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Abstract:

’

The objectives of this study were to apply alternative machine learning (ML) algorithms to predict consumers
garment fit satisfactions (real fit satisfaction [RFS]) and compare the efficiencies of these algorithms to predict
RFS. Skirts made from different fabrics were used as test garments. Mechanical properties of the skKirts’ fabrics
were assigned as predictor variables to estimate RFS. Study participants’ virtual body models were created by using
3D body scanner and used for virtual fitting. Each participant physically tried on the skirts and evaluated the fit.
Participants also viewed the skirt simulations on their avatars and evaluated the virtual fit, which represented
participants’ virtual fit satisfactions (VFS). Random Forest (RF), support vector machine (SVM), and conditional
tree (CT) algorithms were used to learn from the data to predict participants’ RFSs. The mean correlations between
the predicted and observed RFS values in the validation sets were 0.74 (RF), 0.70 (SVM-linear kernel), 0.72 (SVM-
radial kernel), and 0.55 (CT). According to the variable importance analysis, VFS had the highest importance among
35 predictor variables. ML is used mostly for sales forecasting and manufacturing purposes in the fashion industry.
However, garment fit, which restrains consumers from shopping online, did not get enough attention in ML studies.
Besides, the ML algorithms used in fashion and apparel studies are often genetic algorithms and neural networks;
therefore, there is a need to test other algorithm types. In this study, we offered alternative ML algorithms (i.e., RF,
SVM, and CT) to predict consumers’ garment fit satisfactions.
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1. Introduction

The high return rates of purchased clothing products are the
main drive of this research. According to a consumer report [1],
23% of all clothing purchases in the United States are being
returned due to poor fit. Particularly, high product return rates in
online shopping are becoming increasingly alarming because of
their negative environmental and economic impacts [2]. Apparel
companies try to minimize their return rates by adopting recent
technologies, such as virtual try-on and augmented reality (AR), to
give customers more information about the products and enhance
their shopping experiences [3,4]. Coronavirus disease (COVID-19)
pandemic encouraged some fashion companies to adopt virtual
try-on and AR technologies due to their advantages to minimize
physical contact but still allow users to try-on clothes [5].

Another outstanding revolution in the fashion industry is the use
of artificial intelligence (Al). The adoption of Al in the fashion
industry has accelerated over the last few years and had a
significant impact on reducing product returns [6]. For instance,
in 2017, one of the biggest fast-fashion retailers started to use
an online size recommendation tool that uses Al technology. In
the case of this fast-fashion retailer, when customers want to
purchase clothes from their online store, they are instructed to

enter their body measurements so that a smart built-in function
can suggest a proper garment size to the customers.

In the current study, we suggested a prediction model to
decrease customers’ fit-related product returns. While doing
so, we utilized the aforementioned two technologies: virtual try-
on technology and Al to predict customers’ garment fit satisfac-
tions. In the following parts, we reviewed the use of Al in garment
fit-related studies. Later, we explained the virtual fit notion and
presented its importance for predicting real fit satisfaction (RFS)
by giving examples from the existing literature. In Section 2, we
reported our approach to address the research objective, which
was to predict customers’ garment fit satisfactions by using alter-
native machine learning (ML) algorithms. The comparison and
validities of the proposed predictive models were given under
Section 3. Section 4 included the discussion of the contributions
and remarks on the study’s limitations.

1.1. Theoretical framework

1.1.1. Use of Al in garment fit studies

The use of Al in the fashion industry is examined under four
major sections: design, manufacturing, retailing, and supply
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chain management, whereas garment evaluation can be con-
sidered as a subsection of the design [7]. However, there is a
lack of Al studies in the field of fashion design, including fit and
comfort, and Al can significantly contribute to the development
of prediction tools that can learn from customers’ needs, pre-
ferences, and satisfactions [8].

