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Abstract: With several new large-scale surveys on the horizon, including LSST, TESS, ZTF, and Evryscope, faster and
more accurate analysis methods will be required to adequately process the enormous amount of data produced. Deep
learning, used in industry for years now, allows for advanced feature detection in minimally prepared datasets at very
high speeds; however, despite the advantages of thismethod, its application to astrophysics has not yet been extensively
explored. This dearth may be due to a lack of training data available to researchers. Here we generate synthetic data
loosely mimicking the properties of acoustic mode pulsating stars and we show that two separate paradigms of deep
learning – the Artificial Neural Network And the Convolutional Neural Network – can both be used to classify this
synthetic data effectively. And that additionally this classification can be performed at relatively high levels of accuracy
with minimal time spent adjusting network hyperparameters.
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1 Introduction
The amount of data products produced by researchers has
ballooned over the last 20 years, and with surveys such
as The Large Synoptic Survey Telescope (LSST) expected
to produce terabytes of data per night (LSST Science Col-
laboration et al. 2009) it is clear that fast data analysis
methods are a necessity. However, evenwithout these next
generation surveys there is already more data extant than
can be effectively dealt with via themost common analysis
procedures. We can see this problem highlighted in a re-
cently identified contact binary showing an orbital period
decay so extreme that in 2022 the system will experience a
nova (Molnar et al. 2017). Despite this system manifesting
a Ṗ visible within the time domain, a case study on this
finding was only recently published. The time delay be-
tween observation and findings is often due to extensive
amounts of data produced, and this delay highlights the
data problem facing the astronomy community: as more
andmoredata becomeavailable, interesting systems, even
those with high signal–to–noise ratios (S/N), will often be
buried below mounds of mundane targets.
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However,methodsdo exist tomakedata analysismore
efficient. Deep learning – the general term for a set of ma-
chine learning algorithms loosely inspired by the structure
of biological brains – is one such a method; it allows for
feature detection inminimally prepared datasets. This last
point, allowingminimally prepared data to be used, is key,
as it opens the door for nearly raw data to be used in analy-
sis, drastically reducing the time between when an obser-
vation is taken, andwhenadiscovery ismade.DeepLearn-
ing thus significantly reduces the search costs associated
with astronomical discovery.

Investigations into the applications of deep learn-
ing to astrophysics are still in their infancy. Previ-
ous work includes analysis of aLIGO data (George and
Huerta 2017), galactic morphology classification (Huertas-
Company et al. 2015), and asteroseismological classifica-
tion of red giant branch stars (Hon et al. 2017), among oth-
ers. Here we present preliminary results of our use of deep
learning to analyze synthetic photometry of hot subdwarf
B (sdB) stars and classify them as rapidly–pulsating sdB
(sdBVr) stars or not observed to vary (NOV) stars. sdB stars
are extreme horizontal branch objects believed to have
formed from red giants that lost their outer H envelopes
while ascending the red giant branch, likely due to inter-
actionswith a nearby companion (Heber 2016). For further
detail on the formation, properties, and pulsations of sdB
stars see Heber (2016).

We investigate the effectiveness of both tra-
ditional feed-forward artificial neural networks
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(ANNs)(Schmidhuber 2015) and feed-forward convolu-
tional neural networks (CNNs)(Schmidhuber 2015) in the
binary classification of sdBVr. Importantly, we only aim to
classify a target as either “pulsating” or “not observed to
vary”. No attempt is made here at feature (such as pulsa-
tion amplitude/frequency) extraction. We use the Python
model Keras (Chollet et al. 2015) with the Tensor-flow
(Abadi et al. 2015) backend to generate, train, and validate
all models presented in this paper.

Neural networks must be trained, and this training re-
quires a large amount of already classified data. We de-
velop a Python module – astroSynth (Boudreaux 2017) –
to produce synthetic light curves whose noise properties
mimic those seen in real data. astroSynth is used to pro-
duce 100,000 light curves.We then use 80 percent of these
to train an ANN and the remaining 20 percent to vali-
date the ANN’s performance. Finally another function of
astroSynths generates 100,000 “virtual targets” – that is
non-continuous light curves, to be analyzed with CNNs.

