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Abstract: In this third article in a series, we investigate the
need of spectra denoising for the derivation of stellar para-
meters. We have used two distinct datasets for this work.
The first one contains spectra in the range of 4,450-5,400 A
at a resolution of 42,000, and the second in the range of
8,400-8,800 A at a resolution of 11,500. We constructed two
denoising techniques, an autoencoder, and a principal
component analysis. Using random Gaussian noise added
to synthetic spectra, we have trained a neural network to
derive the stellar parameters Tos, logg, ve sini, &, and [M/H]
of the denoised spectra. We find that, independently of the
denoising technique, the accuracy values of stellar para-
meters do not improve once we denoise the synthetic
spectra. This is true with and without applying data aug-
mentation to the stellar parameters neural network.

Keywords: data analysis, statistical, deep learning, autoen-
coders, techniques: spectroscopic, noise, stars: fundamental
parameters

1 Introduction

Observations in astronomy have always been associated
with noise. Trying to minimize the noise is one of the
needs of astronomers. Several observation techniques
have been suggested to reduce the noise in spectra; how-
ever, once the observation is performed, the only way to
proceed is to apply mathematical algorithms that can
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improve the signal-to-noise ratio (SNR) of the data. These
techniques involve but are not limited to Gaussian smoothing
(Chung 2020), median filtering (Kumar and Sodhi 2020),
wavelet denoising (Halidou et al., 2023), and principal com-
ponent analysis (PCA) (Bacchelli and Papi 2006, Zhang
et al, 2010, Murali et al, 2012, Li 2018). More recently,
and with the advancement of computational power, deep
learning algorithms started to be used for that purpose.
Gheller and Vazza (2022) used a convolutional denoising
autoencoder to decrease the noise of synthetic images of
state-of-the-art radio telescopes like LOFAR (Offringa et al.,
2013), MeerKAT (Jonas 2009), and MWA (Tingay et al., 2013).
The technique was applied to different kinds of corrupted
input images. The autoencoder was able to effectively
denoise images identifying and extracting faint objects at
the limits of the instrumental sensitivity. The authors state
that their autoencoder was capable of removing noise
while preserving the properties of the regions of the
sources with SNR as low as 1. Scourfield et al, (2023)
used a variational autoencoder to denoise optical SDSS
spectra of galaxies (York et al., 2000). Their main goal
was to denoise the spectra while keeping the important
information they can retrieve from low SNR galaxy spectra
and avoiding the use of sample averaging methods
(smoothing or spectral stacking). They tested the method
in the context of large optical spectroscopy surveys by simu-
lating a population of spectra with noise to mimic the ones
at galaxies at a redshift of z = 0.1. Their results showed that
the technique can recover the shape and scatter of the mass-
metallicity relation in this sample.

In this work, we introduce two types of spectral denoising
techniques, autoencoders (Ballard 1987, Baldi 2011) and PCA
(Wold et al, 1987, Makiewicz and Ratajczak 1993). We test the
need of the denoising technique on the derived stellar para-
meters: effective temperature Ty, surface gravity logg, equa-
torial projected rotational velocity v sini, microturbulence
velocity &, and the overall metallicity [M/H]. These stellar
parameters are derived using the neural network introduced
our previous work (Gebran et al, 2022, Gebran et al, 2023,
Gebran 2024). The article is organized as follows: Section 2
introduces the calculation of both datasets and noisy spectra,
Section 3 explains the autoencoder construction used in the
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denoising procedure, and Section 4 describes the denoising
technique using PCA. Section 5 shows the results of the
denoising technique using both procedures and the effect
on the derived stellar parameter accuracy values. Finally,
we conclude in Section 6.

2 Datasets

Two datasets were used in the context of the present study.
The one analyzed in Gebran et al., (2023), and the one of
Gebran (2024). The characteristics of these two datasets are
described in Table 1. The reason for selecting these diverse
datasets is to check the procedure over different wave-
length ranges and different resolving power.