Hui et al.’s study [9], which used a neural network (NN) algo-
rithm to predict the tactile properties of fabrics using fabric mechan-
ical properties, is an earlier example of Al in fashion design.
Another study focused on predicting the garment appearance
quality of jackets by using regression trees and K-nearest neighbor
algorithms [10]. NN, linear regression, support vector machine
(SVM), genetic algorithm, and fuzzy logic are the most common
Al methods used in fashion studies [8]. For instance, Hu et al.’s
study [11] used a hybrid NN system to predict the wearer’s fit
evaluation by using body size and garment size as input para-
meters. In that study, the researchers measured the fit evaluation
of a subject after trying on 450 different pants. Some critical mea-
surements of the pants (e.g., length, front crotch) were used as
input in the NN system together with the subject’'s body measure-
ments, whereas the subject’s fit evaluation was used as an output
variable [11].

Utilizing Al and virtual try-on technologies together to predict
consumers’ garment fit satisfaction is very promising [12,13].
For example, Chen and colleagues developed a three-phase
sensory evaluation study in which they selected 19 fabric sam-
ples and created simulations of the fabrics to obtain experts’
evaluations for the accuracy of the simulations. Later, by using
a learning-based experimental design, they tried to find the
optimum values of fabric properties that could lower the discre-
pancy between the real fabric and its simulation [14]. In the
following phase of the study, researchers created simulations
of a women'’s blouse in different sizes on a virtual body model
and some experts evaluated the virtual fit. The gap between the
body model and the cloth and experts’ fit evaluations were used
to learn from the data. Finally, researchers predicted the pos-
sible fit evaluations for different body measurements by using a
non-linear least-squares algorithm [13]. In Liu et al.’s study [12],
which used naive Bayes and SVM algorithms, nine female par-
ticipants tried on eight different pants and evaluated the gar-
ment fit. Later, simulations of these pants were created, and the
digital clothing pressures on various body parts were mea-
sured. The recorded pressures were used as predictor vari-
ables, whereas participants’ fit evaluations were assigned as
output variables. Results indicated that the naive Bayes model
gave better prediction accuracies than SVM (93.1 and 84.7%,
respectively).

As the cited studies show, using virtual try-on and Al technology
together gives promising results in solving garment fit-related
problems. Hence, in the present study, we adopted a similar
approach by using Al and virtual try-on together to predict con-
sumers’ fit satisfaction prior to the purchase to minimize post-
purchase garment fit dissatisfaction. Random Forest (RF) [15],
SVM with linear and radial kernels [16], and conditional tree
(CT) algorithms were used to predict consumers’ RFS. There
are numerous ML algorithms that can be used to solve a clas-
sification or a regression problem. For the present study, we
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selected the most popular, well-known algorithms [17] and
based our selection decision on the ability to handle linear
and nonlinear effects. SVM is an instant-based learning that
the whole data set is used for training and similarities among
the instances in the training data and the test data drive the
predictions in the test data. Based on the way the similarity is
calculated, an SVM model can incorporate nonlinear relation-
ships between the explanatory and response variables. CT
attempts to solve classification or regression problems by suc-
cessively partitioning the training data into subsets based on
specific features. The partitioning process is repeated until the
final subsets, i.e., the leaves, are small enough to be labeled.
Since the partitioning is applied to the data in a hierarchical
fashion, the graphical representation of the problem looks like
a branching tree, which corresponds to its name. Prediction for
a test data instance is produced by applying the learned
branching to this instance and assigning the learned labels in
the tree based on the leaf that the instance falls into. CT has the
advantage of easily incorporating linear and nonlinear effects
into the predictions, and they are easy to explain. However, in
complex problems, a single decision tree can become unstable
and give poor results. In such cases, the RF algorithm would be a
good choice. RF is an ensemble method that combines predic-
tions from multiple decision trees. The idea behind ensemble
learning is to combine weak learners to build a more robust
model, a strong learner that has a better generalization perfor-
mance. Essentially, RF is a group of decision trees and has the
ability to choose the most probable option by using the power of
an ensemble of decision trees. RF algorithm selects random
data samples from the dataset and builds a CT model on each
sample. The final predictions of the RF are calculated by aver-
aging the predictions of each individual tree.

To our knowledge, the present study is one of the few studies to
use alternative algorithms such as RF and CT for prediction in
the field of fashion design, whereas the majority of the studies
use NNs even though SVM and RF algorithms are advanta-
geous over NN in terms of overfitting as they are less likely to
fall into the local optimum solutions [18]. On the other hand, RF
is an ensemble learning model that uses bagging techniques to
construct many decision trees and creates a randomness that
often yields a better prediction model [19].

