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Abstract 
 

This paper deals with a specific method of examining the state of equilibrium of a flat 
textile structure. This kind of structure is modelled as an inextensible elastica loaded with 
its dead weight and axial force. The elastica represents, as an example, a longitudinal 
section of a fabric. It is assumed that the elastica rests on a flat, immovable base. We 
considered only those forms of deformed elastica where it’s the two ends were supported 
by pivot bearings, and the tangent at those points lay on the immovable supporting plane. 
In the analysis, the shape of the deflection curve was determined for a given axial force, 
and it was examined whether a given position is stable or unstable. The analysis was 
carried out on the basis of the energetic method, by examining the potential energy of the 
system. The investigations can be used for simulations of fabric buckling, folding and 
other applications of textile mechanics. 
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1. Assumptions of model and initial equations 
 

We first consider a flat fabric resting on a fixed, immovable base (figure 1). Under the action of 
compressive forces, folds arise on its surface, which remain there due to the occurrence of friction 
forces. 

 
 

Figure 1. An example of fabric deformation in the form of a fold 
 
Depending on the friction force quantity, those folds will remain or disappear after the action of 
deforming forces. In order to enable a thorough examination of the deformed fabric’s stability, a 
substitute model was assumed which was limited to its deformed shape, i.e. to the fold. To generalise 
our further considerations, the term ‘elastica’ in place of ‘fabric’ is introduced hereafter. 
The heavy elastica is loaded with the axial force P and continuous load q in the coordinate system, as 
in Figure 2. The elastica rests on a flat, fixed base and is supported on both ends by pivot bearings. It 
is inextensible, so it cannot change its length l under the influence of the loads acting on it. 
However, it is subject to Hooke's law while being bent, and the known relation for the bending moment 
M is applicable to it: 

 ,1
ρ

EIM =  (1) 

where ρ stands for the radius of curvature, and EI means the bending rigidity. 
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Figure 2. The load scheme of elastica in the coordinate system 

 
No simplifications are applied to the curvature ρ1 , as is done with the theory of bending beams, 
because large deformations are involved here. 
In this case, the existence of the rigid base causes the limitation of the y coordinate. It must be greater 
or equal to zero for each value of the arc coordinate s, which is measured along the deflection curve. 
The boundary conditions for this load scheme are the following: 
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The zero M moment at the points of support A and B results from the fact that apart from the fold, the 
elastica rests flat on the base and its curvature ρ1  amounts to zero. It also results from that fact that 
the tangent at the points of support must be horizontal. Thus, we obtain additional boundary 
conditions, namely: 

 .0,0
0 lss ds
dy

ds
dy

==
==  (3) 

Let us consider the infinitesimal elastica section presented in Figure 3. 
As has already been mentioned, the elastica is inextensible, thus .222 dsdydx =+  
Therefore we obtain the following geometrical condition: 

 .1<dsdy  (4) 

 
Figure 3. The infinitesimal section of elastica 

 
Now let us write the elementary equations of equilibrium for Figure 3’s section: 

 
.0

,0
,0

=+−
=−−

=−

dyPdxTdM
dsqdT

dP
 (5) 
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Based on the above equations of equilibrium, we obtain the principle of virtual work on the virtual 
displacements δx, δy, δϕ. To do this, we multiply the equations (5) by the appropriate virtual 
displacements. Then, by adding the sides and integrating within the limits from 0 to l , we obtain 

 ,0=+−+−−− δϕδϕδϕδδδ dyPdxTdMydsqydTxdP  (6) 

 .0
0 0 0 0 00
∫ ∫ ∫ ∫ ∫∫ =+−+−−−
l l l l ll

ds
ds
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ds
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ds
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dTdsx

ds
dP

δϕδδϕδϕδδ  (7) 

After integrating by parts we can write the following: 
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 (8) 