We find that withminimal tuning of network structure
we can achieve ∼ 90 percent accuracy in classification
down to a S/N of 3.44 using the ANN and ∼ 90 percent
accuracy down to S/N of 1.56 with the CNN. While these
results are promising, and could most likely be improved
upon by tuning the hyperparameters of the network, we
elect not to do this, both because it is beyond the scope of
this paper, and because we anticipate moving away from
ANNs and CNNs in the future due to some fundamental
constraints of feed-forward networks. Instead, we hope
to focus future work on the use of Recurrent Neural net-
works (RNNs) (Schmidhuber 2015) which are better suited
for work with time series data such as we have.

2 Deep Learning
Despite deep learning’s wide-spread adoption in industry,
including heavy use by firms such as Google, Facebook,
Twitter, and Tesla, adoption of these algorithms has thus
far been quite limited in astronomy. In the following sec-
tions, we provide a quick overview of the basic structure
and principles that underlie the two network paradigms
under investigation (ANNs and CNNs).

2.1 Artificial Neural Networks

An evolution of the perceptron (Rosenblatt 1958), the ar-
tificial neural network (ANN) was an early kind of neural
network to gain widespread usage. It arose with the dis-

covery that stackingmultiple layers of perceptrons can cre-
ate a structure that is very efficient at modeling functions.
Due to its stacked, sequential nature, an ANN is referred
to as a feed-forward neural network. Each layer of an ANN
is composed of cells that sum all incident inputs, and ap-
ply some non-linear function to the result of that summa-
tion. These cells are called neurons. Each neuron in a layer
is connected to every neuron in the next layer (Figure 1).
Consequently, these kinds of layers are known as “fully-
connected layers.” Further connections between neurons,
called synapses, should be thought of as weights assign-
ing importance to different features that the network has
extracted. Therefore, each connection can be imagined
as the product of some weight and whatever values pass
along it.

Figure 1. Characteristic Structure of an Artificial Neural Network
(ANN). This network shows an input layer of dimension four, there-
fore the network expects a four vector, one hidden layer, and a
two vector output. Typical production networks will have more and
larger hidden layers. Note that each neuron (the grey circles) in
each layer is connected to each neuron in the next layer.

More formally, a network’s inputs, x = z0, are passed
forward through the network from some layer n to the fol-
lowing layer n + 1 via equation

zn+1 = A(Wn+1zn + bn+1) (1)

where z is the output from each layer, W is a weight ma-
trix, b is a bias vector, and A is a non-linear activation
function. Common activation functions include the logis-
tic function, hyperbolic tangent, and rectified linear units
(ReLU). It is also common to inject dropout layers —which
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essentially throw away the inputs from a certain percent-
age of incident cells in order to limit over–fitting of data —
in-between fully connected layers. The output of the final
layer (ŷ) is used as the output of the network as a whole.

Another method of visualizing an ANN can be seen in
Figure 2. It is important to note that ANNs take an input
vector of a predefined size, and return an output vector of
a predefined size. In the event of a data setwhose elements
are of variable size, an ANNwill either be of limited use, or
stepswill have to be taken to account for the size difference
in data elements.

Figure 2. General mathematical structure of an ANN. Inputs, x, are
passed into the Network at the input neurons. The weight matrix
Wi associated with the input layer I is multiplied by x yielding sj,
with the result of that operation then activated using some function
yielding zj. The same process is repeated to move to layer K. Finally
Wk is multiplied by K, activated with a linear activation function
(often a softmax) and used as the network output.

When a network is first instantiated the weight matri-
ces are randomly set; therefore, for the output to provide
insight into one’s data the weights must be tuned. This
process is called training. Deep learning falls into the cat-
egory of supervised learning (this is as opposed to unsu-
pervised learning algorithms such as K-Means Clustering)
where in order to train a network the expected output val-
ues are required. Training the network begins by compar-
ing the network output to the expected output, and com-
puting the absolute error. A process known as back prop-
agation then allows for that error to be carried back along
the network, determining what portion of the error is due
to each layer as it goes. The weights of the layers are then
slightly adjusted (limited by a user-defined learning rate,
η) in the direction of reduced output error based on how
much each layer contributes to the overall error. Networks
often need to be trained on a large amount of data in order
to produce reliable results. As η is kept low in an attempt to
avoid over-fitting the training-data set, back-propagation
is the slowest part of ANN usage with the actual amount of
time required to train being heavily dependent not only on
the total amount of data but also the complexity of the net-
work structure. Once the network is trained it can be used
for its intended purpose, or retrained if new data becomes
available.

