using SL and the proposed urn model. Then, it is
shortly sketched how this reliability estimate can be inte-
grated in the motion planning scheme from [19, 22]. The
second example, which is given in Subsection 4.2 summa-
rizes the approach from [21]. It shows how SL can be used
in a large scale multi-agent system to assess the reliability
of moving agents such as CAVs.

4.1 Reliability estimation of cooperative
information

Consider the scenario that an CAV approaches a yield T-
junction where buildings occlude the view of the vehicle’s
sensors on the main road. Without cooperative informa-
tion, the vehicle has to stop at the yield line, so that the
vehicle’s perception can sense the upcoming traffic on the
main road. Then, the CAV has to wait for a sufficiently
wide traffic gap to merge into it. Now, consider additional
infrastructure sensors and a Road Side Unit (RSU) at the
junction providing (pre-processed) data from the sensors
to any connected vehicle. With this cooperative informa-
tion, the CAV can merge more efficiently by synchronizing
its motion to a traffic gap reported by the RSU. However,
if the cooperative information is not reliable, e. g., if there
actually is a vulnerable road user within the (wrongly re-
ported) traffic gap, this might result in a severe accident.
Therefore, a key to safety of the CAV’s merging function-
ality is an adequate, quickly available reliability measure,
based on which the CAV can decide whether it will use the
cooperative informationwhile approaching the yield junc-
tion. Our approach to solve this task, which was initially
presented in [20], bases on SL.

The key idea of the approach is to test the incoming
cooperative information from the RSU on four different as-
pects for consistency, and—in combination with the ego

perception—for plausibility. If the incoming data is con-
sistent, fits with previously sent information, andmatches
the informationmeasured through the ego perception, the
reliability of the RSU providing the cooperative informa-
tion is estimated to be high. In turn, if inconsistencies are
detected or the information does not match with the ego
perception of the CAV, the estimated reliability of the RSU
is reduced. For the reliability estimation, themeasurement
uncertainties can vary over time as long as they are given
in conjunction with the measurements. In our case, the
RSU transmits the respective variances together with the
objects. In contrast, the test statistics describing the sec-
ond order probabilities are assumed to be stationary. This
means for our case that the actual reliability of the RSU
does not change while the few samples are collected.

In detail, the following four tests are evaluated:
Prediction Test: The prediction test assumes that the

RSU provides not only real-time information, but also
predictions of the movement of objects, e. g., to ac-
count for latency in the systemandallow for predictive
planning. The test compares bufferedpredictions from
previous time steps with the current measurements,
where a high estimated reliability results if the current
measurements are consistent with earlier predictions.

Map Test: The map test compares the positions of re-
ported road users with the digital map of the vehicle.
The underlying assumption is that an expectation on
where road users drive is available, e. g., in form of a
map. If the reported positions of the road users fit well
with that expectation, the RSU is considered reliable,
while otherwise, e. g., if vehicles drive through houses
according to the CAV’s map, the estimated reliability
is drastically reduced. The latter can result, e. g., from
a calibration error.

Ego Localization Test: This test uses the ego localization
of the CAV to rate the uncertainties reported the co-
operative information. Usually, the ego localization is
very accurate in a CAV as it is needed for motion plan-
ning. When the ego vehicle approaches the junction,
at some point, it enters the field of view of the infra-
structure sensors so that the RSU reports an object at
the position of the ego vehicle as well as the corres-
ponding measurement uncertainties in terms of a co-
variance matrix. If the variance is correct, the Malha-
lanobis distance [16] between the ego localization and
the position of the reported object is expected to be
small. In this case, the reported variance is plausible
and the RSU is estimated to be reliable.

Ego Perception Test: The ego perception test compares
the perception of the ego vehicle with the objects re-
ported by the RSU. If the ego perception detects an ob-



J. Müller and M. Buchholz, Subjective logic reasoning for connected automated driving | 117

ject in the junction area, it is supposed to have a corre-
sponding object in the object list reported by the RSU.
If so, the estimated reliability of the RSU is increased,
while amissing detection of an object in the object list
of the RSU leads to a drastic decrease of the estimated
reliability.

For the individual tests, the CBF, the ABF, and the trust dis-
counting operator are used in combination with binomial
and multinomial SL opinions.

Finally, the results from all four tests, each formulated
as SL opinion, areweighted andmerged together using the
weightedAverage Belief Fusion operator (8). This yields an
overall opinion on the RSU’s reliability. With the weighted
ABF operator, the merits of SL as compared to classical
probability theory get apparent. As opposed to classical
methods, the operator can use the uncertainty of SL to
weight the respective test results according to their expres-
siveness. For example, if the ego perception test cannot be
performed since no object is seen from the CAV’s on-board
sensors, the uncertainty becomes 1 and the fusionneglects
this test. If classical statisticalmethodswithout additional
measures would be used, the ego perception test result
would equal the prior distribution, which then would be
fused with the results from the other tests.