Considering that 

 ,1,sin,cos
ds
d

ds
dy

ds
dx ϕ

ρ
ϕϕ ===  

and taking the boundary conditions and the relationship (1), the formula (8) after reduction takes the 
form of 
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Thus, in the end: 
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The obtained equation (9) represents the principle of virtual work, which stipulates that in the state of 
equilibrium, the sum of work of all actual forces (both external and internal) acting on the system for 
any virtual displacements is equal to zero. 
The functional occurring in the square brackets in formula (10) is the total potential energy of the 
system (potential of external and internal forces). 
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 (11) 

Equation (10) can be thus written in the form of 

 .0][ =yJδ  (12) 

This is the necessary condition for the existence in extremum of the functional J[y]. 
If the equilibrium is stable (stability), then the potential energy reaches a minimum in the balance 
point. In the case of maximum potential energy, however, we are dealing with an unstable state of 
equilibrium (labile equilibrium) [1], [2]. 
 
2. Deflection curve 
 

As is already known, the deflection curve of the elastica in the state of equilibrium should present 
the functional extremum (11), respectively the minimum for stable equilibrium and the maximum for 
labile equilibrium. In order to determine the functional extremum, let us take for granted the equation 
of the deflection curve, which fulfils the given boundary conditions. Let the deflection curve be 
described by the formula 



AUTEX Research Journal, Vol. 6, No. 4, December 2006 © AUTEX 

http://www.autexrj.org/No4-2006/0201.pdf 207 

 ,3sinsin 





+






=

l
sB

l
sAy ππ

 (13) 

where A and B are coefficients which are unknown for the time being. 
 
It can be readily noted that function (13) fulfils the boundary conditions (2). 
As regards the additional boundary conditions (3) concerning the derivative dsdy , we obtain a 
relationship between the A and B coefficients from them in the following form: 

 .
3
1 AB −=  

Eventually, after transformations, the deflection curve is defined by the following equation: 

 .sin
3
4 3 






=
l
sAy π

 (14) 

The range of admissible values of parameter A will be presented in the next point. 
 
3. Admissible values for the shape parameter 
 

We have obtained the deflection curve defined by the equation (14). The shape parameter A 
occurring in the equation will hereafter be presented in the dimensionless form lAa = , related to the 
length l. This parameter cannot take the full range of values. Below there is a precise definition of the 
interval of admissible values of a. 
In the model assumptions, it was stated that the existence of a fixed base in the system imposes the 
condition 

 .0≥y  

Thus 

 .0sin
3
4 3 ≥





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
l
sA π

 (15) 

Since we are only discussing the interval from s=0 to s=l, then from the function curve ( )lsπ3sin  
within this interval, it follows that for condition (15) to be fulfilled, it must be A≥0, that is: 

 .0≥a  (16) 

Apart from that, condition (4) was given in the model assumptions, due to the inextensibility of the 
elastica, which concerns the derivative dsdy . Applying it now, and substituting lsπξ =  , we obtain 
for πξ ≤≤0  

 ( ) ( ) .1cossin4 2 <ξξπa  (17) 

To find the value a from that, we first determine the maximum value of the function within the interval 
πξ ≤≤0 : 

 ( ) ( ) ,cossin2 ξξ=f  (18) 
because to satisfy the inequality (17), it is sufficient to substitute function (18) with its maximum value. 
 
On examining function (18), it can be demonstrated that in the given interval it has only one maximum, 
amounting to 

 ( ) .332max =f  

When the maximum value is inserted into the inequality (17), the following is obtained: 

 ( ) .1338 <πa  
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Thus, in effect, 

 ( ) .2067.0833 ≅< πa  (19) 

Eventually, we have the following interval of admissible values of the shape parameter: 

 ( ) .8330 gr π=<≤ aa  (20) 

 
4. Potential energy of the system 
 
Let us consider for the functional (11) the deflection function described by the relation (14). After 
substituting this function in equation (11), J[y] becomes a function of a single variable A. 