2.2 Convolutional Neural Networks

Heavily inspiredby thebiological structures underlying vi-
sion (Schmidhuber 2015) , convolutional neural networks
(CNN) have proven extremely effective in image classifica-
tion problems and have accordingly been widely adopted
in recent years. CNNs classically take input of two dimen-
sional data (however CNNs in both higher and lower di-
mensional space do exist), then pass data through con-
volution, pooling, and traditional fully connected lay-
ers among others (Figure 3). CNNs, like ANNs, are feed-
forward neural networks, as data always move in one di-
rection through the network.

Figure 3. General Structure of a Convolutional Neural Network show-
ing one convolutional layer (CNN), one pooling layer, a set of fully
connected layers, and an output layer. Production CNNs tradition-
ally have much more complex structures. Note that Pooling layers
will almost always follow convolutional layers. Also note that there
is some mechanism (often referred to as a flattening layer) to con-
vert the 2D output of the pooling layer to the one dimensional input
the fully connected layers expect. This mechanism is not shown
here.

The main layer comprising the CNN is the convolu-
tional layer, which is fundamentally just a set of kernel
convolutions acting as feature detectors – each one aimed
at detecting a specific feature in the data. The weights of
each cell in the kernel can be adjusted during the training
process. Each kernel applies itself across the entire image,
and since each kernel is focused on detecting individual
features, the outputs of these convolutions are known as
feature maps. Due in large part to the shared weights be-
tween the multiple feature maps produced by each convo-
lutional layer, CNNs are very tolerant of translations (rota-
tion, movement, scaling, etc...) in their inputs. CNNs will
often also contain pooling layers, flattening layers, and
fully connected layers. Pooling layers decrease the spatial
dimensionality of an input. The max-pooling layer, for ex-
ample, reduces a layer input of n×n by to n

p ×
n
p by applying

a p×p filter to the input, returningonly themaximumvalue
seen by the filter. A flattening layer takes some n × n input
matrix and outputs a length 2n vector; this vector can then
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be input upon fully connected layers as described in Sec-
tion 2.1.

Despite implementation difference in CNNs, the same
principle of back-propagation is used to adjust theweights
associated with each layer. However, because CNNs are
often working with data in higher dimensions than tra-
ditional ANNs, both forward and back propagation often
take longer. Just as in ANNs however, the actual time is
heavily dependent on the complexity of the network struc-
ture.

For a more in-depth explanation of both ANNs and
CNNs see George and Huerta (2017).

3 Synthetic Data
Due to the amount of pre-tagged data required to effec-
tively train a neural network, it was not possible to rely
on light curves from actual targets. Consequently, we de-
veloped an in-house software suite called astroSynth¹ to
quickly generate large numbers of synthetic light curves
with user-definable parameters, such as pulsation am-
plitudes and frequencies, noise range, cycle time, visit
length, number of visits, average time between visits, and
the magnitudes of synthetic targets.

3.1 astroSynth

astroSynth was developed in Python (3) and it allows
for simple function calls to generate large numbers of
synthetic light curves. Each light curve is generated by
the summation of a set of sine waves and Gaussian
noise. We make use of numpy (Walt et al. 2011) to gen-
erate both the sine waves (numpy.sin) and the Gaussian
noise (numpy.random.normal). While this is quite a naive
method of simulating acoustic mode pulsations, we argue
that despite the naiveté, the data products of astroSynth
can still effectively train a network to classify real data.
The reason is that the final structure of the light curve
generated in our software is very similar to the structure
of an actual light curve. Further, as the main aim of this
work is to show that deep learning can be applied to the
classification of pulsating stars, by showing that data of
a similar structure can be classified we achieve this goal.
In the future when a network aimed at use in actual data-
classification problems is constructed, a more physical
model of pulsations can be introduced into astroSynth if it

1 https://github.com/tboudreaux/astroSynth
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Figure 4. Output from astroSynth.PVS – generated a single light
curve (Bottom). The Lomb-Scargle Periodigram (Top) is accessed via
astroSynth.PVS.get_ft.
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Figure 5. Output from astroSynth.POS – generated a set of light
curves for one target

proves desirable. An example light curve output from as-
troSynth can be seen in Figure 4. astroSynth also has the
ability to generate non-continuous light curves (Figure 5).