The steps of calculating the datasets are detailed in
Gebran et al, (2022), Gebran et al., (2023), and Gebran
(2024). In summary, line-blanketed model atmospheres
are calculated using ATLAS9 (Kurucz 1992). The models
are plane parallel and in local thermodynamic equilibrium

Table 1: Range of parameters used in the calculation of the synthetic
spectra for the two datasets

Parameter Range for DB1 Range for DB2
Teee 3,600-15,000 K
logg 2.0-5.0 dex
Ve Sini 0-300 km/s
[M/H] -1.5-1.5 dex
& 0-4 km/s
Wavelength A 4,450-5,400 A 8,400-8,800 A
Sampling in A 0.05 A 0.10 A
Resolution (ﬁ) 42,000 1,500
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(LTE). They are in hydrostatic and radiative equilibrium.
We have calculated the models using the opacity distribu-
tion function (ODF) of Castelli and Kurucz (2003). Convection
was included according to Smalley’s (2004) prescriptions.
Convection is included in the atmospheres of stars cooler
than 8,500 K using the mixing length theory. A mixing length
parameter of 0.5 was used for 7,000 K < Ty < 8,500 K,
and 1.25 for T < 7,000 K.

We have used the radiative transfer code SYNSPEC
(Hubeny and Lanz 2017) to calculate the synthetic spectra.
As mentioned previously, two datasets were calculated with
each one containing around 200,000 spectra. In both data-
sets, metal abundances were scaled with respect to the Gre-
vesse and Sauval (1998) solar value from —1.5 dex up to +1.5
dex. The effective temperature, surface gravity, projected
equatorial velocity, and microturbulence velocity were also
modified according to the values displayed in Table 1. The
first dataset consists of spectra having a resolution of 42,000
and a wavelength range between 4,450 and 5,400 A. As
explained in Gebran et al., (2022, 2023), this wavelength range
is sensitive to all stellar parameters in the spectral range
of AFGK stars. The second dataset has spectra computed
between 8,400 and 8,800A at a resolution of 11,500. This
region includes the Gaia radial velocity spectrometer (RVS,
Cropper et al., 2018). The RVS spectra contain lines sensitive
to the stellar parameters and to the chemical abundance of
many metals (Mg, S, Ca, Ti, Cr, Fe, Ni, and Zr, among others)
at different ionization stages. The linelist used in this work is
the one used in Gebran et al.,, (2022) and Gebran et al., (2023).
It contains updated values for the atomic parameters such as
the wavelength of the transitions, the oscillator strengths, the
damping constants, and others.

In summary, we ended up with two datasets of around
200,000 synthetic spectra each, with T, logg, v sini, [M/
H], and & randomly chosen from Table 1. Figure 1 shows a
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Figure 1: Color map representing the fluxes for a sample spectra of the two training datasets. The left color map represents dataset 1 and the right
one represents dataset 2. The y-label represents the number of spectra, N.
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Figure 2: Example of a spectrum of dataset 2 calculated using a random selection of stellar parameters from Table 1. The black spectrum represents
the synthetic spectrum calculated without noise, and the blue one corresponds to the same parameters but with an SNR of 19. The stellar parameters
of the spectrum are 14,550 K, 3.05 dex, 44 km s, —1.15 dex, and 3 km s! for Tog, logg, ve sini, [M/H], and &, respectively.

color map of a sub-sample of the datasets. The Balmer line
is detected in the left color map for dataset 1, and the
absorption lines of the calcium triplet (A = 8,498, 8,542,
8,662 A) are also shown in the color map of dataset 2 in
the bottom part of the figure.

For each dataset, a set of spectra were calculated with
random Gaussian noise between 5 and 300. This SNR is
used to mimic the noisy observations that we will be
denoising later on as they represent the average SNR
encountered in real stellar spectra. An example of a spec-
trum calculated with and without noise in the parameter
range of dataset 2 is shown in Figure 2.