 [ ] ( ).AVyJ =  

To find the value of A coefficient, the Ritz method should be applied [3]. This method uses the 
necessary condition of existence of the V(A) function extremum, that is, the following equation: 

 .0=dAdV  (21) 

The formula (11) must first be transformed and the individual integrals calculated. 
For the first addend, it follows that 
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In the second addend of the formula (11) there is the xB, value which is the x coordinate of the 
movable end of the elastica. 
This is calculated in the following way. Using the formula 
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we obtain 
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Since this integral cannot be calculated precisely, the approximate square root formula must be used 
here, leading to the result 
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After transformation, we obtain 
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2
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B l
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Thus, definitely 

 .
2
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B l
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−=  (24) 

Before calculating the third addend, it is necessary to represent the curvature dsdϕ  in a somewhat 
different form. It is known that 

 ,sinϕ=
ds
dy
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Thus 
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For the third addend, it follows that 

 .
2
1

0

2

sd
ds
dEI

l

∫ 





 ϕ

 

Now the integral has to be calculated. 
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This type of integrals is discussed in publications [4] and [2], among others. As it is impossible to 
represent the result of the above integration in the form of elementary functions, an approximate 
solution should be applied. To do this, the numerator and denominator of the integral are multiplied by 

( )21 dsdy+ . 
 
Then, the product is 
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Since, as was shown at the beginning, 1<dsdy , then ( )4dsdy  is much less than 1. It can be thus 

assumed that ( ) 11 4 ≅− dsdy , and thus it follows that: 
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A better approximation can be obtained by subsequent multiplication of the numerator and 
denominator of the formula (26) by ( )41 dsdy+  and so on. Applying in (27) the formulae for the first 
and second derivatives of the y function, after integration we obtain:. 
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Eventually, the formula for the total potential energy of the system takes the form of 
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The potential energy is also the function of the single variable A, which can be called a variable 
parameter of shape, and two constants connected with the external load, namely P and q. 
 
5. Analysis of states of equilibrium 
 
To begin analysis of the states of equilibrium, the above-mentioned condition (21) should be applied, 
on basis of which the value of the shape parameter A can be determined. This is the parameter on 
which the kind of equilibrium depends with a given load defined by P and q. Thus, we have 
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From equation (30), the following relationship between the force P and parameter A is calculated: 
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To make further discussion more general, let us represent the energy V, force P and continuous load q 
in the dimensionless form, relating them to Euler’s critical force 22

cr lEIP π= . 
Let us make the following transformations 
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Thus, we obtain 
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Since relation (34) was obtained by use of the formula (21) expressing the necessary condition for 
existence of the function extremum, the points lying on the p curves thus correspond to the extremum 
of the function of potential energy. The location of the minimum and maximum of the energy must still 
be defined. 
 
Here, the second derivative of potential energy is used as equated to zero: 
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Therefore 
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 (35) 

The curve g described by equation (35) is a diagram of the compressing force p represented as a 
function of the parameter a, but corresponding only to the points for which the second derivative 

22 davd  (or in another way 22 dAVd ) is equal to zero. Figure 4 presents the dependence of the 
force p on the dimensionless parameter a for several values w, and the drawn curve g. This is a 
boundary curve. Right of it, on each of the p curves, with w>0 there are points for which 022 >davd , 
which corresponds to the minimum of potential energy v, that is, to the state of stable equilibrium. 
Moreover, it should be noted that the curve g crosses the functions p in their minimumminimum points. 
The boundary value of the shape parameter gra  is also marked in the diagram. 
Now let us discuss in more detail the states of equilibrium for two possible cases of continuous load w 
(w=0 and w>0). It should be remembered that everything is considered with the condition A>0 or, 
which follows, a>0. 
 
Case I (w=0). 
Here we consider Figure 4 and the formulae of potential energy v and its derivatives. Substituting w=0 
in the formula (33), we have 
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Figure 4. A diagram of the compressing force p corresponding 

 to the extremum of potential energy 
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It may be noted that the minimum value of the force p amounts to pk0=5, which occurs with a=0. 
 
- If p<pk0, then the function v has the only extremum for a=0, and it is the minimum ( 0=dadv , 

022 >davd  for a=0). 
- If p=pk0, then the function v also has its minimum for a=0, but it is flatter at this point (for a=0, all 

differential coefficients of the function v with respect to a up to the third degree inclusive are equal 
to zero, while 044 >davd ). 