Exemplary, Fig. 3 shows a real world scenario for
which the ego perception test is applied, while Figure 4
shows the estimated reliability according to the test. In the
example, laser scanners are used on infrastructure side as
well as on-board the CAV to perceive other traffic partici-
pants. It can be seen that there is a bicyclist in the percep-
tion of the CAV, marked in red, that is not included in the
RSU data. As can be seen in Figure 4, this leads to a mas-
sive decrease of the estimated reliability.

Figure 3: Real world scenario showing a missing detection of a bicy-
clist in the RSU data. The black lines mark the middle of the lanes,
the RSU data are shown in blue, and the vehicle’s on-board data are
shown in red.

Figure 4: Reaction of the perception test to the missing detection of
the RSU depicted in Figure 3.

Figure 5: Overall test result opinions over 30 hand-labeled real
world sequences represented as Dirichlet distributions.

In Figure 5, the overall opinions—represented as
Dirichlet distributions—are evaluated for 30 manually la-
beled sequences. Remember that the opinions represent
second order probability, i. e., a probability of probabili-
ties. Therefore, the probability of the data’s reliability prel
being at least x%can be retrieved by integrating the given
distributions over this confidence interval, i. e., from x

100
to 1.0. With that, it can be seen that for every reliable se-
quence, the probability that the actual reliability is more
than90% is alwaysmore than90%. In contrast, for the se-
quences labeled as not reliable, the probability that the ac-
tual reliability ismore than90% isnegligible. This demon-
strates that the SL approach is able to estimate the reliabil-
ity of a source of cooperative information (in our case the
RSU) based on view samples on real-world applications.
The reliability estimation scheme profits from the statisti-
cal uncertainty provided by the SL opinions as the overall
fusion can be adapted to the available information.

With the results from Figure 5, we evaluate the reli-
ability of the reliability estimation with SL and the urn
model. To do so, we interpret the reliability of the estima-
tion scheme as a random variable x sampled from the do-
mainX. Then,X containsW = 2 elements: X that the esti-
mation works and X that the estimation does not work. In
the urn scheme, X and X are represented as red and black
balls in the first urn, respectively. Each plot in Figure 5
represents a red or black ball in the second urn, i. e., statis-
tical evidence supporting either that the estimation works
or that it does not work, respectively. Because there is no
a priori knowledge on how the experiment will turn out,
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a = [0.5, 0.5]T is assumed. According to Fig. 5, all exper-
iments are in favor of the reliability estimation scheme.
Thus, before upsampling, there are 31 red balls and one
black ball in the second urn. This corresponds to the SL
opinion ωx = ([0.94,0]T ,0.06, [0.5,0.5]T ). Using Theo-
rem 1, ωx is mapped to its corresponding β-distribution.
The evaluation of the p-value p(X) ≥ 90% yields a confi-
dence level of 1 − α = 95%, where α ist the probability of
error.

As a result, the reliability estimates can be used for
decision making in motion planning. Details on our mo-
tion planning scheme can be found in [19, 22]. As usual
in literature, we formulated themotion planning for merg-
ing scenarios as Optimal Control Problem (OCP), in which
the passenger’s comfort and safety are optimized. Hereby,
the safety goal is formulated in terms of minimizing the
residual risk according to a risk model. At the same time,
the OCP is constrained to a maximum acceptable risk that
must not be exceeded.

Our risk model is based on the set-based approaches
[25, 27]. Set-based approaches come with safety guaran-
tees and thus are particularly beneficial for safety verifica-
tion [26]. However, the safety guarantees require determin-
istic input sets, whilemost data processing approaches for
CAVs, such as multi-object tracking [32] or the reliability
estimation presented above, are formulated probabilisti-
cally. Hence, we adapted the set-based methods such that
we preserve their safety guarantees as much as possible,
i. e., up to a maximum acceptable residual risk, while we
formulate the risk model probabilistically to stay within
the probabilistic framework.

This risk model is extended by the SL-based reliability
estimation of the data. To do so, the p-value prel of the cor-
responding β-distribution is calculated for a pre-defined
confidence level 1 − α. The residual risk then is weighted
with this prel and (1 − prel) is added to the residual risk.
The latter is done as the situation gets highly dangerous
if the motion planning is performed on unreliable data,
while the weighting of the original residual risk is done
for normalization reasons. Overall, by the adaption of the
risk model, the motion planning reacts to unreliable data,
discards them and, in this case, the motion planning uses
only the ego perception.