2.1 Data augmentation

We have also tested the effect of data augmentation in this
work, and for that reason, we have calculated extra dataset
as suggested in Gebran et al., (2022). Data augmentation is a
regularization technique that increasing the diversity of
the training data by applying different transformations
to the existing one, helps in avoiding over-fitting and
improves the predictions of stellar labels when applied
with real observed data (Gebran et al., 2023). We have
used the same approach of Gebran et al.,, (2022) in which
five replicas of each spectrum in the dataset were per-
formed. These replicas consist of

— Adding to each spectrum a Gaussian noise with an SNR
ranging randomly between 5 and 300.

— The flux of each spectrum is multiplied with a scaling
factor selected randomly between 0.95 and 1.05.

— The flux of each spectrum is multiplied with a new
random scaling factor and noise was added.

— The flux of each spectrum is multiplied by a second-
degree polynomial with values ranging between 0.95
and 1.05 and having its maximum randomly selected
in the wavelength range of the dataset.

— The flux of each spectrum is multiplied by a second-
degree polynomial and Gaussian noise added to it.

For more details about data augmentation, we refer the
reader to Gebran et al., (2022).

3 Auto-encoders

Autoencoders, usually used in denoising and dimension-
ality reduction techniques (Lecun 1987, Fogelman Soulie
et al, 1987, Ballard 1987, Baldi 2011, Schmidhuber 2014,
Einig et al., 2023, Scourfield et al., 2023), are a type of neural
networks that work in an unsupervised way. They consist
of two distinct yet similar algorithms, an encoder and a
decoder. The encoder’s role is to transform the spectra
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from a dimension of N, flux point to a smaller size of Njatent
inside a latent space. The decoder re-transform the Njgtent
to the original spectrum of N, flux point. The choice of
Niatent depends on the characteristics of the dataset. How-
ever, using the two datasets in this work, we found that the
optimal size for the latent space is Njztent = 10. This is found
by minimizing the difference between the output spectra and
the input one during the training process. It is true that dif-
ferent values of Ny,ent could be used, but our choice of Njatent
was based on the smallest value that gives a reconstruction
error less than 0.5% as will be explained in the next steps.

The classical architecture of an autoencoder is shown
in Figure 3 where the initial spectrum is introduced having
19,000 or 4,000 data points depending on the dataset and is
then reduced to Njten: points through successive hidden
layers. This first step defines the encoder part of the auto-
encoder. Then, the Nien: points are transformed to 19,000
or 4,000 data points while passing through different hidden
layers. This second step defines the Decoder part of the
autoencoder. The hidden layers are usually symmetrical in
the encoder and decoder parts.

Two autoencoders were used in this work, one for
each dataset. In both cases, the spectra are reduced to
ten parameters in the latent space. The architecture of
the used autoencoders is displayed in Table 2. We have
used an Adam optimizer with a mean squared error
(MSE) loss function.
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Figure 3: Sketch of an autoencoder that transforms an input spectrum of
N, data point to a lower dimension using a series of hidden layers
(encoder). The middle layer is the latent space. The decoder reconstructs
the spectrum to its original dimension.
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Table 2: Architecture of the autoencoder used for denoising

Layer Characteristics

Encoder

Input Spectrum of N data points
Hidden 1,024 Neurons

Hidden 512 Neurons

Hidden 256 Neurons

Hidden 64 Neurons

Hidden 32 Neurons

Latent space 10 Neurons

Decoder

Hidden 32 Neurons

Hidden 64 Neurons

Hidden 256 Neurons

Hidden 512 Neurons

Hidden 1,024 Neurons

Output Reconstructed spectrum of N, data points

Calculations were performed using TensorFlow' with
the Keras? interface and were written in Python.

The training of the autoencoders was performed using
the two datasets containing the synthetic spectra with no
noise. The convergence is achieved when the difference
between the output and the input spectra is minimized
through the MSE. Convergence usually occurs after around
500 epochs. For both datasets, we achieved an R? score
larger than 0.995, meaning that the reconstruction of
the spectra is performed with an error <0.5%. Once the
training is done, the denoising is performed when the
trained autoencoders are applied to the noisy spectra.