- When p>pk0, then the derivative dadv  when a>0 has already two zero points: 
one for a=0, the other for a=am defined by the formula 

 ( ) ( ) .13521m −= pa π  (36) 

It can be checked that for a=0 the derivative 022 <davd , so in this point there is the maximum of 

potential energy v. On the other hand, for a=am the derivative 022 >davd , so there is the minimum 
of potential energy v. 
To conclude, for p≤pk0 only the rectilinear form of equilibrium exists, that is, the stable position is only 
for a=0. 
However if p>pk0, there are two positions of equilibrium. The first one, for a=0, is unstable, whereas the 
other, for am defined by formula (36) is the position of stable equilibrium. 
 
Case II (w>0)  
As above, here we consider the formulae of potential energy v and its derivatives. 
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Based on Figure 4, it can be seen that the minimum value of the force p, which for further 
consideration will be marked as pk, is greater than it was in the previous situation for w=0 (pk>pk0=5). 
It can be also seen that the minimum occurs with a>0. Let this point be designated as ak, as in 
Figure 5. To determine the values pk and ak the minimum of the function p given by the formula (34) 
must be found. After appropriate transformation, we obtain the following results: 

 ,)3(4165 3 42
k πwp +=  (37) 

 .)117(163 5
k πwa =  (38) 

 
Figure 5. An example of a diagram of the compressing force p for w=3 

and potential energy v for w=3 and p=8 
 
- If p<pk, then the function v in the interval for a≥0 has no extremum. At the point a=0 and for each 
a>0 the derivative 0>dadv , so the function v is increasing while the value a increases. From the 
function analysis, it follows that for a=0 the potential energy accepts the least value in the present 
interval. 

- If p=pk, then for 0<a<ak the derivative 0>dadv , so the function v is increasing. At the point a=ak 
derivatives of the function v up to the second degree inclusive with respect to a, are equal to zero, 
while 033 >davd ; this means that at this point there is the point of inflexion. For a>ak again 

0>dadv , so in this interval the function v increases again. 
- The situation of p>pk is illustrated as an example in Figure 5, together with the diagrams of the 

force p for w=3 and of the potential energy v, in the case when w=3 and p=8>pk (for our example 
pk=7.3399 and ak=0.1103). 
In point a=0, the derivative 0>dadv . Based on Figure 5, it can be clearly seen that while 
increasing the value a from point a=0, the function v increases up to the local maximum which is 
attained at a=ans. Then the function decreases until the local minimum occurring at a=as, at which 
point it increases again. 

 
To conclude, if p<pk, then there is only a rectilinear form of stable equilibrium (state of stability for a=0). 
If p=pk, then the stable equilibrium also occurs for the point a=0, while at the point a=ak there is the 
critical state at which the neutral equilibrium occurs (the deflection point in the diagram of energy v). 
Eventually, for p>pk there are three forms of equilibrium. 
1. The rectilinear form for a=0 corresponds with the state of stable equilibrium. 
2. The curvilinear form corresponding to the left part of the curve (for a=ans) is unstable (local 

maximum of energy v). 
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3. The curvilinear form corresponding to the right part of the curve (for a=as) is stable (local minimum 
of energy v). 

Let us now calculate the points as and ans. 
Considering that a≥0, let us multiply both sides of the equation (34) by a. We then obtain the following: 

 ( ) .0
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Equation (39) is a cubic equation with respect to a. 
 
The roots of a have to be calculated with the given p and w. According to the earlier analysis, for p>pk 
and under assumption that a≥0 there should be two roots, respectively of as and ans, while ans<as. 
To solve the equation (39) Cardan's formulae will be applied. 
Equation (39) can be transformed to the shape of 

 ( ) ( ) ( ) ( ) .01173213210 523 =+−+ ππ wpaa  (40) 

The roots of equation (40) depend on the value of the expression 

 ( ) ( )[ ] ( ) ( ) ( )[ ] .132102711173241
3225 ππ pwR −+=  (41) 

If p>pk, then R<0. It means that equation (40) has three real roots. They are 
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The angle λ occurring in formula (42) is calculated from the formula 
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From the analysis of the function ( )λcos  it follows that for p=pk ( ) 1cos −=λ , that is λ=π, while for 
∞→p , ( ) 0cos →λ , so 2πλ → . The root of a2 of equation (42) for k=1 is always negative, and so 

must be rejected. There are two roots left, of which a1 (for k=0) is greater than a3 (for k=2). 
Eventually we obtain the following results: 
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where the angle λ is defined by the formula (43). 
For example, from Figure 5 we obtain for w=3 and p=8 the values as=0.1781, ans=0.0626. 
 
