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1. Introduction

Non-woven fabrics with two distinct areas, namely, fiber matrix 
and bonded points, demonstrate a special performance [1]. 
Determining the properties of non-wovens plays a substantial 
role in the extensive use of these fabrics for new applications. 
The spunbonding process is commonly used to produce non-
woven fabrics [2]. Thermal bonding process has been widely 
used with different kinds of thermoplastic fibers. These include 
bicomponent and low-melting-point fibers. Among the various 
types of thermal bonding, the point bonding is the most widely 
used technique [3].

The image processing method has created a new branch in 
quality control and instrumentation; one can see that advanced 
imaging systems offered to the field for size assessment, 
calibration, transportation, production quality enhancement, 
inspection, grading, sorting, separation, and so on. Quality 
control issue is related to sampling of products, checkup 
of samples, and generalization of results to all products [4]. 
Determination of fabric properties and online controls such as 
control of web uniformity [5], defects [6], fiber diameter [7], and 
fiber orientation [8] are among the task that image processing 
systems can take over. This technology can function more 
accurately, quickly, and less erroneously than the human eye.

AS the term “uniformity” is defined as an index of variation in 
aspects such as fiber orientation, weight, thickness, density, and 

fiber diameter, the constancy or inconstancy of the measured 
values of these features in different locations of a non-woven 
web can be referred to as “uniformity” or “non-uniformity.” 
Many attempts have been made to find a reliable technique 
for determination of non-woven web uniformity. Some of them 
are offline measurements, in which the measurements cannot 
be performed while the machine is running, and some of them 
are online measurements, in which all the measurements and 
analyses can be performed while the machine is running, such 
as image base analysis.

There is a lot of research on the non-woven uniformity based 
on online measurements. Some researchers have used optical 
methods to evaluate changes in the basic weight. Veerabadran 
et al. (1996) examined a technique in which images and their 
optical densities were used to provide a uniformity index [9]. 
A similar trend was pursued by Boeckerman (1992). In his 
study, the non-woven fabrics were subjected to a transmitted 
light, a camera recorded the image intensity, and the sample 
optical density was related to the web weight [10]. In such 
techniques, the uniformity index is calculated by using the 
coefficient of variation (CV%) of the optical density, and 
measurements on various scales offer different indicators. Lien 
and Liu (2006) used optical intensity for online basic weight 
assessment, which, similar to other studies, had an inherent 
problem in that it relied on size [11]. In a study by Kallmes et al. 
(2000), an anisotropy analysis was done on planar stochastic 
structures and their relationship to other structural properties 
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strength measurement is usually done offline. Choosing this 
technique is effective because image processing systems can 
be applied to determine a uniformity index quickly and to do 
calculations fast and efficiently. This makes it significant to 
develop a technique for online applications. Applying the image 
processing method in online quality control is very useful and 
effective for factories that want to save time and money in this 
case. Noticing a variation in the quality of a product, one can 
find out the lack of uniformity. It leads to quick corrections in 
the production line and, thus, prevention of large amounts of 
shoddy products.

In this study, we evaluate the surface uniformity of the samples 
using the quadrant method. This method can be used to 
measure the overall uniformity of the samples in an image. A 
possible restriction in this study, which is related to the surface 
uniformity, is the use of binary images as the input images. 
The methodology of turning an image into a binary image can 
remove a lot of details. To overcome this limitation, the k-means 
clustering method is applied to produce binary images. In this 
method, certain degrees of intensity are assigned to certain 
layers (clusters). This algorithm is an effective way to convert 
images containing objects with different intensities to cluster 
images. Also, a proposed image processing method is used 
to evaluate the uniformity of thermally bonded points in 
non-woven fabrics. It is attempted to achieve an interaction 
between the tensile properties of non-woven fabrics and the 
non-woven dispersion indexes. To reach this end, the tensile 
properties of the non-woven samples are measured, and then 
the experimental data are compared with the obtained data 
from the image processing method.

2. Experimental

2.1. Material

The specimens were taken directly from a roll of a factory-
made polypropylene thermally bonded non-woven fabric. Two 
sets of thermally bonded non-woven fabric were specially 
prepared by changing the degree of fiber dispersion, which led 
to different uniformity levels. In terms of fabric properties, the 
samples were tests and studied at two different weights (15 
and 30 g/m2) and three levels of uniformity (poor, medium, and 
good). The bonding temperature was 165°C, the nip pressure 
varied from 3 to 3.2 kg/cm2 for two types of the samples, and 
production speed of the samples was 40 m/min. The samples 
were cut from different stances of the web and then weighted. 
The average weight and thickness (ASTM D-5729) of 10 
specimens and the CV% for each fabric type are presented in 
Table 1.

