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Abstract: In this article, we propose an optimal control
scheme for information epidemics with stochastic uncer-
tainties aiming at maximizing information diffusion and
minimizing the control consumption. The information epi-
demic dynamics is represented by a network Susceptible-
Infected-Susceptible (SIS) model contaminated by both
process and observation noises to describe a perturbed
disease-like information diffusion process. To reconstruct
the contaminated system states, we design an optimal
filter which ensures minimized estimation errors in a
quadratic sense. The state estimation is then utilized to
develop the optimal controller, for which the optimal-
ity of the closed-loop system is guaranteed by a separa-
tion principle. The designed optimal filter and controller,
together with the separation principle, form a complete
solution for the optimal control of network information
epidemics with stochastic perturbations. Such optimal-
filtering-based control strategy is also generalizable to a
wider range of networked nonlinear systems. In the nu-
merical experiments on real network data, the effective-
ness of the proposed optimal control is validated and con-
firmed.

Keywords: optimal filtering, optimal control, information
epidemics

Zusammenfassung: In diesemArtikel schlagenwir ein op-
timales Regelungsschema für Informationsepidemien mit
stochastischen Unsicherheiten vor, das darauf abzielt, die
Informationsdiffusion zumaximieren und den Regelungs-
verbrauch zu minimieren. Die Dynamik der Informations-
epidemie wird durch ein Netzwerk Susceptible-Infected-
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Susceptible (SIS)-Modell dargestellt, das sowohl durch
Prozess- als auch durch Beobachtungsrauschen kontami-
niert ist, um einen gestörten krankheitsähnlichen Infor-
mationsdiffusionsprozess zu beschreiben. Um die konta-
minierten Systemzustände zu rekonstruieren, entwerfen
wir einen optimalen Filter, der minimale Schätzfehler in
einem quadratischen Sinn gewährleistet. Die Zustands-
schätzung wird dann verwendet, um den optimalen Reg-
ler zu entwickeln, für den die Optimalität des geschlos-
senen Regelkreises durch ein Separationsprinzip garan-
tiert wird. Der entworfene optimale Filter und Regler bil-
den zusammenmit dem Separationsprinzip eine vollstän-
dige Lösung für die optimale Regelung von Netzwerk-
Informationsepidemien mit stochastischen Störgrößen.
Eine solche auf optimaler Filterung basierende Regelungs-
strategie ist auch auf ein breiteres Spektrum von vernetz-
ten nichtlinearen Systemen verallgemeinerbar. In den nu-
merischen Experimenten an realen Netzwerkdaten wird
dieWirksamkeit der vorgeschlagenen optimalen Regelung
validiert und bestätigt.

Schlagwörter: Optimalfilter, optimale Regelung, Informa-
tionsepidemie

1 Introduction

Information epidemics describe the diffusion of pathogen-
like information in population [1] and play a vital role
in various scenarios, e. g., campaigning, viral marketing,
and rumor spreading [2–4]. The relevant research topics,
such as themodeling, analysis, and control of information
epidemics, have attracted wide attention in the fields of
information science, social networks, and group psycho-
logy [5].

The information epidemic models, used to depict
the evolvement of epidemics, are generally recognized
as compartmental models that categorize the population
into different compartments, e. g., susceptible (S) and in-
fected (I) [6]. In the context of information diffusion,
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these compartments may respectively refer to unaware-
ness and awareness of the information, or people’s will-
ingness to refuse or adopt the information. A representa-
tive andwidely-studied epidemicmodel is the Susceptible-
Infected-Susceptible (SIS) model which depicts the dy-
namics of the population in terms of the bidirectional
transitions between compartments S and I. In addition,
the networked information epidemic models with het-
erogeneous transition rates [7, 8] have recently gained
more value than the earlier homogeneous-structure-based
scalar models [9], due to the advantage of better depict-
ing the structural and behavioral heterogeneity of so-
cial networks. Here, by homogeneous we mean that the
population is well-mixed, i. e., the individuals in the net-
work have the same chances to interact with others, while
by heterogeneous we allow various individual properties.
Apparently, the heterogeneous models are more flexible
to be generalized to solve practical problems than the ho-
mogeneous ones. Therefore, the networked SIS model has
been widely applied to popular research topics including
innovation diffusion, epidemic spreading, and new tech-
nology adoption [10, 11]. To this end, we focus on the net-
worked SIS model with heterogeneous transition rates as
a representative information epidemic model.