1.1.2. Virtual fit: definition, evaluation, and its importance
for predicting real garment fit

Garment fit is the relationship between the wearer’s body and
the garment, and its evaluation is a process that includes phy-
sical, functional, and aesthetic evaluations [20]. One of the big-
gest obstacles of virtual try-on is that some of these aspects of
garment fit cannot be evaluated in a virtual environment. For
instance, consumers cannot touch or feel the garment or
assess the comfort or performance; therefore, functional fit eva-
luation is impossible during virtual try-on [21]. However, phy-
sical evaluation (e.g., length and tightness) is possible to a
certain extent [22].

Academic studies approach the evaluation of virtual garment fit
in two ways: virtual garment fit evaluation can be done either
objectively by calculating the strain/ease allowances on the
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virtual garment [23,24] or subjectively by visually assessing the
virtual fit on a rating scale [12]. For example, Sayem [23,24]
found a correlation between the ease/length change of a shirt
(i.e., dimensional fit of the shirt) and its reflection in the garment
simulation software on three different parameters (i.e., tension,
stretch, and collision pressure). Most of the objective virtual fit
evaluation studies were conducted to: (1) compare real fit to
virtual fit [25], (2) customize garment patterns [26,27], and (3)
investigate the impact of fabric’'s mechanical properties on virtual
fit [28,29]. Subjective evaluation of virtual garment fit may not be
as accurate as objective evaluations; garment fit and aesthetic
concepts depend on people’s preferences; thus, people should
evaluate them [30]. Garment fit satisfaction reaches its maximum
when the garment fits the wearer’s body as the wearer expected.
Consumers’ garment fit satisfaction depends on some internal
and external factors. Society, the fashion industry, and the ideal
beauty image of the era determine the external factors, and
consumers have no impact on these external factors. However,
internal factors (i.e., wearer's body satisfaction and physical
dimensions of the body and the garment) are closely related to
the interaction between the wearer and the garment [31].

Existing garment fit studies often evaluate the virtual fit based
on fashion/textile experts’ judgments instead of the consumer per-
spective. Only a few studies assess virtual fit from a consumer
perspective [32]. However, for online shopping, consumers are
the subject of the fit evaluation. Therefore, there is a need to
explore the consumers’ point of view while evaluating garment
fit. The present study addresses this need and is the second
part of a two-step study. The first part explored the factors that
affect consumers’ virtual fit satisfaction (VFS) [33]. The RFSs of
consumers were not incorporated into the first part of the study;
only the correlation between consumers’ VFSs and factors such
as consumers’ virtual body satisfaction, acceptance of the virtual
try-on technology, and virtual fabric properties was analyzed [33].
In the second part, through using a variety of ML algorithms, we
predicted participants’ RFSs by using their VFSs, as well as their
body measurement, body satisfaction, and fabric properties.

2. Experimental

2.1. Participants

In this study, female participants aged between 18 and 35 years
were recruited due to this group’s high online purchasing rates
[34] since the customers who shop online often were the target
group. After the Institutional Review Board approval (Cornell
University, Protocol ID: 1712007670), flyers were placed around
the university campus for recruitment as the university students’
ages are often within the target range (18-35 years) of the study,
and they often purchase clothes online. Participants with 25-28
inch waist girth and 35-38 inch hip girth were sought due to the
garment size used in this study.

2.2. Test garments

A full circular skirt design with a zipper at the side was selected
as the garment design to maximize the drape features of the
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fabrics [35]. The drape is closely related to the aesthetic fit of
the garment, which is also significant for virtual try-on [36]. The
waist circumference of the sample skirts was 29 inches, and the
skirt length was 18 inches. Since fabric properties were selected
as input variables to estimate RFS of the participants, alternative
fabrics with different mechanical properties were used, and other
design elements such as shape and color (black) were kept fixed
for all the test skirts. Woven fabrics were selected as knitted
fabrics are often suitable for snug garments. Therefore, various
woven fabrics of different compositions (i.e., wool, cotton, cotton/
polyester, cotton/polyester/elastane), constructions (i.e., twill and
plain weave), and all in color black were provided from fabric
suppliers. Eventually, seven skirts were prepared by a profes-
sional seamstress. The weight of these seven fabrics varied
between 111 and 385 g/mz, and thickness varied between 0.1
and 1.27 mm (Table 1).