Other abilities of astroSynth include: generation of
Lomb-Scargle Periodigrams (LSP) from the light curves it
produces, dynamic memory management of light curve
data – straddling light curves between memory and disk
so orders of magnitude more light curves can be quickly
accessed than if they were all stored in memory – and
batch accessing of both light curves and LSPs, a very use-
ful feature in the training of networks. More information
on the abilities and usage of astroSynth can be found on
its github page – https://www.github.com/tboudreaux/
astroSynth.

https://www.github.com/tboudreaux/astroSynth
https://www.github.com/tboudreaux/astroSynth
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In an attempt to mimic how observations of real
stars are conducted, astroSynth generates light curves by
first generating an ephemeris for a synthetic target. This
ephemeris is defined as the superposition of some number
– from one to the maximum number of desired pulsations
modes–of sinewaves. Each sinewavehasparameters (fre-
quency, amplitude, phase) chosen from a uniform distri-
bution between the user defined maximum and minimum
for that parameter. Poisson noise is then summed into the
ephemeris; the noise function is given a centroid at the
magnitude of each synthetic target, and the standard de-
viation of the noise is chosen out of a uniform distribution
between a user defined maximum and minimum noise
value. Once astroSynth has generated the ephemeris for a
synthetic target, an “observer function” – in an analogy to
an instrument pointing at a star – “looks” at (records data
from) the ephemeris for some time. Light curves returned
from astroSynth are the measurements from the observer
function. Note that currently astroSynth does not support
time evolving pulsation modes.

3.2 Our Synthetic Data

Given that the two network paradigms under investigation
are designed for data in different dimensional spaces – 1D
for ANNs and 2D for CNNs – we elect to generate two sepa-
rate data sets using astroSynth, each data set will be com-
posed of 100,000 light curves. One of these data sets (here-
after d–I) is composed of continuous light curves, that is
light curves without gaps in the observation. The other
data set (d–II) is composed of non-continuos light curves,
that is light curveswhich have large time gaps between ob-
servations (hereafter referred to having “multiple visits”).
Internally to astroSynth light curves for d–I are produced
via the observer function discussed in Section 3.1 taking
data on d–I’s ephemera for their entire length; however, in
the case of d–II the observer function will take data from
the ephemera, pause, take more data, pause, and so on.

The properties of the ephemera used in d–I and d–II
are the same, except for differences in overall length. In or-
der to keep noise properties comparable between d–I and
d–II each observation of the ephemeris must be approxi-
mately the same length; as the goal is to have multiple of
these visits ind–II separatedby large timegaps, theoverall
length of ephemera used in d–II must then necessarily be
longer than those used in d–I. The other ephemeris param-
eters are defined such that fifty percent of synthetic targets
will show properties loosely analogous to those of sdBVr
stars (the pulsators), and the remain will be composed of
only Poisson noise (non-pulsators). For the pulsators fre-

quencies are allowed to range from 833.3µHz to 16670µHz,
amplitudes from 0 to 20 ppt, and phase from 0 to 2π. For
both pulsators and NOV targets the standard deviation of
noise is allowed to range from 1 to 45 ppt.

4 Artificial Neural Networks
Applied

4.1 Synthetic Data

The first network paradigm we investigate is the classi-
cal fully connected feed forward neural network, the ANN.
Intrinsic to many types of Deep Neural Networks (DNNs)
– ANNs included – is the assumption that inputs will be
a constant predefined size, that is, the network will al-
ways expect the same number of input parameters. This
assumption can be problematic when dealing with light
curves, which can vary in length from one observation to
the next. There are a few ways in which this input-size
problem can be handled, for example:

– Binning light curves into a predefined number of
bins.

– Runninga rolling “scanner” of constant size over the
data set, passing its reading and a weighted average
of the previous zone into the network.

– Moving from a time domain to a frequency domain,
and in the process defining the number of frequency
bins.

Moving from a time domain to a frequency domain
(taking the Fourier Transform of the light curve) was de-
termined to be the most effective strategy, as that transi-
tion preserves much of the original information contained
within the light curve, while also exaggerating the fea-
tures that we are most interested in identifying. Addition-
ally it is more easily reproducible by future researchers.
The remaining two methods do warrant further investiga-
tion. Note however that the rolling scanner method is es-
sentially a very simple Recurrent Neural Network, and as
such it would be more productive to investigate the more
mature Long Short Term Memory networks (LSTM), a sub-
class of RNNs, than the version posed in the above list. For
more discussion on Recurrent Neural Networks and their
possible applications to this problem see Section 6.