2.2. Methods

2.2.1. Tensile test

The tensile properties of polypropylene non-woven fabrics 
were measured in a machine direction by an INSTRON tester 
in laboratory conditions (i.e., 20 ± 2°C and 50% humidity). The 
samples with a dimension of 25 cm × 10 cm were fixed to a 

was presented as a new index for quality control of such 
structures [12]. Cherkassky (1998) used the homogeneity and 
the inhomogeneity theory of irregular random fields to indicate 
deviations that would suggest degrees of non-uniformity [13]. 
Johansson (2000) recommended that Kurtosis can be used 
as a scale to gauge the non-uniformity of each quantifiable 
characteristic on a flat surface [14]. To determine the level of 
non-uniformity, wavelet analysis and LVQ neural network [15], 
Bayesian [16], and the generalized Gaussian density model 
[17] were used.

Another methodology for investigating the non-woven uniformity 
is the quadrant method based on image processing. The data 
received from the image processing method can be used to 
detect changes in the mass based on the alterations in the gray 
level. One of the studies to defeat the size reliance impediments 
in the coefficient of variation (CV% ) analysis has been done 
by Pourdeyhimi and Kohel (2002) who defined a uniformity 
index by combined image processing and the quadrant method 
[18]. Amir Nasr et al. (2014) conducted a study to measure the 
uniformity of non-wovens with the known quadrant method 
[19]. Militky and Klicka (2007) chose a strategy to assess the 
non-woven uniformity in which rectangular arrays were used 
through the quadrant method [20]. They also obtained their 
information from the image processing method that measured 
the changes in mass based on the changes in the gray level 
using the coefficient of variation (CV%) and the one-way 
analysis of variance model.

The non-uniformity of non-woven fabrics affects their physical 
and esthetic properties [21]. Also, the non-uniformity of web 
influences permeability [22], tensile properties [23], and some 
other properties. One of the most important features of fabrics 
is their mechanical properties. Studying the tensile properties 
of non-woven fabrics is complicated because many structural 
parameters affect these properties. Tensile properties depend 
on three variables, including the mechanical properties of the 
constituent fibers [24]; the fiber orientation in the non-woven 
web [25], which mainly determines the anisotropy web; and the 
bonding points that make the connection between the fibers.

In the studies by Nohut et al. (2015) [26] and Taskan et al. 
(2015) [27], digital image analysis and artificial neural network 
were used to predict the weight, tensile strength, and elongation 
at the break values of the polypropylene non-woven fabrics 
with various weights.

There is a lot of literature on the analysis of the surface 
uniformity of non-wovens, but little information can be found for 
the prediction of tensile strength and elongation at peak points 
using digital image analysis. None of the abovementioned 
articles have made a reference to image processing of bonded 
points and the effect of their uniformity on the mechanical 
properties of non-woven fabrics. The bonded points are one of 
the main features of non-woven fabrics that may be unnoticed 
in visual quality controls. This structural feature affects the 
fabric tensile properties. However, strength is one of the 
extraneous features; thus, in all samples, only an insignificant 
factor such as a poor fiber or a weak link point can have a 
substantial effect on the fabric strength. In textile factories, 
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One of the clustering validity indices is Davies–Bouldin index. 
This index uses the similarity between two clusters (Rij), which 
is defined based on the distribution of i-th cluster (Si) and the 
lack of similarity between clusters i and j (dij). Davis–Bouldin 
index for clustering is defined as follows:

	 𝐷𝐷𝐷𝐷 = 1
𝑛𝑛𝑐𝑐

∑ 𝑅𝑅𝑖𝑖
𝑛𝑛𝑐𝑐

𝑖𝑖=1
 (1) 

 

𝑅𝑅𝑖𝑖 = max(𝑅𝑅𝑖𝑖𝑖𝑖) , 𝑖𝑖 = 1 … 𝑛𝑛𝑐𝑐 , 𝑗𝑗 = 1 … 𝑛𝑛𝑐𝑐 , 𝑖𝑖 ≠ 𝑗𝑗 (2) 

 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽

𝑑𝑑𝑖𝑖𝑖𝑖
 (3) 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) (4) 

 

𝑆𝑆𝑖𝑖 = 1
||𝑐𝑐𝑖𝑖||

∑ 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖
.

𝑥𝑥∈𝑐𝑐𝑖𝑖
 ) (5) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚 ∑ ∑(Iorginal(i, j) − (Ibw(i, j))2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0
 (6) 

PSNR = 10 log (
𝑚𝑚𝑚𝑚𝑚𝑚(Iorginal)

2

𝑀𝑀𝑀𝑀𝑀𝑀 ) (7) 

𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 	 (1)

where nc is the number of clusters. Ri is defined as follows:
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𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽

𝑑𝑑𝑖𝑖𝑖𝑖
 (3) 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) (4) 

 

𝑆𝑆𝑖𝑖 = 1
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∑ 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖
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𝑥𝑥∈𝑐𝑐𝑖𝑖
 ) (5) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚 ∑ ∑(Iorginal(i, j) − (Ibw(i, j))2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0
 (6) 

PSNR = 10 log (
𝑚𝑚𝑚𝑚𝑚𝑚(Iorginal)

2

𝑀𝑀𝑀𝑀𝑀𝑀 ) (7) 

𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 (2)

In Equation (2), Rij is the similarity between two clusters, which 
is defined as follows:

	

𝐷𝐷𝐷𝐷 = 1
𝑛𝑛𝑐𝑐

∑ 𝑅𝑅𝑖𝑖
𝑛𝑛𝑐𝑐

𝑖𝑖=1
 (1) 

 

𝑅𝑅𝑖𝑖 = max(𝑅𝑅𝑖𝑖𝑖𝑖) , 𝑖𝑖 = 1 … 𝑛𝑛𝑐𝑐 , 𝑗𝑗 = 1 … 𝑛𝑛𝑐𝑐 , 𝑖𝑖 ≠ 𝑗𝑗 (2) 

 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽

𝑑𝑑𝑖𝑖𝑖𝑖
 (3) 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) (4) 

 

𝑆𝑆𝑖𝑖 = 1
||𝑐𝑐𝑖𝑖||

∑ 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖
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 ) (5) 
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𝑀𝑀𝑀𝑀𝑀𝑀 ) (7) 

𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 
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1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 	 (3)

where dij and Si are calculated using the following equation:
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 (1) 
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𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽
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 ) (5) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
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𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 	 (4)

In Equation (4), d is the distance function, and vi and vj are i- 
and j-th cluster centers, respectively. So, dij will be the distance 
between i- and j-th cluster centers:
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∑ 𝑅𝑅𝑖𝑖
𝑛𝑛𝑐𝑐

𝑖𝑖=1
 (1) 
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.
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𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 	 (5)

mechanical testing machine with a gage length of 150 mm 
(ASTM D-5034), while the grip size was considered as 5 cm on 
both sides of the test zone. The cross-head speed was constant 
and equal to 150 mm/s. For each sample, 10 specimens were 
used in the tensile test.

2.2.2. Image processing

2.2.2.1. Surface uniformity measurement

As shown in the flowchart of Figure 1(a), first, the color images 
of the samples were converted into grayscales and, afterward, 
a thresholding operation was done. In thresholding, a color 
image is converted into a black-and-white one. In this study, 
the k-means clustering method was applied to convert color 
images to black-and-white ones. The accuracy of extracting 
objects from a background image is increased by using this 
method. Clustering analysis is a branch of science that uses 
common data features to assign data into a predetermined 
number of clusters. One usage of this method is grouping points 
with the same intensity, which is practiced for classification 
and separation of objects from the background. The k-means 
clustering algorithm works with random cluster centers. So, 
clustering is influenced by the selected initial cluster centers, 
and the algorithm has no single response [28]. The noteworthy 
issue in this context is the problem of finding the optimal 
clustering, usually called “cluster validation”.

Table 1. The average weight, thickness, and CV% of polypropylene thermally-bonded non-woven

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

Uniformity degree Good Medium Poor Good Medium Poor

Average weights (g/m2) 15.653 15.690 15.801 30.427 32.861 31.934

CV% 3.15 5.27 5.37 3.88 5.56 9.22

Average thickness (mm) 0.161 0.206 0.207 0.27 0.314 0.317

CV% 7.24 8.39 9.15 2.94 11.3 22.88

                      
(a) (b)

Figure 1. Flowchart of the image analysis algorithm: (a) surface uniformity image processing and (b) bonding points image processing
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In the quadrant method, the image is divided into squares and 
analyzed. This method is one of the techniques used in the 
environment to determine the characteristics of space [30]. 
The quadrant method in an image processing system allows 
defining a dispersion index that can be used to characterize 
the level of uniformity. The average number of white and gray 
pixels in a square (qij), the total average of white and gray 
pixels (Q) as the average value of the fiber fraction in surface, 
the standard deviation of them (SD), and their dispersion index 
(ID) are calculated as follows:
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where M and N are the numbers of squares in length and width 
of the image. The surface dispersion index can be calculated 
using the average number of white pixels and used as a 
criterion to determine the surface uniformity of the non-woven 
fabrics.

2.2.2.2. Measuring the uniformity of thermally bonded 
points

The image processing technique associated with morphological 
operations is used to extract the bonding points and to analyze 
them in terms of uniformity. As shown in Figure 1(b), first, the 
color images are converted into grayscales. Second, bit plane 
slicing is applied to those grayscales to take out the best bit 
plane, which contains more visual information of the thermally 
bonded points. The highest-order planes contain a great deal 
of valuable visual data, while the lower-order planes include 
finer details of the image. So, a bit plane that provides more 
visual information of the thermally bonded points is selected. 
This plane is used as the selected binary image for further 
analysis. In the next step, the negative binary image of the bit 
plane is created and exposed to opening and closing functions 
as well as median filtering so as to remove undesirable details.