As a fundamental research issue, control of informa-
tion epidemics has obtained increasingly more concerns
in recent years [12]. However, with the particular interests
of the previous work on the noise-free models, there have
been very few results on the control of noisy epidemics, al-
though noise is ubiquitous in practical information diffu-
sionprocesses [13]. Here, noise is a generic notion to depict
both the exogenous stochastic uncertainties and the in-
herent random properties of the epidemicmodels, such as
the information loss through thenetwork (due to imperfect
conveyance) and the understanding discrepancies among
the individuals (due to various languages, culture, gender,
or education background). When these factors affect the
information epidemics, we formulate them as stochastic
processes in the model and refer to the former as the pro-
cess noise and the latter as the observation noise. Due to
the involvement of the stochastic noise, the conventional
deterministic control schemes cannot be applied, since ex-
plicit state-feedback is not available. Instead, the design of
the controller should be based on the precise reconstruc-
tion of system states. Conventionally, the modeling noise
in innovation diffusion is introduced as white noise with
Gaussian properties [9], which motivates us to seek for an
optimal controller for noisy epidemics based on optimal
state filtering. Nevertheless, both the inherent nonlinear-
ity of information epidemics and the strong coupling in the
network render great challenges to such a control scheme

which are still not overcome by the conventional filtering-
and-control solutions [14–19]. Filling this gap is the major
focus of our work.

The main contribution of this article is, for the first
time, to develop an optimal-filtering-based optimal con-
trol scheme for network information epidemic models,
considering both the process and observation noises. As
a representative information epidemics model, the net-
worked SIS model with heterogeneous transition rates is
taken into consideration. Specifically, the optimal filtering
is concerned with the minimum quadratic estimation er-
rors, which ensures precise estimation with respect to the
second-order stochasticmoments of the systemstates, and
the optimal control aims at maximizing the information
diffusion taking into account the input consumption. The
optimality of both the state estimation and feedback con-
trol is guaranteed by a separation principle. Based on this,
we are able to solve a series of problems that are concerned
with the stochastic properties of information epidemics,
such as innovation diffusion, rumor mitigation, and viral
marketing with unmodeled uncertainties. From a general
perspective, the optimal filtering and control developed in
this article can be extended to a wide range of stochastic
nonlinear network systems, such as the smart grid system
affected by random environmental factors.

The remainder of this article is organized as follows:
In Section 2, the network SIS epidemic model with pro-
cess noise and observation noise is introduced. We then
formulate the problem to be solved in this article. The opti-
mal filter and the optimal control law are respectively pre-
sented in Section 3 and Section 4. Numerical experiments
are conducted in Section 5 to illustrate the effectiveness of
the proposed results. Finally, we conclude this article in
Section 6.

Notations
Letℝ,ℝ≥0, andℝn respectively denote the set of real num-
bers, non-negative real numbers, and n-dimensional vec-
tors. 1(0) and I represent the all-ones (zero) vector and the
identity matrix with proper dimension, respectively. E(⋅)
denotes the expectation of certain event and E(⋅|⋅) refers to
the conditional expectation. For a vector ξ , diag(ξ ) stands
for a diagonal matrix whose i-th diagonal entry equals the
i-th component of ξ . (S ,F ,P) denotes a probability space,
where S is the sampling space, F is the σ-algebra defined
on S, and P is the probability measure. ∘ represents the
Hadamard product, i. e., the element-wise product of two
matrices, and for arbitrary matrices K and Lwith the same
dimensions, we have

K ∘L = L∘K, (K ∘L)⊤= K⊤∘L⊤ = L⊤∘K⊤.
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2 Problem formulation
Consider an n-node strongly connected weighted directed
graph G = (V , E ,A) where V = {1, 2, . . . , n} and E ⊆ V × V
are the set of labeled vertices and the set of edges, respec-
tively. A = [aij] is the nonnegative adjacency matrix where
a nonzero entry aij corresponds to an edge (j, i), i. e., node
i can influence node j. The continuous-time network SIS
model on the graph G reads