An ANN is constructed (hereafter Network A) which
expects an input vector with 503 elements. 500 of these
are dedicated to the amplitude array of the LSP — cho-
sen to represent a slight oversampling of the frequency
space — and the remaining 3 are dedicated to the maxi-
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Table 1. Classifications of known sdBVr stars from GALEX data.

Target Visit S/N Classification Confidence
[%]

HS 0815+4243 1 2.76 NOV 78.51
HS 2201+2610 1 6.41 Pulsator 99.99

LAMOST J082517.99+113106.3 1 4.26 Pulsator 97.30
LAMOST J082517.99+113106.3 2 4.14 Pulsator 96.64

GALEX J08069+1527 1 7.37 Pulsator 100.0
EC 14026-2647 1 4.26 Pulsator 98.17
EC 14026-2647 2 4.74 Pulsator 74.17

mum amplitude in LSP, the median value of LSP, and the
frequency of maximum value in LSP. While the network
could learn these parameters itself, we choose to explicitly
include them since it is essentially computationally free
to do so, and they are very telling parameters. Inputs are
then passed through an ReLU activation layer, a 20 per-
cent dropout layer, another ReLU activated hidden layer,
a final 20 percent dropout layer, and a 2-element softmax
activated fully connected layer, read as the network out-
put. Both the standard Keras adam optimizer and categor-
ical_crossentropy loss function were used.

Network A is trained using 80 percent of d-I, and vali-
dated on the remaining 20 percent. The predictions of the
network match to ∼ 95 percent the true classifications
over the entire parameter space (Figure 6).

To better understand how the network might perform
on real data, we need to understand where and to what
extent Network A falters in classification. Figure 6, while
providing a quick method of judging that the network is
not outright failing, does a poor job of relaying any quanti-
tative information about how the network performs at dif-
ferent S/N ratios. Instead we bin points together which are
±0.005 sigma of each other, and then calculate the percent
accuracy of the predicted classes against the true class for
each bin. We see the results of this in Figure 7.

The observed decrease in accuracy at∼ 3.0σ in Figure
7 is consistent with expectations. As one can see in Figure
6 it is at ∼ 3 − 3.5σ where the pure noise targets overlap
with the pulsators. Using the standard non-linear curve fit-
ting routines build into SciPy (Jones et al. 2001–) we fit a
Logistic function

f (x) = 1
1 + e−k(x−x0)

(2)

to the accuracydata andestimate the steepness ofNetwork
A’s change in accuracy to be k = 6.5±0.2, and the offset to
be x0 = 3.444±0.006. Using the accuracy datawe then es-
timate that Network A can achieve an accuracy at or above
∼ 90 percent when classifying signals whose amplitudes
are at least∼ 3.44σ above the noise level.

4.2 Real Data

As telling as synthetic data might be to the classification
ability of ANNs, network’s abilities to classify real data
sets truly tells one whether or not they warrant further in-
vestigation. Hence, we feed Network A the light curves of
all known sdB stars present in GALEX mission database.
As with synthetic data, LSPs are calculated (with 500 fre-
quency bins each) for every visit of all light curves. The
amplitudes at each bin – along with the maximum ampli-
tude, frequency of the maximum amplitude, and median
value of the LSP – are passed to Network A. Given the ma-
jority of targets in the catalogue have neither NOV nor pul-
sator classifications associatedwith themwe are unable to
produce either a percent success value, or any such, single
number quantifying the overall success of the network. In-
stead, to get a sense of whether Network A can classify tar-
gets we use the five identified pulsators from Boudreaux
et al. (2017), we investigate the classification and percent
confidence of those classifications in Table 1.

Of the five known sdBVr stars, four are successfully
identified by Network A, with the remaining target – HS
0815+4243 – being incorrectly classed as NOV; however,
this is perhaps unsurprising givenHS 0815+4243’s low S/N
–well below the3.44σ linediscussed inSection4.1 (Figure
7). From thiswe cangleam thatNetworkA, and transitively
ANNs in general, can be trained on synthetic data pro-
ducedwith astroSynth to identify rapidly pulsating targets
in real data, so long as the signals present in the real data
are above ∼ 3.5σ. However, we have no way of determin-
ing the false-positive identification rate of NetworkA given
the lack of firm classifications for the catalogue. Nonethe-
less, GALEX’s light curves are generally very noisy, which
will likely lead to a high false positive rate.
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Figure 6. Performance of an ANN visualized in a maximum peak in LSP vs median value in LSP parameter space. (Top) Predicted classifica-
tion of targets, (Bottom) true classification of targets. The targets which are (or are thought to be) noise are in white, and pulsators are in
black.