The two important operators of mathematical morphology are 
opening and closing functions, which are derived from the basic 
operators of erosion and dilation. These operators in computer 
vision and image processing serve as a basic function of 
morphological noise removal. The opening function eliminates 
tiny objects from the foreground of an image and places them 
in the background, while the closing function removes small 
holes in the foreground and changes the small islands of the 
background into the foreground. These techniques can also be 
used to find specific shapes in an image. Median filtering is a 
simple, intuitive, and easy-to-implement method of smoothing 
images, that is, reducing the amount of intensity variation 
between one pixel and the next. It is often used to reduce noise 
in images [31].

In Equation (5), Ci is the number of data in the i-th cluster and 
vi is the i-th cluster center. Davies–Bouldin index calculates the 
average of similarities between each cluster and the closest 
cluster to it. The most optimal clustering is achieved when the 
intracluster distance is of the lowest value and the distance 
between the clusters has the highest value. According to the 
definitions, it is understood that better clusters are produced 
with lower indices [29].

One of the important steps in making binary images by the 
clustering method is setting an appropriate number of clusters. 
As mentioned, an outcome is reasonable when the obtained 
binary image has negligible changes as compared to the 
original image. Therefore, to determine the appropriate number 
of clusters, the image-quality-determining methods should be 
used. The peak signal-to-noise ratio, often abbreviated as the 
PSNR index, is applied to assess the quality of a binary image 
using the k-means clustering method. The image is clustered 
using different numbers of clusters, and, then, the PSNR index 
is applied to the obtained binary image. An image with a higher 
index value is closer to the original one. This index is defined 
as follows:

	

𝐷𝐷𝐷𝐷 = 1
𝑛𝑛𝑐𝑐

∑ 𝑅𝑅𝑖𝑖
𝑛𝑛𝑐𝑐

𝑖𝑖=1
 (1) 

 

𝑅𝑅𝑖𝑖 = max(𝑅𝑅𝑖𝑖𝑖𝑖) , 𝑖𝑖 = 1 … 𝑛𝑛𝑐𝑐 , 𝑗𝑗 = 1 … 𝑛𝑛𝑐𝑐 , 𝑖𝑖 ≠ 𝑗𝑗 (2) 

 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽

𝑑𝑑𝑖𝑖𝑖𝑖
 (3) 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) (4) 

 

𝑆𝑆𝑖𝑖 = 1
||𝑐𝑐𝑖𝑖||

∑ 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖
.

𝑥𝑥∈𝑐𝑐𝑖𝑖
 ) (5) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚 ∑ ∑(Iorginal(i, j) − (Ibw(i, j))2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0
 (6) 

PSNR = 10 log (
𝑚𝑚𝑚𝑚𝑚𝑚(Iorginal)

2

𝑀𝑀𝑀𝑀𝑀𝑀 ) (7) 

𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

    (6)

𝐷𝐷𝐷𝐷 = 1
𝑛𝑛𝑐𝑐

∑ 𝑅𝑅𝑖𝑖
𝑛𝑛𝑐𝑐

𝑖𝑖=1
 (1) 

 

𝑅𝑅𝑖𝑖 = max(𝑅𝑅𝑖𝑖𝑖𝑖) , 𝑖𝑖 = 1 … 𝑛𝑛𝑐𝑐 , 𝑗𝑗 = 1 … 𝑛𝑛𝑐𝑐 , 𝑖𝑖 ≠ 𝑗𝑗 (2) 

 

𝑅𝑅𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝐽𝐽

𝑑𝑑𝑖𝑖𝑖𝑖
 (3) 

 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) (4) 

 

𝑆𝑆𝑖𝑖 = 1
||𝑐𝑐𝑖𝑖||

∑ 𝑑𝑑(𝑥𝑥, 𝑣𝑣𝑖𝑖
.

𝑥𝑥∈𝑐𝑐𝑖𝑖
 ) (5) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑚𝑚𝑚𝑚 ∑ ∑(Iorginal(i, j) − (Ibw(i, j))2

𝑛𝑛−1

𝑗𝑗=0

𝑚𝑚−1

𝑖𝑖=0
 (6) 

PSNR = 10 log (
𝑚𝑚𝑚𝑚𝑚𝑚(Iorginal)

2

𝑀𝑀𝑀𝑀𝑀𝑀 ) (7) 

𝑄𝑄 = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀  (8) 

𝑆𝑆𝑆𝑆 = ( ∑ ∑ (𝑞𝑞𝑖𝑖𝑖𝑖−𝑄𝑄)2𝑁𝑁1𝑀𝑀1
𝑀𝑀𝑀𝑀 )

1/2
 (9) 

𝐼𝐼𝐷𝐷 = (𝑆𝑆𝑆𝑆)2

𝑄𝑄  (10) 

 	 (7)

In these equations, m and n are image sizes, Iorginal is the original 
image, Ibw is the binary image, and max (Iorginal) is the maximum 
value that image pixels can have.

The non-woven sample images are divided into 3–6 intensities 
or clusters. The k-means clustering method is performed 
10 times for each image, and, then, the best one among 10 
clusterings is selected using Davies–Bouldin index. After 
converting the best of 3–6 clustered images to a binary image 
and making four binary images, the PSNR index is applied 
to choose the best binary image among four images. After 
thresholding, the quadrant method is applied on each input 
image to assess the surface dispersion index of the non-woven 
samples (Figure 2).