2.3. Fabric measurements

The following mechanical properties of fabrics were used to
develop the prediction model in this study: weight (W), thick-
ness (T), shear rigidity (G), bending rigidity (B), and extension
(E) in warp and weft directions, friction coefficient (F) at the face
and back of the fabric, and surface roughness (R) at the face of
the fabric. Kawabata and SiroFAST systems are often used to
measure the mechanical properties of fabrics. However, due to
the limitations in accessing these systems, traditional testing
equipment was used in the present study. We conducted initial
tests to determine whether there were any significant differ-
ences among garment simulations generated by using the out-
puts from traditional, KES-FB, and SiroFAST equipment, and it
was concluded that traditional test equipment would be ade-
quate to create garment simulations [37]. The methods and
equipment used for fabric measurements were as follows:
James—Heal Titan tensile tester measured fabric extensions
and shear rigidities. The load cell of the tensile tester was
120 N, the pulling speed was 50 mm/s, and the distance
between clamps was 10 cm. The warp and weft extension of
fabrics at 100 gf/cm was measured by recording the fabric
strain under 500 gf stress [38]. To calculate shear rigidity, Siro-
FAST-3 testing method was used [39]. Fabrics’ bias extensions
at 5 gf/cm (E5) were measured by recording the strain values of
fabrics under 25 df stress. Measured extensions were used to
calculate the shear rigidities (G) of the fabrics using the fol-
lowing equation: G = 123/E5 [40]. Bending rigidities of fabrics
were measured by a Shirley stiffness tester [41], and BS3356:
1990 standards were followed for bending tests. Finally, kinetic
frictions of the back of the fabrics were measured with an MXD-
02 friction tester by Labthink Company based on ASTM D1894
[33]. More detailed information about the methods to measure
the fabric properties can be found in the PhD thesis of the first
author [42]. After measuring fabric properties, seven skirts were
categorized into four groups. Grouping was necessary for two
reasons: (1) evaluating all seven skirts by each participant was
going to take almost half a day, which could be potentially an
exhausting and distracting experience, and (2) some of the
fabric properties did not differ significantly; therefore, those skirt
simulations appeared to be similar to each other. Grouping the
fabrics helped make sure that each participant tried on skirts
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2.5. Participants’ body measurements and body
satisfactions

Eight body measurements (i.e., overall height, weight, body
mass index [BMI], waist girth, hips girth, thigh girth, waist
height, and knee height) that would impact the fit evaluation
of skirts were extracted from the 3D body scans. Participants’
body satisfactions for 21 items were measured on a 7-point
Likert-type scale [45] named as Body Satisfaction Scale. Only
15 of the items (i.e., height, weight, ankle, feet, knees, appear-
ance, posture, waist, legs, torso, body build, buttocks, hips,
abdomen, and thighs satisfaction) were used due to their rele-
vance to predicting fit satisfaction of a skirt.

Internal factors (i.e., wearer's body measurements and body
satisfactions) were used as variables to predict RFS of partici-
pants. Other predictor variables used in this study were fabric
properties. To minimize the lack of touch and feel sensations in
virtual garments, the mechanical properties of the fabrics were
used to correspond to the tactile properties of the test fabrics by
following the methods described in the study by Frydrych et al.
[38]. In addition to these factors, participants’ VFS was used as
the primary input to predict RFS (Figure 2).

2.6. ML algorithms and their implications in R lanquage

In line with the previous studies, we tested various ML algo-
rithms to find the most fitting algorithm for predicting garment fit.
To implement different ML algorithms, a caret package was
used in R. First, the data were randomly split among observa-
tions: 75% was to be used for training and 25% was to be used
for assessing the efficacy of the model [46]. The resampling
method used was cross-validation. Correlation scores for pre-
dicted RFS and measured RFS values were calculated for each
algorithm, and a comparison of the algorithms’ performances
was made according to the calculated correlations. Alternative
correlation matrices were developed to understand the contri-
bution of the VFS variable to the prediction models. In these

Repeat for four different skirts

alternative matrices, correlations between measured RFSs and
calculated RFSs were reported by only using the VFS variable
as the predictor variable.