5 Convolutional Neural Networks
Applied

Given the success we found using ANNs with d-I, we
wanted to make our data more physical. As discussed in
Section 3 to accomplish this we modeled the multiple vis-
its that researchers generally have on an object. d-II has
non-continuous light curves for each target, which can
have visits separated by large amounts of time. As such
we elected to take the LSP of each visit individually, as op-
posed to the LSP of the entire light curve. These LSPs are

taken through time, so by stacking them into a 2D array
where the value at each index is amplitude, setting the ver-
tical axis as time, and the horizontal as frequency we can
generate a “sliding FT” (Figure 8).

Sliding FTs are already in the form of an image; there-
fore, it makes sense to use CNNs for analysis. Before we
pass the sliding FTs into a network we apply some basic
transformations to it which will allow the CNN to learn its
features more easily (note that when performing any anal-
ysis using aCNN, the same transformations shouldusually
be applied). First we scale all values so that they fall be-
tween 0 and 1, inclusive. Then all sliding FTs are reshaped
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Figure 8. sliding FT showing 3 modes of pulsation. Note that pulsa-
tion amplitudes have been exaggerated in this figure to highlight
their existence.

into a square. Reshaping is achieved by stretching each in-
dividual LSP over multiple rows until the total number of
rows is equal to the number of frequency bins, which we
fix at 300 – a slight undersampling of the frequency space
which was made to decrease runtime, as the complexity
of Network B scales like the square of the number of fre-
quency bins used. Stretching is performed using a combi-
nation of two methods: one, take the desired height of the
image and divide that by the number of visits. Floor the re-
sulting value, then duplicate each visits’s LSP by the result

of that floor operation. Two, scipy.misc’s resize function,
this is applied only after the previously described stretch-
ing operation and handles cases where the desired verti-
cal dimension cannot be achieved with an integer multi-
ple of the number of visits. Very little interpolation should
have to be done, however when and where it is required
the image resize function will use cubic spline interpola-
tion. Here we initially ran into the issue that scipy’s imre-
size function also rescales all values in the 2D array being
resized to between 0 and 255.We undo this rescaling, how-
ever as the rescale operation rounds all of its values and
then casts them into integers undoing the operation intro-
duces more noise, this additional noise however is on av-
erage ∼ 0.05ppt, well below the noise level of any given
target, and as such should not significantly alter any re-
sults.

A network is constructed that expects an input of a
300 x 300 matrix with one channel per data entry (here-
after Network B). A convolutional layer then makes use of
a 3x3 kernel to generate 32 feature maps. These are acti-
vated with a ReLU, passed through a 20 percent dropout
layer, and then amax pooling layer with a 2x2 kernel (thus
reducing the overall size of the image by a factor of 4).
The outputs from the max pooling layer are flattened (i.e.
10x10matrixwould become a length 100 vector), passed to
a fully connected layer, activated with an ReLU, then to a
30 percent dropout layer, and finally a two-element output
layer activated with a softmax function. We use the stan-
dard keras optimizer “adam”, and calculate loss using the
standard keras “categorical_crossentropy” loss function.

d-II consists of 100,000 targets, each with between 1
and 50 visits and with all other properties (pulsation am-
plitude range, frequency range, etc...) the same as in d-I.
Eighty percent of d-II is used as the training dataset, with
the remaining twenty percent used for validation. Figure 9
shows 2,000 targets plotted (due to memory limitations of
the host computer used for this work we are unable to plot
all 20,000 targets used for model validation) in an RMS
scatter vs. mean value in sliding FT parameter space, and
manages to show the separation between pulsators and
non-pulsators quitewell. As expected,NetworkBperforms
well where the pure noise targets and pulsators barely co-
exist. It performsmore poorly in the opposite case. In fact,
upon initial investigation of Figure 9 it seems that Network
B performs comparably to Network A. This model does,
however, appear to over-classify pulsators as there are far
more false pulsators present than there are false noisy tar-
gets.