Figure 2. Average of white pixels after applying the quadrant method
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used to study the thresholds of images. Dehghan and et al. 
showed in their studies that the clustering method presented 
the best results compared with the typical thresholding [32]. 
Also, Lin et al. [33] and Srinivas et al. [34] found the k-means 
algorithm as a suitable method to extract the object from the 
background in the images.

The non-woven sample images were divided into 3–6 intensities 
or clusters and, for each image, the k-means clustering method 
was applied 10 times (Table 2). Then, the best of the 10 clusters 
was selected using the lowest Davies–Bouldin index. After 
converting the best of 3–6 clustered images to binary ones and 
making four binary images, 4 clusters were selected as the 
best number of clusters with the highest PSNR indices. Figures 
5 and 6 present the image clustering results in 4 clusters, the 
Davies–Bouldin and PSNR values for each sample. The binary 
image obtained from the clustering method is selected for 
future analysis.

3.2. Surface uniformity analysis

The non-woven samples were cut into the sizes given in 
Table 3 and then were weighed. The weight dispersion index 
values were calculated to verify the data obtained from the 
image processing method (quadrant method). Two dispersion 
index values were obtained from the image processing and 
weighing methods. The corresponding correlation coefficients 
are presented in Table 3. As it can be seen, the correlation 
coefficient values for all the samples are greater than 0.95. 
Generally, a correlation coefficient shows the relationship 
between two variables. So, coefficient values greater than 0.95 
show a strong and positive relationship between the image 
processing and the weighing methods. Figure 7 provides the 
results of the image processing and the weighting methods and 
their proportions.

The results of the image processing method were well correlated 
with the weighing results. They were also compatible with the 
degree of sample visual uniformity (Figure 3). Therefore, it is 
realized that, in each group with the same weighted average, 
the lower degree of sample surface uniformity causes the 
higher dispersion index. It seems that the quadrant method is 

Eventually, by applying the above operations, the thermally 
bonded points are visible as white objects on a black background 
in the final binary image. The area of each bonding points, 
the percentage of the bonded area, and the average area of 
bonding points are calculated. Then, the dispersion index of 
the bonding points area (Id), which presents the amount of 
dispersion of the bonding points area, is calculated to evaluate 
the uniformity of the bonding points.

2.2.2.3. One-way analysis of variance

One-way analysis of variance is a technique that serves 
to compare means of three or more samples (using the 
F-distribution). In this study, one-way analysis of variance 
was used to investigate the effect of weight and the degree of 
uniformity on the surface dispersion index, bonding dispersion 
index, and the percentage of bonding points. The significance 
level α was equal to 0.05.

3. Results and discussion

A scanner with a resolution of 2,400 dpi was used to produce 
images of the non-woven samples. A black screen was placed 
behind the samples. All the image dimensions were limited to 
10*15 cm2. Three levels of the non-woven samples uniformity 
are shown in Figure 3.

3.1. Thresholding results

Thresholding is applied to images to evaluate the surface 
uniformity of sample using the image processing method. 
Typical thresholding is one of the most common methods that 
can be applied when the pixel intensity distribution of objects 
differs from that of the background. In other words, there can be 
an image containing a clear object in a dark background or vice 
versa. Binary images obtained through the typical thresholding 
method have been used as the initial images in some surface 
uniformity research [18, 19, 26, 27]; however, the background 
in the non-woven sample images with different intensities is not 
clear and distinct. Thus, the process of turning them into binary 
images through typical thresholding can destroy a lot of details. 
Something that can overcome this limitation is the k-means 
clustering method. The k-means clustering method has been 

Figure 3. Three levels of 30-g/m2 samples uniformity: (a) sample with the highest uniformity, (b) sample with the medium uniformity, (c) sample 
with the lowest uniformity
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Figure 4. Sample S15-3 after applying the k-means clustering method: (a) original image, (b) the first layer, (c) the second layer, (d) the third layer 
(e) the fourth layer, and (f) collecting all the layers together

Table 2. The PSNR and Davies–Bouldin index values for polypropylene non-woven samples

Sample k = 3 k = 4 k = 5 k = 6

S15-1
PSNR 6.5872 6.6296 6.6567 6.5165

DB 0.4598 0.4153 0.4220 0.3981

S15-2
PSNR 6.7561 6.9211 6.8672 6.8629

DB 0.4414 0.4330 0.4307 0.3962

S15-3
PSNR 7.2208 7.2438 7.1428 7.2793

DB 0.4062 0.4422 0.4134 0.4051

S30-1
PSNR 8.2985 8.3098 8.3025 8.2904

DB 0.4540 0.4269 0.4464 0.4090

S30-2
PSNR 8.1041 8.1269 8.1587 8.1332

DB 0.4444 0.4422 0.4474 0.4103

S30-3
PSNR 9.0382 9.1187 9.0969 9.1413

DB 0.4380 0.4359 0.4398 0.4312

binary image for subsequent analyses. After that, the 
morphological operations and the median filtering were done 
to clear the thermally bonded points and remove irrelevant 
details. Figure 9 shows the sequence of operations applied 
to the images. The final image is a binary image in which the 
thermally bonded points are visible as white objects on a black 
background. The measured values of the bonding average 
area, the bonding dispersion indices, and their percentages by 
the image processing method are presented in Table 4. Also, 
Figure 10 presents the corresponding changing trends with 
which to assess the influence of the surface uniformity on the 
bonding points uniformity.