ẋi(t) = (1 − xi(t))
n
∑
j=1 βj(t)aijxj(t) − γi(t)xi(t), t ∈ ℝ≥0, (1)

for all i ∈ V, where xi(t) ∈ ℝ is the infection probability
of node i. Another interpretation of xi, from the perspec-
tive of meta-population, is the infection proportion of i-th
group (e.g, a city or a state). βi(t), γi(t) ∈ ℝ are respectively
the time-varying infection rate and curing rate of node i at
time instant t. In accordance with previous literature, the
infection process is considered to be proactive while the
curing process is passive [8, 20]. In this article,we consider
both process noise and observation noise in the informa-
tion epidemics. From this perspective, the SIS model with
stochastic noise is formulated as

dxi = ((1 − xi)
n
∑
j=1 aijβj(t)xj − γi(t)xi)dt + ei(t)dωi, (2)

where ei(t) ∈ ℝ is a scalar coefficient and ωi(t) ∈ ℝ is
a standard Wiener process defined on a probability space
(S ,F ,P), such that E(ωi) = 0 and E(ω2

i ) = t. The compact
form of (2) reads

dxt = ((I − Xt)AXtβt − Xtγt)dt + Etdωt , (3)

where xt = [x1, x2, . . . , xn]⊤, βt = [β1, β2, . . . , βn]⊤, γt =
[γ1, γ2, . . . , γn]⊤, ωt = [ω1,ω2, . . . ,ωn]

⊤, Xt = diag(xt), and
Et = diag([e1, e2, . . . , en]). Note that we use xt to represent
the state vector and define xi as its i-th element. Ambiguity
is avoided since t ∈ ℝ≥0 and i ∈ V belong to different do-
mains. The system state xt is not directly measurable, but
hidden by the following observation process

dyt = Htxtdt + Ftdvt , (4)

where Ht , Ft ∈ ℝn×n are time-dependent matrices, and
yt ∈ ℝn, yt = Yt is the result of an observation, and
vt = [v1, v2, . . . , vn]⊤ ∈ ℝn is a n-dimensional stochastic
process. For each i = 1, 2, ⋅ ⋅ ⋅ , n, vi is a standardWiener pro-
cess defined on (S ,F ,P), and E(vi) = 0, E(v2i ) = t. There-
fore, dωt and dvt denote Gaussian white noise processes
whose covariance matrices are respectively constant ma-
trices Ωδ(t) and Vδ(t), where Ω,V ∈ ℝn×n are constants as-
sumed to be known a-priori and δ(t) ∈ ℝ is the Dirac delta
function.

Remark 1. The dynamics (3) are an Itô’s-formula-based
stochastic model with n-dimensional Gaussian white noise
dωt and dvt . In the context of information epidemics, dwt
and dvt respectively denote the process noise and the ob-
servation noise. By setting Et and Ft as diagonal matrices,
we assume that each noise channel of model (3) is mutu-
ally independent. Nevertheless, it is worth noting that our
approach developed in this article is not limited to this as-
sumption but also apply to arbitrary Et and Ft .

In this article, we are targeting to solving following
problem.

Problem 1. For the information epidemics model (3) on a
weighted strongly connected digraph G = {V , E ,A} and its
observation process in (4), we solve the following two stages
of problems:
(1) Optimal filtering: reconstruct the estimation x̂t using the

observationYt , such that the following estimation crite-
rion is minimized,

Jo = E( (xt − x̂t)
⊤(xt − x̂t)!!!!Yt) . (5)

(2) Optimal control: design a control law for the infection
rate of dynamics (3), βt = ut(x̂t), such that the following
control criterion is minimized.

Jc = E
[[

[

tf

∫
t0

(−p⊤t xt + 12β⊤tRtβt)dt − ψ⊤xtf]]
]

, (6)

where pt ∈ ℝn is an element-wisely positive function
vector, Rt ∈ ℝn×n is a positive-definite time-variant ma-
trix, ψ ∈ ℝn is a constant vector, and xtf ∈ ℝ

n is the
system state at the terminal instant tf .

Remark 2. The filtering cost in (5) is an essential criterion of
the conventional optimal filtering paradigm [21]which takes
the quadratic form of the state-estimation error.Meanwhile,
in the control cost (6), p⊤t xt andψ⊤xtf stand for theweighted
reward expectations which attempt to maximize the infor-
mation diffusion, and the quadratic term of βt denotes the
intention to minimize the consumption of the control ef-
forts [12, 22]. The successive design-procedure of the filter
and the controller in Problem 1 is justified by a separation
principle which is to be interpreted in Sec. 4.