3. Results

3.1. Demographics and preferences of participants

Forty-five female participants took part in the experiments. The
calculated mean of the participants’ age was 24 (standard
deviation (SD) = 4.75). Seventy-three percent of the partici-
pants took no textiles or fashion-related classes; therefore,
they represented a typical apparel consumer. All participants
were online shoppers. More than half of the participants (54%)
stated that they occasionally or sometimes purchase skirts
online. To understand participants’ general fit satisfaction with
ready-to-wear skirts available in the market and their personal
skirt-style preferences, we added two additional questions to the
survey: one of them about the fit of the ready-to-wear skirts in
the market, and the other one about the style preferences of the
participants. Sixty-five percent of the participants were satis-
fied with the fit of ready-to-wear skirts (regardless of the style),
and the rest of the participants were either neutral or dissatis-
fied. On the other hand, liking/disliking a style would impact
the fit evaluation of the participants. Therefore, we tested if
participants liked/disliked circular skirts as a style. Meanwhile,
other skirt styles (A-line, pencil, and straight skirt) were also
tested. The results showed that there was no significant dif-
ference between the likeness scores for different skirt styles,
so using a circular skirt as the test sample was confirmed
with pre-tests. The results of the participants’ likeness
scores for the circular skirt style showed that only two parti-
cipants disliked the circular skirt style to different extents,
while three of the participants neither liked nor disliked the
style. Most of the participants (n = 40) liked the circular skirt
style to different extents. The likeness scores of the other
skirts were not given in this study due to limited space.

'S1100 Virtualﬁt
evaluation
- -
Iml: o
- -
- - a
- - Real fit
IEENN1R evaluation

3D Body Scanner

3D garment simulation of the skirt

Figure 1. Protocol for virtual and real garment try-on.
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T VFS
Body satisfaction fl var?able) and radial kernels

Fabric properties
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Predictor variables

Conditional Tree (CT)

Prediction variable

Figure 2. Variables that were used in this study to construct the ML algorithms.

3.1.1. Measurements and body satisfaction analysis of
participants

Participants’ weight varied between 105 and 154 pounds
(M=130.7; SD= 12.7); height varied between 60 and 70 inches
(M =65, SD = 2.5); BMI varied between 18.6 and 24.9 (M = 22,
SD = 2); waist girth varied between 24.5 and 30.1 inches
(M = 28; SD = 1.6); and hip girth ranged between 34 and 44
inches (M =38.2, SD = 2). Especially, the hip measurements of
some of the participants were higher than the required mea-
surements. As it was a full-circular skirt and had some design
ease at hips, participants with slightly larger hips and waist
were allowed to participate in the experiment if they could easily
don on and off the skirt and zip it up.

To examine the body satisfaction level of the sample group, the
mean values for each item were calculated (n = 45). Participants
were most satisfied with their height (M = 5.5, SD = 1.2), followed
by the ankle (M = 5.3, SD = 1.5), feet (M = 5.2, SD = 1.3), and
knees (M = 5.1, SD = 1.2). On the other hand, the participants
were least satisfied with their thighs (M = 4.27, SD = 1.6), fol-
lowed by abdomen (M = 4.29, SD = 1.3), hips (M = 4.33, SD =
1.3), and weight (M = 4.33, SD = 1.5). Participants’ body satis-
factions for other body parts (knees, appearance, posture, waist,
legs, torso, body build, and buttocks) varied between M = 5.10
and M = 4.60. These results showed that participants were more
satisfied with the lower body parts (such as ankle and feet) and
least satisfied with the mid-body sections. These results are par-
allel with an earlier study [31].

3.2. Analysis of fabric properties and their classification

Table 1 shows the measured fabric properties and the grouping
of the fabrics. Bending rigidities varied considerably in warp
direction (0.89-23.13 uNm); also, their shear rigidities showed
differences (18.10-231.26 N/m). As confirmed by these values,
the drape of the fabrics was significantly different, leading to a
different aesthetic fit evaluation by the participants, as reported
in the following paragraphs.