A weight gain of 15–30 g in the two samples S30-1 and 
S15-1 increased the quantity of fibers per area unit and the 
web density. It can be argued that by increasing the web 
covering, the bonding calendar affected more fibers, and, 

an appropriate method to determine the surface uniformity of 
the non-woven fabrics. Similar results were presented in the 
Nohut et al. [26] and Taskan et al. [27] studies. So, the non-
woven fabrics with the different levels of uniformity can be well 
recognized by this method.

3.3. Bonding uniformity analysis

The color images were converted into grayscales, then the 
bit-plane slicing was done to them to extract and analyze the 
uniformity of the thermally bonded points. Figure 8(a) is an 8-bit 
grayscale image, and Figure 8(b) to 8(i) is its 1-bit planes. Each 
bit plane is a binary image.

As shown in Figure 8(g), the 6th bit plane, compared to the 
other bit planes, reveals the best information about the 
thermally bonded points. So, it could be used as a selected 
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3.4. One-way analysis of variance results

Table 5 presents the results of the one-way analysis of variance. 
The significance value for each dependent parameter is 0.000, 
which indicates a significant difference in the mean of each 
dependent parameter.

3.5. Tensile testing results

Strength and elongation in break tests were performed on the 
samples to study the effects of surface uniformity, bonding 
uniformity, and their percentage on the mechanical properties. 
Figure 11 shows the stress–strain curves at the maximum 
stress, and Table 6 presents the maximum stress, the strain 
at the maximum stress, and the initial modulus values. Table 
7 presents the results of the one-way analysis of variance for 
tensile properties. The significance value for each dependent 
parameter is 0.000, which indicates a significant difference in 
the mean of each dependent parameter.

therefore, every bonded point was closer to the bonding 
pattern. The values for the bonding average area, presented 
in Table 4, are suggestive of this matter. However, in a group 
with the same weighted average and the different degrees 
of uniformity, a decrease in the surface uniformity led to a 
reduction in the bonding average area. In other words, with a 
decrease in the surface uniformity, the possibility of existing 
empty pores in some areas of the web is increased. So, 
when a non-woven web is placed under a thermal bonding 
calendar, some of the calendar bumps occur in the empty 
pores. This prevents the formation of bonding points, and 
even if they are formed, they will be sketchy. It also reduces 
the bonding average area and the bonding percentage, 
which, in consequence, affects the relevant statistical 
indicators. All this leads to the reduced possibility of forming 
uniform bonding points. What occurs in this regard is 
confirmed by the presented dispersion index. To sum up, the 
lower bonding uniformity, the lower surface uniformity, thus, 
the higher bonding dispersion index.

S15-1 S15-2 S15-3

PSNR=7.2438
DB= 0.4422

PSNR=6.9211
DB= 0.4330

PSNR =6.6296
DB= 0.4153

Figure 5. (a), (b), and (c) the grayscale images of 15-g/cm2 sample; (d), (e), and (f) the clustered images obtained by the k-means clustering 
method with 10-time repetitions and 4 clusters; (g), (h), and (i) the binary images of (d), (e), and (f)
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uniformity has a lower CV% value than a sample with a 
medium uniformity. It may be because these samples have 
an extreme non-uniformity in their structures and are broken 
fast in a certain period of time, which makes the CV% values 
of these samples lower than those of the samples with a 
medium uniformity. Samples with a poor surface uniformity 
have a brittle mode and a very low elongation at break. For 
instance, for sample S15-3, the strain is about 15%, and for 
sample S30-3, it is less than 10%. For this reason, these 
samples are not suitable for commercial use. The important 
issue is the downtrend of stress and strain in each weighting 
group, which is consistent well with the degree of samples 
surface uniformity.