4 PCA

PCA is a non-parametric mathematical transformation that
extracts relevant information from a dataset (Wold et al.,
1987, Makiewicz and Ratajczak 1993). Its goal is to compute
the most meaningful basis to represent a noisy dataset. The
new basis usually reveals hidden structure and filters out
the noise (Shlens 2014). PCA has been used for denoising
(Bacchelli and Papi 2006, Zhang et al., 2010, Murali et al,,
2012, Li 2018) or spectral dimension reduction (Makiewicz
and Ratajczak 1993, Paletou et al., 2015a, Gebran et al., 2016,
Gebran et al., 2022, Gebran et al,, 2023). The main power of
PCA is that it can reduce the dimension of the data while
maintaining significant patterns and trends.

1 https://www.tensorflow.org/
2 https://keras.io/
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The basic idea behind the use of PCA is to derive a small
number of eigenvectors and use them to recover the infor-
mation in the spectra. The steps of PCA calculation are
1. The matrix containing the training dataset has N, flux

points per spectrum; therefore, the dataset can then be
represented by a matrix M of size Nypecrra X Ni, Where
Nipecera TEPresents the number of spectra in the dataset.
2. The matrix M is then averaged along the Nipecrra-axis
and this average is stored in a vector M.
3. The variance-covariance matrix C is calculated as

C=(M- M (M- M), ()]

where the superscript “I” stands for the transpose
operator.

4. The eigenvectors ex(A) of C are then calculated. C has a
dimension of N, x N,. The principal components (PC)
correspond to the eigenvectors sorted in decreasing
magnitude.

5. Each spectrum of M is then projected on these PCs in order
to find its corresponding coefficient p;, defined as

Pix = M; - M) e. 2

6. The original “denoised spectrum” can be calculated using

03
Sj =M+ Zp].kek. (3)
k=1

The PCA can reduce the size of each spectrum from N,
to ng. The choice of n; depends on the many parameters,
the size of the dataset, the wavelength range, and the shape
of the spectra lines. We have opted for a value for n, that
reduces the mean reconstructed error to a value <0.5%
according to the following equation:

> -

We have opted to a value for ny that reduces the mean
reconstructed error to a value <0.5%. This value is found to
be ny = 50. A detailed description of all steps of the PCA can
be found in Paletou et al., (2015a), Paletou et al., (2015b),
Gebran et al., (2016, 2022, 2023), and Gebran (2024). For both
datasets, we achieved an R? score larger than 0.996.

M + Zﬁ’émjkek - M
M;

E(kmax) = <

5 Denoising and parameter
determination

The datasets that contain the synthetic spectra without any
added noise are used to train the autoencoder and to find

DL for stellar parameters Il == 5

the eigenvectors of the PCA procedure. These two techni-
ques are then used on the set of noisy spectra that are
calculated in Section 2. The evaluation of the denoising
procedure is tested in two ways. First, we checked the
similarity of the denoised spectra with the original one
with no noise added. Second, we checked the accuracy of
the derived stellar parameters when we applied the pro-
cedures of Gebran et al., (2022, 2023) on the denoised
spectra from the autoencoder and PCA.

Autoencoders usually replace PCA because of their
non-linear properties; however, both techniques showed
a good reconstruction power, as shown by the R? score
in Sections 3 and 4. A way to visualize the denoising of
spectra is shown in Figure 4. The figure is divided into
two parts, the upper one displays a spectrum having the
parameters of dataset 1, and the bottom one has the para-
meters of dataset 2. In each part, the noisy spectrum is in
black, the original one without noise is in dashed blue, the
denoised spectrum using the autoencoder (left panel) or
PCA (right panel) technique is in red, and the difference
between the denoised spectrum and the original one
without noise is in dashed—dotted green.