3.3. Analysis of RFS and VFS

For practical reasons, test skirts were named according to their
fabric codes (e.g., Skirt 1 was made from Fabric 1). Each
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participant tried on one of the skirts in each group (e.g.,
Participant 1 tried on only Skirt 1 or Skirt 2 in Group 1).
Figure 3 illustrates how one of the skirts (Skirt 6) looked actually
and virtually on a participant. The number of virtual and real try-
ons for each skirt was distributed almost equally among the
participants. To be more explicit, Skirts 1 through 7 were tried
on by 22, 23, 22, 24, 21, and 45 participants, respectively.

Participants’ RFS and VFS per skirt were calculated. To better
understand which skirts had the highest fit satisfaction rate,
participants’ average fit satisfaction was calculated (Table 2).
According to RFS results, participants were the most satisfied
with the fit of Skirt 1, Skirt 2, and Skirt 4, and the least satisfied
with Skirt 6. This might be due to the bending rigidities of the
fabrics that were highly correlated with fabric draping. Fabrics
with higher bending rigidities were more rigid and did not form
eye-pleasing folds.

To investigate if participants’ overall RFSs were significantly
different among the skirts, a one-way analysis of variance
(ANOVA) test was conducted. There was a significant difference
between overall RFSs of different skirts (F(6,173) = 3.52, p < 0.01).
A Hochberg post hoc analysis was carried out to evaluate which
skirt or skirts were different in terms of overall RFSs. Participants’
average RFSs for Skirt 6 were statistically different than Skirts 1,
2,4, and 7. On the other hand, virtual fit evaluations of the skirts
did not vary considerably (F(6,173) = 0.333, p = 0.92). These
results showed that the skirts made from different fabrics were
evaluated differently in terms of fit when worn by the participants
rather than seeing their simulations. The participants could not
see the fit differences on the computer screen.

Figure 3. Drape images of Skirt 6 on a participant for real try-on and
virtual try-on.
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Table 2. Average RFS and VFS of the participants

Group Skirt RFS VFS
code Mean SD Mean SD
1 Skirt 1 5.33 1.12 4.44 1.11
Skirt 2 5.26 1.15 4.82 1.02
2 Skirt 3 4.58 1.25 4.75 1.22
Skirt 4 5.14 1.17 4.83 1.17
3 Skirt 5 4.78 1.51 4.74 1.17
Skirt 6 3.94 1.16 4.63 0.90
4 Skirt 7 5.06 1.18 4.67 1.08

3.4. Comparison of ML algorithms to predict RFS

Table 3 shows the calculated correlation coefficients between
the measured RFS and predicted RFS for different ML algo-
rithms. According to these results, the prediction efficacy of the
RF algorithm was considerably better (r = 0.74) than the CT
algorithm (r= 0.55), and slightly better than the SVM algorithms
with radial (r = 0.72) and linear kernels (r = 0.70). On the other
hand, using only VFS as the predictor variable and excluding all
other variables (i.e., body satisfaction, body measurements,
and fabric properties) developed a significant drop in the pre-
diction power of the models. Only the CT algorithm did not show
any significant change.

3.5. Variable importance to predict RFS

Once we have decided that the RF models were consistently
more accurate than the alternative models based on the cross-
validation results, we have calculated the variable importance
scores of the explanatory variables extracted from an RF model
that used all the data for training. Figure 4 illustrates the impor-
tance of different variables to predict the RFS of the partici-
pants. Among 35 different variables, VFS had the highest impor-
tance followed by relevant body measurements for the selected
skirt style (i.e., belly circumference, waist girth). The body satis-
faction of the participants for their thighs and legs weighed impor-
tant among other body parts. Among ten different fabric proper-
ties, elongation in the weft direction (E_weft) had the highest
importance in predicting RFS, and it was followed by bending
rigidity in the weft direction (B_weft).