Figure 12 shows the interaction between the image processing 
data and the experimental results obtained from the tensile test 
for two groups with the same weighted average. It can be seen 
that in each weighting group, the surface dispersion index and 

As shown in Table 6 and Figure 11, in each group of samples 
with the same weighted average, a sample with the further 
surface uniformity, the regular bonding points, and a higher 
percentage of bonding demonstrates higher maximum stress 
and strain and a greater initial modulus as compared with the 
other samples. So, the lower degree of surface uniformity 
presents the lower maximum stress, the strain at maximum 
stress, and the initial modulus. By comparing the presented 
coefficients of variation (CV%) for stress and strain, it 
emerges that for a sample with more weight, the CV% value 
is lower. It can be claimed that with an increase in the weight, 
the possibility of the surface uniformity, and the uniformity of 
thermally bonded points is increased, and, consequently, the 
dispersion of tensile properties is reduced. On the other hand, 
in each group of samples with the same weighted average, it 
seems obvious for a sample with a medium surface uniformity 
to have a higher CV% value than a sample with the highest 
surface uniformity. However, a sample with the lowest surface 

S30-1 S30-2 S30-3

PSNR=9.1187
DB= 0.4352

PSNR=8.1069
DB= 0.4522

PSNR =8.3098
DB= 0.4469

Figure 6. (a), (b), and (c) the grayscale images of 30-g/cm2 sample; (d), (e), and (f) the clustered images obtained by the k-means clustering 
method with 10-time repetitions and 4 clusters; (g), (h), and (i) the binary images of (d), (e), and (f)
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Table 3. Dispersion indices obtained from the two methods of image processing and weighing and their corresponding correlation coefficients

Samples Size of squares (cm2) Image processing 
dispersion index (IPDI)

Weight dispersion index 
(WDI)

R2 (Correlation 
coefficient)

S15-1

5 × 5 0.0134 × 10−2 0.0188

0.97042.5 × 2.5 0.1646 × 10−2 0.0592

1.25 × 1.25 0.3041 × 10−2 0.1388

S15-2

5 × 5 0.3467 × 10−2 0.0614

0.96392.5 × 2.5 0.4406 × 10−2 0.1055

1.25 × 1.25 0.5682 × 10−2 0.2882

S15-3

5 × 5 0.2075 × 10−2 0.1333

0.99572.5 × 2.5 0.3313 × 10−2 0.1922

1.25 × 1.25 0.7182 × 10−2 0.3242

S30-1

5 × 5 0.0053 × 10−2 0.1291

0.99722.5 × 2.5 0.0128 × 10−2 0.2036

1.25 × 1.25 0.0215 × 10−2 0.5788

S30-2

5 × 5 0.0378 × 10−2 0.7867

0.95952.5 × 2.5 0.0532 × 10−2 1.0190

1.25 × 1.25 0.0712 × 10−2 1.6172

S30-3

5 × 5 0.1757 × 10−2 1.0112

0.99732.5 × 2.5 0.2982 × 10−2 1.6223

1.25 × 1.25 0.4159 × 10−2 2.3254

Figure 7. Surface dispersion index curves obtained from the image processing and the weighing methods

Table 4. The parameters of thermally bonded points obtained from the image processing method

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

Bonding average area (mm2) 0.3023 0.2424 0.2190 0.3642 0.3403 0.1475

 Bonding dispersion index 1.2456 3.0454 7.7126 1.2626 2.1874 4.7308

 Bonding percentage (%) 13.0093 10.9609 8.8300 18.4674 15.9942 7.0715
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Figure 8. (a) 8-bit grayscale image, (b) to (i) are 1- to 8-bit planes, 1-bit plane corresponding to the least important bit

Figure 9. The sequence of operations to extract the bonding points: (a) the grayscale image, (b) the 6th bit plane, (c) the 6th bit plane negative, 
(d) after applying morphological operations, (e) after applying median filter, and (f) outline bonding points in the original image
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in this regard. Indeed, a correlation coefficient of more than 
0.95 is observed for all the samples between fiber weight and 
image processing output (surface uniformity). The results 
indicate that a scanner can be used to measure the surface 
uniformity for polypropylene non-wovens at web weights 
ranging from 15 to 30 g/m2. In the image processing of the 
bonding points uniformity, it was observed that a sample with 
a higher surface uniformity has a lower bonding dispersion 
index, a higher bonding average area, and a higher bonded 
zones percentage. The maximum stress, the strain at the 
maximum stress, and the initial modulus are decreased by a 
decrease in the degree of surface uniformity. In the stress and 
strain measurements, it was found that for a sample with more 
weight, the CV% value is lower, and a sample with a medium 
surface uniformity has a higher CV% value than a sample 
with the highest surface uniformity. However, a sample with 
the lowest surface uniformity has a lower CV% value than a 
sample with a medium uniformity.

A sample that presents poor results and proves to have the 
worst structural and bonding properties in the image processing 
method will have the worst tensile properties. This indicates 

the bonding dispersion index are increased, but the percentage 
of bonding, the maximum stress, and the strain at the maximum 
stress point are decreased in pace with a decrease in the 
degree of the surface uniformity. A sample that presents poor 
results and the worst structural and bonding properties in the 
image processing method will have the worst tensile properties. 
This suggests that with the less surface uniformity or the worse 
bonding structure, the tensile properties are lower.