In Gebran et al., (2022, 2023), we have introduced a
technique to derive the stellar parameters of spectra using
a neural network. We have used the same procedure to
derive the accuracy of the stellar parameters once we apply
the same technique to the denoised spectra. The main pur-
pose of this step is not to evaluate if the derivation technique
is accurate or not, but it is to check how similar are the
derived stellar parameters of the noisy spectra to the ones
derived from the original spectra with no noise added.

The networks that we used are made of several fully
dense layers and are trained to derive each parameter
separately. The layers are described in Table 3. The first
step of the analysis is to reduce the dimension of the
spectra using a PCA procedure. This PCA is not related to
the one used for denoising, it is just a step for optimizing
the network and making the training faster (see Gebran
et al., 2022 for more details).

Two different trainings are performed for each dataset.
The first one is done using a dataset of only synthetic spectra
with no noise added, and the second one consists of applying
data augmentation with spectra having a range of SNR
between 3 and 300.

Because we already know the stellar parameters of the
spectra, the evaluation is performed by calculating the
difference between the predicted parameter and the ori-
ginal one using the equation

1 N
Accuracy = N \/ Y (Predicted - Original )?, 6)]

i=1
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Figure 4: Denoising example of spectra having stellar parameters in both datasets. The upper plot displays a spectrum having the parameters of
dataset 1, and the bottom one has the parameters of dataset 2. The noisy spectrum is in black, the original one without noise is in dashed blue, the
denoised spectrum using the autoencoder (left panel) or PCA (right panel) technique is in red, and the difference between the denoised spectrum and

the original one with no noise is in dashed-dotted green.

Table 3: Architecture of the neural network used for stellar parameters
determination

Layer Characteristics

Input Spectrum of N data points
PCA Reduction to 50 data points
Hidden 4,096 Neurons

Hidden 2,048 Neurons

Hidden 1,024 Neurons

Hidden 512 Neurons

Hidden 60 Neurons

Output 1 Parameter

where N is the total number of noisy spectra used in the
evaluation. This is done for To¢, logg, ve sini, &, and [M/H].

Tables 4 and 5 display the accuracy values for the para-

meters for the two datasets when deriving the stellar labels

of ~25,000 with no noise added (Col. 2), with random noise

(Col. 3), with random noise then denoised using autoencoder

of Section 3 (Col. 4) and using PCA of Section 4 (Col. 5). Each

table is divided into two, one part when data augmentation is
performed and one without it.
A detailed analysis of Tables 4 and 5 show that:

— Data augmentation is an important step to be applied if we
need to derive the stellar parameters of noisy spectra.
Without it, the model will only learn to derive the para-
meters of synthetic spectra without any noise added. A
similar conclusion was also found in Gebran et al., (2023).

— PCA denoising is capable of recovering the line profile
and the details in the spectra. This is reflected by
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Table 4: Accuracy values on the derived stellar parameters for the
spectra calculated using the parameters of dataset 1

DL for stellar parameters Ill = == 7

Table 5: Accuracy values on the derived stellar parameters for the
spectra calculated using the parameters of dataset 2

Parameters No noise With Denoised (AE) Denoised
noise (PCA)
Augmented dataset
Tete (K) 52 181 240 190
logg (dex) 0.017 0.089  0.160 0.100
Vesini (km s71)  1.80 7.58 9.74 7.60
& (km s™) 0.09 0.22 0.32 0.23
[M/H] (dex) 0.021 0.07 0.103 0.07
No data augmentation
Ter (K) 47 219 243 222
logg (dex) 0.018 0.121 0.168 0.121
Vesini (km s1) 1.69 9.49 10.10 9.50
& (km s1) 0.11 0.40 0.40 0.48
[M/H] (dex) 0.019 0.097 0.106 0.098

Parameters No noise With Denoised (AE) Denoised
noise (PCA)
Augmented dataset
Tete (K) 16 300 303 345
logg (dex) 0.037 0.145 0.174 0.176
Vesini (km s71)  6.61 13.40 16.16 13.87
& (km s 0.16 0.63 0.79 0.63
[M/H] (dex) 0.038 0.170 0.204 0.172
No data augmentation
Tete (K) 124 360 576 577
logg(dex) 0.031 0.188 0.310 0.310
Vesini (km s71) 5.93 17.50 17.60 21.70
& (km s) 0.09 1.12 1.36 1.36
[M/H] (dex) 0.035 0.262 0.272 0.267