4. Discussion

In this study, three different ML algorithms (CT, RF, and SVM)
were used to predict participants’ RFSs, and among these
algorithms, RF gave the best prediction accuracy (r = 0.74)
according to the calculated correlation coefficient between the
measured and calculated RFSs. On the other hand, the perfor-
mance of CT was considerably lower (r = 0.55) than that of the
other ML algorithms. The reason for this conclusion might be
due to the complex and interactive relationships between the
explanatory variables and the response variable, and RF can
adapt to explain these more complex relationships. In addition,
some variables such as belly circumference and waist girth are
deemed important in explaining the response by the RF model,
while correlated variables such as abdomen and waist satisfac-
tion are deemed much less important. This is probably due to
the strong relationships between the former variable and the
latter.

In Liu et al.’s study [12], which focused on predicting partici-
pants’ fit satisfactions, garment fit was considered to be a clas-
sification problem (0: unfit and 1: fit). However, our study
approached garment fit as a regression problem due to the
continuous nature of the fit satisfaction variable and achieved
substantial prediction accuracies. Our findings showed that the
participants had different fit satisfaction levels; therefore, lim-
iting the consumers’ fit satisfaction levels to two classes (fit vs
unfit) might be too restrictive. Besides, RF and SVM algorithms
seemed to work well to predict consumers’ fit satisfactions in a
regression problem. Although the methodology offered in our
study successfully predicted participants’ fit satisfactions for a
certain skirt type, the variables used for prediction should be
changed for other clothes styles (i.e., jeans, shirts). The style
used in this study was an over-knee circular skirt. Therefore, we
predicted for this particular skirt style that lower body measure-
ments and satisfaction with the lower body parts would impact
fit satisfaction. However, for a shirt sample or any other skirt
style with a different silhouette, one should expect that the
relevant body measurements and body satisfactions to be
used for the prediction model would differ.

Another outcome of the study is to prove that when the virtual fit
component was excluded, the prediction accuracies dropped
significantly (Table 3). Among the other variables used in this
study, VFS had the highest importance score (Figure 4). Aca-
demic studies in the virtual fit area usually discuss whether 3D

Table 3. Correlation coefficient between measured RFS and predicted RFS for different ML algorithms

ML algorithm Correlation coefficient (r): all predictor variables (body Correlation coefficient (r): only VFS
measurements, body satisfactions, fabric properties, was used as the predictor variable
VFS) were used
CT 0.55 (0.02) 0.55 (0.02)
RF 0.74 (0.02) 0.51 (0.02)
SVM (linear) 0.70 (0.02) 0.62 (0.02)
SVM (radial) 0.72 (0.02) 0.53 (0.01)

Note: Standard errors (SEs) are given in parentheses.
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Figure 4. Variable importance to predict participants’ RFSs.

garment simulations are accurate or not. However, in this
study, we showed that despite the accuracy concerns, 3D
simulations are very useful to assist consumers with their deci-
sions about garment fit. Our findings indicate that if consumers
are satisfied with the virtual fit, it is very likely that they will be
satisfied when they actually try on the garment.

5. Conclusion

Even though various attempts exist to use virtual try-on for
online shopping, it is still not widely accepted by companies
and consumers. One of the major obstacles to using virtual
try-on for online shopping has been the difficulty to achieve a
realistic body model of the consumers. However, with the
integration of depth sensor cameras in mobile phones, body
scanning is becoming easier [47]. Another critical obstacle to
overcome has been to create digital garments and fabric

http://www.autexrj.com/

m Importance Values

libraries. As fashion brands shift their product development
strategies and become more 3D design-centered, they have
started building these libraries faster [48]. This would make it
possible to prepare and display garments’ digital simulations in
the online stores way before the garments are placed on the
store shelves. Moreover, when digital fashion and ML applica-
tions combine to interpret fashion consumers’ behavior accu-
rately, consumer satisfaction and companies’ profits would
inevitably increase.

In the current study, we presented an example of how digital
garment simulations and ML applications could be used together
successfully to reduce garment fit-related problems after pur-
chasing garments online. Most importantly, we found that a sub-
jective component, i.e., VFS, is a significant factor in predicting
how consumers would perceive the fit of real garments. The
methods explained in the study may be helpful for fashion com-
panies to improve the realism of their digital samples, rather than
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making them picture perfect for advertisements, to reduce their
return rates, and to increase customer satisfaction when virtual
try-on becomes an integral part of online shopping.

Conflict of interest: Authors state no conflict of interest.
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sponding author on reasonable request.
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