Remark 3. By designing a control scheme for the infec-
tion rate βt , we suppose that the network achieves the de-
sired performance through a word-of-mouth mechanism,
i. e., agents are trying to influence their social neighbors via
the communication topology [7, 23]. Therefore, Problem 1
clearly describes a scenario in which we accelerate the dif-
fusion of the information through the network by influencing
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the infection rates with the concern of control consumption.
Note that how to implement the control is task-specific. For
example, in a recommendation system or advertising, the
frequency of the “information push” is a direct input. For
more general settings, our approach is also applicable for
controlling γt or both the transition rates in (3) by straight-
forward extension.

3 Optimal filtering

In this section, we design the optimal filter for the network
information epidemic model in (3). For brevity, we repre-
sent the system dynamics (3) as

dxt = ftdt + Etdωt , (7)

where ft = (I − Xt)AXtβt − Xtγt is the deterministic nonlin-
ear process function. It is known from [21] that the optimal
estimation x̂t of the system state xt with observation Yt,
with respect to the estimation criterion (5) is

x̂t = E(xt |Yt), (8)

with an estimation variance Pt = E( (xt − x̂t)(xt − x̂t)⊤!!!!Yt),
and (8) renders an unbiased estimation, i. e., E(x̂t) = E(xt).
In the follows, we continue to use the notation ⋅̂ = E(⋅|Yt)
as (8) to represent the conditional expectations. According
to [21], the optimal estimation x̂t is formulated as follows

dx̂t = f̂tdt + PtH
⊤
t (FtVF

⊤
t )
−1(dYt − Hx̂tdt), (9)

with the estimation variance

dPij =((x̂ifj − x̂i f̂j) + (f̂ixj − f̂ix̂j) + (EtΩE
⊤
t )ij

−
n
∑
k=1 n
∑
r=1 (x̂ixk − x̂ix̂k) (H⊤t(FtVF⊤t )−1Ht)kr

×(x̂rxj − x̂r x̂j) )dt

+
n
∑
k=1 (x̂ixjxk − x̂ixjx̂k − x̂kxjx̂i − x̂ixk x̂j
+2x̂ix̂jx̂k) (H

⊤(FtVF⊤t )−1(dYt − Hx̂tdt))ij ,

(10)

where (⋅)i is the i-th element of a vector and (⋅)ij is the ele-
ment of a matrix at the i-th row and j-th column. For the
estimation x̂t, we propose the following assumption.

Assumption 1. [24] All third-order central moments of the
system state xt are zero, i. e., ∀ i, j, k = 1, 2, ⋅ ⋅ ⋅ , n,

E((xi − x̂i)(xj − x̂j)(xk − x̂k)|Yt) = 0. (11)

Based on Assumption 1, the following theorem guar-
antees the optimality of the proposed optimal filter.

Theorem 1. A feasible optimal filter solution for Prob-
lem 1-(1), following the paradigm (9) and (10), is formulated
as

dx̂t = ((I − X̂t)ABt x̂t − Γt x̂t − A∘Ptβt)dt

+ PtH
⊤
t (FtVF

⊤
t )
−1(dYt − Ht x̂tdt),

(12a)

Ṗt = (I − X̂t)ABtPt + ΓtPt + PtB
⊤
tA
⊤(I−X̂t) + PtΓt

− diag(ABt x̂t)Pt − Ptdiag(ABt x̂t)

+ EtΩE
⊤
t − PtH

⊤
t (FtVF

⊤
t )
−1HtPt ,

(12b)

where X̂t = diag(x̂t), Bt = diag(βt), Γt = diag(γt).

Proof. See Appendix for detailed proof.

Remark 4. Compared to the conventional optimal filter for
linear systems, also known as the Kalman filter [25], the pro-
posed optimal filter (12) for the information epidemic model
(3) shows distinguished features, i. e., the additional terms
A∘Ptβt in (12a) anddiag(ABt x̂t)Pt in (12b). These extra terms
are brought up by the nonlinearity and inherent coupling
of the information epidemic models. Assumption 1 is based
on the property of Gaussian random variables that all the
odd conditional moments of the estimation errors xt − x̂t
are zero [24]. As a result, the filter in (12) ensures a pre-
cise state estimation with respect to the second-order mo-
ments of xt − x̂t , which is generally higher than the conven-
tional Extended Kalman filter [26] and comparable with an
unscented Kalman filter [27].