6. Discussion of the range of values of axial force and continuous load 
 
In point 3 it was stated that a cannot take any optional value due to the specific length of the elastica. 
Admissible values of a belong to the interval 0≤ a ≤ gra  where gra = ( )π833 ≅ 0.2067. 
On analysing Figure 4, we see that if we increase the value w, then the stable curvilinear solutions as 
located right of the curve g will be greater than gra for the value w above a certain amount. 
Since we always try to remain within the admissible limits of the value a, then let us consider what the 
maximum value w should be for stable curvilinear solutions as while still remaining within the interval. 
Let the value ak defined by the equation (38) be less than gra . By virtue of the above,  
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 ( ) ( ) ,833117163 5 ππ <w  
thus 
 .819239477 max

2 ww =< π  (46) 

The boundary value for w amounts approximately to 7761.19max ≅w . 
Similarly, when looking at Figure 5 it can be seen that with the fixed w, increasing the force p above a 
certain value results in the value as being greater than the admissible one. 
 
Since the value as depends not only on the value p, but also on the value λ (dependent in turn on w), 
thus for various w the maximum values of the axial force pmax will be different, and above them there 
are no more stable curvilinear solutions within the discussed interval of admissible values of a. 
 
When w=0, it is sufficient for the value am as defined by the formula (36) to be less than gra . 
Thus 

 
( ) .

8
33

13
521

ππ
<

−p
 

Therefore 

 .
128
3515 0

maxpp =+<  (47) 

The approximate value of the maximum axial force in case of w=0 amounts to 7422.70
max ≅p . 

For the second case of w>0, the values of pmax for subsequent maxww ≤  are calculated numerically. 
To this end, with a fixed w, the value as was calculated from formula (44) for subsequent forces p 
increasing by even steps, beginning from the value pk, until the moment that the value gra is 
exceeded. 
Then, the calculation was repeated for the next value of w. From the values obtained, a diagram of 
maximum axial force pmax as a function of the continuous load w was drawn up. 
 
Based on formula (37), a diagram of the critical force pk as a function of continuous load w was also 
made. Both the diagrams are presented in Figure 6. 
 

 
 

Figure 6. A diagram of the maximum force pmax and critical force pk 
represented as function of the continuous load w 
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7. Conclusions 
 
 In conclusion, let us sum up the problem of the stability of the discussed elastica when w>0. 
As follows from the above discussion, in this case the rectilinear form of equilibrium will always be 
stable, while we consider infinitesimal deviations from the point of balance. It can be seen clearly that 
with the increasing value p, the local maximum of energy occurs at a value approaching closer and 
closer to a=0, but not reaching it. This only proves the fact that for large values of p, it is easier to 
unbalance the system when it is in a stable, rectilinear state of equilibrium, causing some finite 
displacement to it. In order, however, for the system to assume a new, curvilinear form of stable 
equilibrium, it is necessary to pass the maximum of potential energy corresponding to the unstable 
form of equilibrium (Figure 5). The greater the force p is, the less displacement is needed for the 
system to assume a new form of equilibrium. 
The force pk as defined by formula (37) can be called the critical force, above which (except for the 
rectilinear form of stability) there is also a curvilinear form of stable equilibrium of the system. 
Due to the assumption of inextensibility of the elastica, there arose the limitation of the value of the 
shape parameter a, which has to be less than gra . Thus, in turn, some limitations for the value w and 
axial force p followed in the determination of the curvilinear stable solutions as within the limits of 
admissible values a, which are illustrated in Figure 6. 
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