The spectra are calculated with no noise added (Col. 2), with random
Gaussian noise (Col. 3), with random noise and then denoised using the

autoencoder network (Col. 4), and denoised using PCA (Col. 5).

comparing the accuracy values of the derived para-
meters using the denoised spectra from the autoenco-
ders and PCA (i.e. comparing Cols 4 and 5).

The parameters derived using the PCA denoising tech-
nique are more accurate than the ones derived using the
autoencoder denoising.

Noise

The spectra are calculated with no noise added (Col. 2), with random
Gaussian noise (Col. 3), with random noise and then denoised using the
autoencoder network (Col. 4), and denoised using PCA (Col. 5).

— No denoising technique is capable of improving the
accuracy of the stellar parameters for the one directly
derived from noisy spectra (displayed in Col. 3).

— The stellar parameter algorithm is capable of deriving
the stellar labels without the need for a denoising
technique.

Denoised (AE)
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Figure 5: Predicted Tis as a function of the true values for the data with noise (left panel) and the denoised data using autoencoder (right panel). The
spectra are from the augmented dataset 2. The data are color coded to the SNR values.
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These tests show mainly that data augmentation is very
important when neural networks are used to derive the
stellar parameters of noisy spectra, a results already found
by Gebran et al., (2022, 2023). As an example, Figure 5 dis-
plays the predicted T with respect to the original one for
the data with noise from the augmented dataset 2 (left
panel) and the denoised data using autoencoder (right
panel) from the same dataset. The data are color coded
to the SNR values. The straight black line represents the
best prediction line (x = y). The left panel shows that the
highly dispersed results are the ones for the low SNR
spectra. Once the spectra are denoised, the dispersion
appears to be present for all SNR values with no specific
trend or deviation. This is true for all stellar parameters.
Independently of the denoising technique, there is no
improvement found in the accuracy values of the derived
parameters of denoised spectra when the networks were
trained on noisy spectra. Applying the networks to noisy
data gives more accurate results than when it is applied to
denoised data.

6 Conclusion

In this work, we have applied two different denoising
techniques, an autoencoder, and a PCA, on spectra with
random Gaussian noise added to derive the stellar para-
meters using neural networks of Gebran et al., (2022, 2023).
The method was applied to two different spectra ranges,
one in 4,450-5,400 A and one in the Gaia RVS range from
8,400 to 8,800 A. In this study, we do not constrain
the stellar parameter derivation technique, and this was
done previously in Gebran et al., (2022, 2023). Interestingly,
when applying the model to denoised spectra, there was no
noticeable improvement in the accuracy of the derived
fundamental parameters, such as Tos, logg, ve sini, &, and
[M/H]. This outcome was unexpected, as denoising is typi-
cally thought to enhance the precision of predictions. How-
ever, the results indicate that data augmentation plays a
more crucial role. When the model is trained on datasets
that include noise, the accuracy of predictions for noisy
spectra improves significantly, suggesting that the network
becomes better equipped to handle real observed spectra.
This highlights the importance of incorporating noisy data
into training rather than relying on post-processing tech-
niques like denoising to improve accuracy. To further vali-
date these findings, it would be valuable to explore other
denoising techniques and assess their impact on prediction
accuracy. Techniques such as those presented in Alsberg
et al.,, (1997), Koziol et al., (2018), and Zhao et al., (2021)

DE GRUYTER

could be tested to see if they yield better results in reducing
noise while maintaining or enhancing the precision of
derived parameters. These additional experiments would
help solidify the conclusion that data augmentation is
more effective than denoising in improving the accuracy
of noisy spectra predictions, offering deeper insights into
how best to model real observational spectra.
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