4. Conclusion

The key issue to improved tensile properties is the production 
of a web with a high bonded uniformity, which results from 
the surface uniformity. In the absence of an economical 
online method for measuring the uniformity of non-wovens, 
this article has aimed at whether a digital image processing 
system can be used to measure surface and bonding 
uniformity and estimate tensile properties. We have studied 
the association between web weight and image processing 
output using the quadrant method (i.e., a method to evaluate 
surface uniformity). There is a good linear correlation found 

 
Figure 10. The changing trends of the parameters of thermally bonded points (the bonding average area, the bonding dispersion index, and the 
bonding percentage)

Table 5. One-way analysis of variance results for weight and image processing

F (15 g/m2) F (30 g/m2)

Weight dispersion index (5 × 5 cm2) 7,763.83 9,586.584

Weight dispersion index (2.5 × 2.5 cm2) 7,016.295 9,239.658

Weight dispersion index (1.25 × 1.25 cm2) 9,987.256 10,259.658

Image processing dispersion index (5 × 5 cm2) 65.656 1,107.697

Image processing dispersion index (2.5 × 2.5 cm2) 55.793 396.994

Image processing dispersion index (1.25 × 1.25 cm2) 283.575 1,080.663

Bonding dispersion index 187.660 264.091

Bonding percent 71.188 783.068
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Table 6. The maximum stress, the strain at the maximum stress, and the initial modulus results

S15-1 S15-2 S15-3 S30-1 S30-2 S30-3

Maximum stress (MPa) 
Mean 2.2066 1.3711 1.0748 2.3421 1.3529 0.8773

CV% 4.840 8.919 8.61 5.667 12.2201 12.249

Strain at maximum stress (%) 
Mean 36.0281 35.9719 13.639 154.809 48.196 6.649

CV% 20.894 36.319 22.112 15.458 29.169 17.319

Initial modulus 0.3952 0.3368 0.2967 0.4886 0.3158 0.2421

Table 7. The one-way analysis of variance results for tensile properties

F (15 g/m2) F (30 g/m2)

Maximum stress (MPa) 31.701 227.088

Strain at maximum stress (%) 361.329 296.431

Figure 11. The stress–strain curves of the polypropylene spunbonded non-woven: (a), (b), and (c) samples S15-1, S15-2, and S15-3 (blue) and 
(d), (e), and (f) samples S30-1, S30-2, and S30-3 (green), respectively.
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[9]	 R. Veerabadran, H. Davis, S. Batra, and A. Bullerwell, 
“Devices for On-Line Assessment of Nonwovens’ Basis 
Weights and Structures,” Textile research journal, vol. 66, 
pp. 257-264, 1996.

[10]	P. A. Boeckerman, “Meeting the special requirements 
for on-line basis weight measurement of lightweight 
nonwoven fabrics,” Tappi journal, vol. 75, pp. 166-172, 
1992.

[11]	H.-C. Lien and C.-H. Liu, “A method of inspecting 
non-woven basis weight using the exponential law of 
absorption and image processing,” Textile research 
journal, vol. 76, pp. 547-558, 2006.

[12]	A. Kallmes, J. Scharcanski, and C. Dodson, “UNIFORMITY 
& ANISOTROPY IN NONWOVEN FIBROUS 
MATERIALS,” in TAPPI NONWOVENS CONFERENCE, 
2000, pp. 47.0-47.0.

[13]	A. Cherkassky, “Analysis and simulation of nonwoven 
irregularity and nonhomogeneity,” Textile research 
journal, vol. 68, pp. 242-253, 1998.

[14]	J.-O. Johansson, “Measuring homogeneity of planar 
point-patterns by using kurtosis,” Pattern Recognition 
Letters, vol. 21, pp. 1149-1156, 2000.

[15]	J. Liu, B. Zuo, X. Zeng, P. Vroman, and B. Rabenasolo, 
“Nonwoven uniformity identification using wavelet texture 
analysis and LVQ neural network,” Expert Systems with 
Applications, vol. 37, pp. 2241-2246, 2010.

[16]	J. Liu, B. Zuo, X. Zeng, P. Vroman, and B. Rabenasolo, 
“Wavelet energy signatures and robust Bayesian neural 
network for visual quality recognition of nonwovens,” 
Expert Systems with Applications, vol. 38, pp. 8497-8508, 
2011.

[17]	J. Liu, B. Zuo, X. Zeng, P. Vroman, and B. Rabenasolo, 
“Visual quality recognition of nonwovens using generalized 
Gaussian density model and robust Bayesian neural 
network,” Neurocomputing, vol. 74, pp. 2813-2823, 2011.

[18]	B. Pourdeyhimi and L. Kohel, “Area-based strategy for 
determining web uniformity,” Textile research journal, vol. 
72, pp. 1065-1072, 2002.

that the less surface uniformity or the worse bonding structure 
has the lower tensile properties. This is a significant point to 
consider when adjusting a technique for an online application. 
By changing the product, the lack of uniformity, if any, is 
recognized and corrections are made on the production line 
quickly. This is how large production of shoddy products will 
be prevented. Applying the image processing method to online 
quality control is very useful and effective for factories that like 
to save time and money on quality control.
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