4.2 Reliability estimation and misbehavior
detection in vehicular multi-agent
systems

As a second example, the application from [21] is summa-
rized, showing how SL-based reliability estimation can be

applied to a large scale vMAS. As already discussed, coop-
erative information that is shared among different agents
on the road via vehicle-to-anything (V2X) communication
can improve the traffic efficiency as long as the informa-
tion is reliable. However, unreliable information can lead
to serious consequences. As opposed to the example be-
fore, in a large scale scenario, security aspects and trust
among the agents in addition to safety considerations play
an increasing role and have to be accounted for [39].

In this example, based on an attacker model, a com-
munication is proposed that allows for distributing and
updating reliability information on the agents in addition
to the cooperative data. The reliability that is observed by
the respective agents during a traffic scenario is evaluated
through SL and communicated to a central instance. The
central instance checks the reliability estimates for consis-
tency, revises them, if they are inaccurate, and acts upon
irreliable agents. Basically, the trust management process
can be divided into two cases: trust building, if all involved
agent consistently report a traffic scenario, and trust re-
vision, if the reported data are inconsistent, i. e., some
agents provide wrong information. All reliabilities are rep-
resented as SL opinions.

The trust building essentially consists of two steps:
first, a trust discounting (9) is applied to the former relia-
bility estimate of the involved agents, as the reliability of a
respective agent might age over time. Thus, statistical ev-
idence fades into uncertainty over time and agents need
to steadily provide statistical evidence on their reliability
to remain highly trusted. In the second step, the trust dis-
counted reliability opinion is merged with the new statis-
tical evidence for the agent’s reliability using the CBF op-
erator (5).

The trust revision, in turn, is slightly more complex.
First, again, a trust discounting (9) is applied to all agents
involved to account for the aging of the reliability infor-
mation. In the second step, the SL opinions of the respec-
tive agents on what happened during the traffic scenario
are clustered using the DC (10) as metric. Hence, loosely
speaking, in this step, agents reporting more or less the
same story are clustered together. In the next step, a refer-
ence opinion is calculated for each opinion cluster. As the
agents redundantly observe the same scenario, their opin-
ions are expected to be statistically dependent. Hence, the
ABF operator (8) is used to find the reference opinion of
each cluster. Consequently, the DC is calculated for each
agent’s opinion to each reference opinion. For each refer-
ence opinion, the number of opinions are counted that are
consistent with it, i. e., have a DC that does not exceed a
threshold θDC. The reference opinion that gets the highest
number of consistent opinions is then selected. The agents
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Figure 6: ROC curve of the reliable/unreliable classification accord-
ing to the reliability estimation scheme.

that reported opinions consistent with the chosen refer-
ence are classified as reliable, while all other agents are
classified as not reliable. Accordingly, the estimated relia-
bility of agents classified as reliable is increased by apply-
ing trust building. In turn, the estimated reliability of the
other agents is revised using the trust revisionmechanism
from [14].

To evaluate the ability of the SL-based reliability es-
timation scheme, a simulation was performed. Figure 6
shows two resulting receiver operator characteristic (ROC)
curves of the reliable/unreliable classification. The faulty
agents were assumed to have a systematic error of 0.6 σ for
the first and of 1 σ for the second ROC curve. For all others,
Gaussian distributed measurements have been assumed.
It shows that even small systematic errors can be detected,
while the classification performance quickly rises with an
increasing systematic error of the faulty agents. At 1 σ, the
reliability estimation scheme reacts sensitively to unreli-
able agents even for small false positive rates.

The SL reliability estimation scheme was tested on a
large scale vMAS scenario using a simulator for the whole
traffic of Cologne [18]. For the simulation, an error rate of
10% for the reliable agents was assumed, i. e., even reli-
able agents sent 10% faulty measurements due to noise.
With a false positive rate of 10% and a detection proba-
bility of 46%, this setting corresponds to the 0.6 σ ROC
curve. To reducemisclassification, three decisions in a row
were used for classification. Thus, after 45 reports, 76%
of unreliable agents and 1.5% reliable agents were sent
to maintenance. This shows that the reliability estimation
scheme can increase the reliability of cooperative informa-
tion throughout the vMAS [21].

5 Conclusion
In this work, a novel urn model intuition to SL was given
based upon Pólya’s urn scheme. We hope that this ad-
ditional tutorial approach helps that SL will be used in
automation applications in future. Additionally, we pre-
sented two examples how the reliability of cooperative in-

formation can be inferred through SL. For the first exam-
ple, the reliability estimation of RSU information on-board
a CAV, we additionally sketched how this information di-
rectly can support decision making in motion planning.
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