We use the same method to rigorously quantify Net-
work B’s performance as was used in Section 4.1; that is
we investigate model accuracy vs signal to noise level in
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Figure 9. CNN Classification of 2000 targets’ sliding FT (Top). True Classification of 2000 targets’ sliding FTs (Bottom). RMS is calculated as
1/median value in sliding FT and the max value in all sliding FTs has been normalized to 1.

the sliding FT (Figure 10). Figure 10 allows us to clearly see
the improved performance of network B’s analysis on d–II
over network A’s analysis of d–I. Using a non-linear least
squares fitting routine we again fit a logistic sigmoid func-
tion to the accuracy vs S/N data. This fit has a steepness of
k = 25.7 ± 1.9, and a centroid x0 = 1.563 ± 0.003. Finally
we use the fit to estimate that Network B can achieve 90
percent or greater accuracy when the target signal’s am-
plitude is at or above 1.56σ.

We do not attempt to apply Network B or any CNN to
theGALEXdata set aswedid in Section 4.2 due to the small
number of visits known pulsators have.

6 Discussion
Deep-learning offers an enticing method of data analysis.
Given its promise of complex-feature detection in mini-
mally prepared data, one would imagine that researchers
would flock to use these algorithms. However, because of
the difficulty in finding enough tagged data in the correct
form, the adoption of not only deep learning butmanyma-
chine learning algorithms in astronomy has been curbed.
It is difficult to impossible to find enough tagged data
in the correct form for any given problem to effectively
train these algorithms. We handle this problem by gener-
ating synthetic data, which despite the naiveté of the data-
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Figure 10. Performance of CNN visualized as accuracy in classifica-
tion of pulsating targets of model classification vs signal to noise in
data. Note that due to memory limitations on the host computer of
this work we were unable to plot all 20,000 points used to validate
Network B, here we show the first 2,000 points of those 20,000

generation model, matches the overall structure of real p-
mode pulsator light curves quite well. In the future steps
will be taken to better match the synthetic data generation
model to physical observations. These improvements will
take the formboth of accounting formore complex physics
such as rotational splitting, as well as better matching the
amplitude and frequency distribution of sdBVr stars. This
last point is important. Currently we can only make state-
ments about the effectiveness of our networks down to
certain sigma or S/N levels, not what percentage of ac-
tual sdBVr stars would be successfully identified. When
we match the distribution we will be able to make an ap-
proximation of the latter statement.We also recognize that
by focusing solely on acoustic mode pulsators we have ig-
nored other types of sdB variability. This choice to focus on
sdBVr stars wasmade due to time constraints, and a desire
to limit the scope of initial investigations; however, given
the success we have found here, future work will analyze
both gravity mode pulsations and eclipsing binaries.

When interpreting the results presented here it is im-
portant to note that very little in the way of tuning the
network’s structural elements was done. Such elements,
known as hyperparameters include the number of layers,
how deep each layer is, the learning rate η, etc... They can
have a significant effect on a network’s performance. It is
therefore conceivable, and in fact likely, that with care-
ful tuning the networks presented here could be outper-
formed. The standard method of tuning hyperparameters
is to build an n-dimensional grid of the parameters, try ev-
erypossiblenetwork configuration, anduse themost effec-
tive one. Due to the expensive nature of this tuning, and

the fact that we found good results without dedicating a
large amount of time to it, we electednot to do thiswork. In
the future, when these networks are being aimed towards
an analysis pipeline, hyperparameter tuning should cer-
tainly be carried out.

Working specifically with time-domain data posed a
problembecausewhile the network expected an input vec-
tor of a certain, pre-defined size, the data set could very
well be, and most often would be, a different size. Here
this issue was handled bymoving from a time domain into
a frequency domain – the number of frequency bins being
the size input expected by thenetwork (or in the case of the
CNN the same thing but the dimensionality of the sliding
FT being the dimensionality expected by the network); it
would, in the future, be interesting to investigate the ideal
ratio of frequency bins to frequency resolution. While this
method provided promising results, it would be interest-
ing to see how a network would perform if it learned from
the time-series data directly, as certain features are lost or
hidden when moving in frequency space. For example, in
a target withmultiple visits a networkmight be able to cor-
relate phase information related to the pulsations between
light curves, however bymoving out of time spacewe loose
phase information and that route is now closed off. Analy-
sis routes such as these could open the door for signals at
or below the noise level to be effectively identified.