4 Optimal controller design
Now, let us investigate the optimal control solution for
Problem 1-(2). It is known that, for linear systems, the filter
and controller can be designed independently while guar-
anteeing the stability of the closed-loop dynamics, which
is referred to as the separation principle. For nonlinear sys-
tems, however, only a few types of them ensure similar
properties [28]. To justify the feasibility of the indepen-
dent design of the filter and the controller in this article,
it is necessary to investigate the existence of the separa-
tion principle for the network SISmodel (3) with the corre-
sponding optimal criterion (6).

It is known that the optimal state reconstruction (12)
renders an unbiased estimation, i. e., E(x̂t) = E(xt), from
which we have

Jc =
tf

∫
t0

(−p⊤t E(xt) + 12β⊤tRtβt) − ψ⊤E(xtf ) = J ̂c,
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where

J ̂c = E[[
[

tf

∫
t0

(−p⊤t x̂t + 12β⊤tRtβt) − ψ⊤̂xtf]]
]

(13)

is the control criterion that only depends on the estimated
state x̂t dominated by the following dynamics,

̇̂xt = ((I − X̂t)AX̂t − A∘Pt) βt − X̂tγt , (14)

which is the deterministic part of (12a), since the term
PtH⊤t (FtVF⊤t )−1(dYt − Ht x̂tdt) in (12a) is a Gaussian white
noise [29]. This indicates that the optimal stochastic con-
trol law ut(xt) for system (3) with respect to the criteria (6)
is equivalent to thedeterministic oneut(x̂t) for thedetermi-
nistic dynamics (14) and the cost criterion (13), which for-
mulates the separation principle for the information epi-
demicmodels (3). Having this, we are ready to propose the
optimal control solution for Problem 1-(2).

Theorem 2. A feasible optimal control solution for Prob-
lem 1-(2), minimizing the cost criterion (6), is formulated as

βt = −R
−1
t (Pt ∘A

⊤ − X̂tA⊤(I − X̂t))qt , (15a)

where qt ∈ ℝn is a time-dependent vector function domi-
nated by

q̇t = Γtqt − pt + diag(A
⊤(I − X̂t)qt)R−1t (Pt ∘A⊤)qt

−
1
2
diag(A⊤(I − X̂t)qt)R−1t X̂tA

⊤(I − X̂t)qt , (15b)

with terminal condition qtf = ψ.

Proof. According to the separation principle, we trans-
form Problem 1-(2) into the optimal controller design for
the deterministic dynamics (14) with the criteria (13).
Therefore, a feasible optimal control law βt = ut(x̂t) en-
sures the existence of a value function V(x̂t , t), where V :
ℝn × ℝ+ → ℝ, such that the following Hamilton-Jacobi-
Bellman (HJB) equation holds,

−
àV
àt
=
àV
àx̂⊤t ((I − X̂t)AX̂tβt − X̂tγt − A∘Ptβt)
− p⊤t x̂t + 12β⊤tRtβt , (16)

with respect to the terminal condition.

V(x̂tf , tf ) = −ψ
⊤x̂tf . (17)

Therefore, we define the value function as

V(x̂t , t) = −q
⊤
t x̂t − gt , (18)

whereqt ∈ ℝn and gt ∈ ℝare time-variant vector and scalar
respectively dominated by (15b) and the following dyna-
mics,

ġt = −
1
2
q⊤t (A∘Pt)R−1t (Pt ∘A⊤)qt . (19)

By (18), we have

àV
àt
= −q̇⊤t x̂t − ġt , àVàx̂t = −qt . (20)

Therefore, substituting (20) and (15a) to the HJB equation
(16) leads to

q̇⊤t x̂t + ġt = − 12q⊤t (A∘Pt − (I − X̂t)AX̂t)R−1t
×(Pt ∘A

⊤ − X̂tA⊤(I − X̂t))qt + q⊤t Γt x̂t − p⊤t x̂t . (21)

It is easy to verify that the equation (21) holds by substitut-
ing (15b) and (19) to the left-hand side of (21). Therefore,
the control law βt = ut(x̂t) in (15a) and the value function
V(x̂t , t) (18) ensure the holding of the HJB equation (16),
which indicates that the control law in (15a) is an optimal
solution of Problem 1-(2).

Remark 5. Note that Theorem 2 provides a sufficient solu-
tion of Problem 1-(2). By sufficient we mean that the pro-
posed controller (15a) might not be the unique solution, but
it certainly ensures the optimality of the control criterion
(13). Adifferent optimal controller from (15a)might be found
by defining another value function rather than (18), such
that the HJB equation (16) holds, which, however, is beyond
the scope of this article.

Until now, (12), (15a) and (15b) formulate the opti-
mal filtering-and-control framework for the stochastic per-
turbed information epidemics (3) with respect to the opti-
mality criteria (5) and (6). Note that (12) and (15b) are re-
spectively differential equations with an initial condition
and a terminal condition. Thus, we resort to the forward-
backward sweep method in [8] to solve the numerical so-
lution governed by these equations.

5 Simulation

In this section, we conduct a numerical experiment
to evaluate the performance of the proposed optimal
filtering-and-control framework for network information
epidemics. The simulation is set up on a real-world sce-
nario, a high-school social network in Illinois which de-
scribes the friendships between the school boys [30]. We
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construct a 67-node graph by selecting the largest strongly
connected component of the network and consider the
information spreading through this graph, which corre-
sponds to the model in (3). The information propagating
through this network can be the latest news of a soccer star
or a recent base-ball match. Therefore, corresponding to
the epidemics model (3), the state of the individuals repre-
sents towhat probability the boys are aware of or adopt the
information. For brevity, all model parameters are deter-
mined as constant. Specifically, we set βt = β ∈ (0.1,0.15)n,
γt = γ ∈ (0.2,0.25)n, Et = Ft = Ht = In, tf = 50, and
pt = ψ = 1n. Note that Rt is configured as a fixed diag-
onal matrix whose i-th diagonal entry is proportional to
the number of the in-neighbors of node i with coefficient
0.2. dω and dv are generated as Gaussian white noise with
zero means and variance 0.01. The initial condition of dy-
namics (3) is randomly chosen in the set xt ∈ (0,

1
3 )

n. The
evolvement of the information epidemics without control
(βt = β) is illustrated in Fig. 1a. It is shown that, in this sit-
uation, the aware probabilities of all individuals decay to
zero, which is not a satisfactory results for our intention of
information diffusion.

Therefore, for this networked epidemics model, we
solve the optimal filter x̂t and the optimal controller βt =
ut(x̂t) according to the differential equations (12) and (15b).
The initial condition of the estimated system (12a) is ran-
domly chosen in x̂0 = (0,

1
3 )

n, and P0 is set as a positive
definite matrix with Pij ∈ (0, 10−6) at the initial time in-
stant t0. The optimal filter (12) and the optimal controller
(15) are solved using the forward-backward sweepmethod
in [8]. By applying the optimal filter-and-control solution
to the information epidemic model, we obtain the con-
trolled results shown in Fig. 1b. As it is manifested, the
proposed optimal control drives xt to an average infection
probability around 0.6. This indicates that the aware prob-
abilities of all the individuals are brought to a compara-
bly high level (very likely to be aware of the information),
which reflects the success of the proposed information dif-
fusion control. The estimated system state x̂t and the esti-
mation error xt − x̂t are respectively shown in Fig. 1c and
Fig. 1d. It is noticed that the estimation error converges to
zero as time increases, which confirms the precision of the
optimal filter. Therefore, this simulation reveals the effec-
tiveness of the proposed optimal filter and optimal control
for network information epidemics. Since the simulation is
conducted on a real-world data set, the evaluation results
are quite promising to serve as a reference for the practical
policy design.