The other main advantage to staying in time space is
that the processing of the data is significantly reduced.
LSPs calculated here use scipy’s Lomb-Scargle method
which goes like O(n2), and even when using the fast LSP
method built into astropy (which goes like O(n ln n)), gen-
erating the LSPs was by far the most time intensive part of
this work (including training the networks). If this could
be cut out in favor of directly learning from the time series
data then significant amounts of time would be saved. Fi-
nally one must consider the value of being able to analyze
time series data not as well suited to Fourier transforms
as light curves from a pulsating star might be, such as an
eclipsing system, or cataclysmic variables.

Recurrent Neural Networks (RNN) are able to ana-
lyze, and in fact are well suited for analysis of, time-series
data regardless of length variations. A discussion of how
RNNs work is well beyond the scope of this paper. It is
enough to know that recurrent neural networks share state
through time, that is to say, that RNNs have memory, and
can change their decisions based on things they have seen
in the past. Note that this process is separate from train-
ing the network. No weights are being modified; rather, a
value is being continually passed from the output of lay-
ers back into those same layers. What this allows for is
analysis of data of an arbitrary length by sliding a window
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over it, and reading thenetwork output onlywhen thewin-
dow has passed over the entire dataset. RNNs, and specif-
ically a subtype called Long Short TermMemory networks
(LSTM) are being widely used in time series forecasting,
and applications relating to Natural Language Processing
– it should be noted however, that the training process for
an RNN is often significantly more time intensive than for
either a CNN or ANN. In the future, work which aims to
analyze time series data should focus on the use of RNNs
as they are specifically designed to handle such problems
quickly and efficiently.

We must understand that the performance of the net-
works presented here is a function of the data they were
trained with. This may seem obvious; however, the effects
of this run deeper than just being able to identify pulsa-
tions within the range of amplitudes and frequencies used
when generating the data. Rather, the effect of using this
data set is that any patterns that may be present in real
data will be unknown to the network. For example, there
is no weight placed on certain frequencies over others as
the frequency range is uniform. No thought is given to
these patterns because the network has never encountered
them. What we have essentially presented here is a worst-
case scenario. So while in the future it is important that
we emulate any such patterns that may exist it seems un-
likely that they would deteriorate the performance of any
network. Instead they would, at the least, not affect the
performance, and possibly help the network improve. We
also recognize certain limitations of the data model used
here. For example by taking the LSP of each visit individu-
ally, no signal longer than the observational cadence can
be measured. Acoustic mode pulsations are unlikely to be
lost due to this effect (due to their short periods); however,
if rotational splitting had been modeled this issue – with
losing signals –may have beenmore pronounced depend-
ingon theperiodicitywhich lead to the rotational splitting.

Finally we would urge future researchers to not fall
into the trap of overestimating the abilities of deep learn-
ing. Deep learning in so far as it is applied to astrophysical
research is a field in its infancy, and it is both easy and
tempting to imagine a future where a multitude of prob-
lems are solved via deep learning. Maybe this will be the
case; however, like any other method that claims its roots
in some form of scientific rigor, deep learning presents a
single possible model. This model is one that is, at least
currently, generated by a relatively enigmatic black–box,
namely the hidden layers of a network; and consequently,
one should always follow up any statement made by a
deep neural network with an in depth case study, and not
rely solely on the judgment of a set of matrix multiplica-
tions.

7 Conclusion
Using two kinds of deep learning algorithms we show
that sdBVr pulsators whose modes of pulsations are both
visible in the frequency domain to the human eye and
above the noise level can be identified quite well, at an
accuracy of 90 percent down to ∼ 3.6σ with ANNs, and
down to ∼ 1.6σ with CNNs. Both the more traditional
fully connected, or Artificial Neural Networks, and the
image-focused Convolutional Neural Networks, perform
well here, however our CNN (Network B) is able to identify
signals at a lower signal to noise thanourANN (NetworkA)
is able to.We conclude that these are effectivemeans of an-
alyzing medium to high signal to noise pulsators, but that
careful tuning of network hyperparemeters is likely neces-
sary if one wants to extract the full potential of a network.
Finally, future work should focus on the use of Recurrent
Neural Networks to analyze data in a time domain as op-
posed to analyzing in a frequency domain, as we were es-
sentially forced to do here.
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