Figure 1: Performance of the proposed optimal filter and optimal
control for network SIS model on a 67-node network. (a) and (b):
By introducing the optimal control in (15a) the awareness of the
information increases drastically. (c) and (d): The estimation of xt
obtained by using the optimal filter in (12) approaches to the real
value.
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6 Conclusion
The main focus of this paper is on solving the optimal
control problem for network information epidemics with
process and observation noises. The main challenge of
this work lies in the handling of the nonlinearity and deep
coupling brought up by the networked structure. In this
paper, we overcome this challenge by independently de-
signing an optimal filter and an optimal controller based
onaproposed separationprinciple for the information epi-
demics model. By applying the proposed framework, for
the first time, we are able to influence the infection rates
tomaximize information diffusion andminimize the effort
consumptiononanepidemics network, evenwith stochas-
tic uncertainties on both structure and observation. From
a general perspective, this framework is also promising to
be applied to a wider range of network nonlinear systems
that are perturbed with stochastic uncertainties, such as
the networked power grid system with current perturba-
tion. For the future work, we will be dedicated to applying
the proposed methods to solving practical problems. For
example, analysis and prediction of the evolution of epi-
demics and robust control of large-scale power grid will
be our most preferred interests.

Funding: Zengjie Zhang was supported by Chinese Gov-
ernment Scholarship, Grant Number: 201506120029.

Appendix
Proof of Theorem 1. The main technical point of this proof
is to calculate the complex conditional expectations for
the estimation dynamics (9) and the variance evolvement
(10). From (9), we have

f̂i =
n
∑
k=1 aikβk x̂k − γix̂i − n

∑
k=1 aikβk x̂ixk

=
n
∑
k=1 aikβk x̂k − γix̂i − n

∑
k=1 aikβk x̂ix̂k

−
n
∑
k=1 aikβk (x̂ixk − x̂ix̂k)

= (1 − x̂i)
n
∑
k=1 aikβk x̂k − γix̂i − n

∑
k=1 aikβkPik .

(22)

Therefore, for (10), we obtain

x̂jfi =
n
∑
k=1 (aikβk x̂kxj − aikβk x̂ixjxk) − γix̂ixj,

x̂j ̂fi =
n
∑
k=1 (aikβk x̂k x̂j − aikβk x̂ixk x̂j) − γix̂ix̂j,

and

(x̂jfi − x̂j f̂i) =
n
∑
k=1 aikβkPkj − γiPij
−

n
∑
k=1 aikβk(x̂ixjxk − x̂jx̂ixk) .

(23)

Additionally, it is known that
n
∑
k=1 aikβk x̂kPij = n

∑
k=1 aikβk (x̂ixjx̂k − x̂ix̂jx̂k) , (24a)

n
∑
k=1 aikβk x̂iPkj = n

∑
k=1 aikβk (x̂kxjx̂i − x̂k x̂jx̂i) . (24b)

Therefore, from Assumption 1 we know,

E((xi − x̂i)(xj − x̂j)(xk − x̂k)|Yt)

= x̂ixjxk + 2x̂ix̂jx̂k − x̂ix̂jxk − x̂jx̂ixk − x̂k x̂ixj
= 0, ∀ i, j, k = 1, 2, ⋅ ⋅ ⋅ , n, (25)

which leads (24a) and (24b) to
n
∑
k=1 aikβk x̂kPij + n

∑
k=1 aikβk x̂iPkj
=

n
∑
k=1 aikβk(x̂ixjxk − x̂jx̂ixk) .

(26)

Thus, substituting (26) to (23) we obtain

(x̂jfi − x̂j f̂i) = (1 − x̂i)
n
∑
k=1 aikβkPkj

− (γi +
n
∑
k=1 aikβk x̂k)Pij,

(27a)

(x̂ifj − x̂i f̂j) = (1 − x̂j)
n
∑
k=1 ajkβkPki

− (γj +
n
∑
k=1 ajkβk x̂k)Pij.

(27b)

Substituting (22) and (27) respectively to (9) and (10), we
obtain the optimal filter for model (3) with the observation
process in (4) as

dx̂i = ((1 − x̂i)
n
∑
k=1 aikβk x̂k − γix̂i − n

∑
k=1 aikβkPik)dt

+ (PtH
⊤
t (FtVF

⊤
t )
−1(dyt − Hx̂tdt))i ,

Ṗij = (1 − x̂i)
n
∑
k=1 aikβkPkj + (1 − x̂j) n

∑
k=1 ajkβkPki

− (γi + γj +
n
∑
k=1(aikβk + ajkβk) x̂k)Pij + (EtΩE⊤t )ij

−
n
∑
k=1 n
∑
r=1Pik(H⊤t(FtVF⊤t )−1Ht)krPrj,

of which the compact form is (12).
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