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Abstract: Polytropic equations (Lane-Emden [LE] equa-
tions) are valuable because they offer a simple explanation
for a star’s interior structure, interstellar matter, mole-
cular clouds, and even spiral arms that can be calculated
and used to estimate various physical parameters. Many
analytical and numerical methods are used to solve the
polytropic LE equation. The series expansion method played
an essential role in many areas of science and has found
application in many branches of physical science. This work
uses the series expansion method to examine N-dimensional
polytropes (i.e., slab, cylinder, and sphere). To solve LE-type
equations, a computational method based on accelerated
series expansion (ASE) is applied. We calculate several
models for the N-dimensional polytropes. The numerical
results show good agreement between the ASE and numer-
ical and analytical models of the N-dimensional polytropes.

Keywords: equation of state, N-dimensional polytrope, series
solution, physical characteristic, stellar structure

1 Introduction

Polytropes are useful as they provide a simple solution for
the internal structure of a star that can be tabulated and
used for estimates of various quantities. They are much
simpler to manipulate than the complete rigid solution
of all the equations of stellar structure. This simplicity
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assumes a power relationship between the pressure and
the density, which must hold throughout the star.

Over many decades, massive self-gravitating gas dis-
tributions have been observed in various locations around
the galaxy, including the interstellar matter, molecular
clouds, and even spiral arms (Chandrasekhar 1967, Kippen-
hahn et al,, 2012, Maciel 2016).

These formations are roughly shaped like enormous
flat sheets and long cylindrical threads. Consider endlessly
vast planar polytropes with finite thicknesses or infinitely
long cylindrical polytropes with finite radii as idealized
models of such gas condensations (Horedt 2004).

A preliminary study on the Lane-Emden (LE) equations
(polytropic and isothermal) was undertaken by Lane (1870)
and Emden (1907). The LE-type equation, which simulates
numerous occurrences in mathematical physics and astro-
physics, is among the most fascinating. It is a nonlinear
ordinary differential equation with a singularity at the
origin that explains the equilibrium density distribution in
the self-gravitating polytrophic isothermal gas sphere (Chan-
drasekhar 1967). This equation is of utmost significance in
the study of radiative cooling and the modeling of galaxy
clusters. The analysis of isothermal cores, convective stellar
interiors, and degenerate stellar configurations have all shown
them to be the most adaptable in various circumstances.

Besides numerical integration, there are many numer-
ical solutions presented to solve LE equations, such as the
genetic algorithm (e.g., Ge et al, 2008), lattice Boltzmann
method (e.g., Zhang et al, 2003), ant colony algorithm
(e.g., Cao and Guo 2011), artificial neural networks (e.g.,
Morawski and Bejger 2020), Monte Carlo methods by El-
Essawy et al. (2023, 2024), optimal homotopy asymptotic
method by Igbal and Javed (2011), shifted Jacobi-Gauss
collocation spectral method by Bhrawy and Alofi (2012),
and new Galerkin operational matrices by Abd-Elhameed
et al. (2016).

Approximate techniques exist to solve the LE pro-
blem outside numerical integration (Shawagfeh 1993). The
first technique is to convert the equation into an integro-
differential equation before iterating it (Seidov 2000).
Adomian et al. (1995) proposed the second approach. This
approach derives the desired solution using Adomian’s
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decomposition method (Adomian 1983, Abdel-Salam et al,
2020) and then employs continued fractions to find an
analytical approximation. Hunter (2001) and Nouh (2004)
perform a series of solutions for the LE equations. For N-
dimensional polytropes and the isothermal sphere, Saad
(2004) develops literal analytical solutions to the LE equa-
tions; to increase the power series convergence’s physical
range, he applies a specific alteration to the independent
variable and Pade” approximants. Series expansions of LE
functions at an interior point of a polytrope with a generic
geometric index N are shown by Horedt (1987).

In the present work, we study the structure of the
N-dimensional polytope using power series. We construct
a recurrence relation for the N-dimensional Lane-Emden
(NLE) equation series solution. The Euler—Abel-Pade’ scheme
(Nouh 2004) will accelerate the divergent series to obtain
solutions that converge everywhere. We compare the ASE
solution with numerical solutions to investigate the accu-
racy of the results. This article is structured as follows: the
properties of the polytope are outlined in Section 2, we for-
mulate the N-dimensional polytope in Section 3, Section 4 is
devoted to the solution of NLE, Section 5 presents the
numerical solution, and Section 6 concludes the results.

2 N-dimensional polytropes

For a polytrope, one assumes that gas pressure P = KpY = KpnTﬂ,
where y is the adiabatic index (a parameter characterizing
the behavior of the specific heat of a gas) and n is called the
polytropic index. K is a constant.

The equations of mass conservation and hydrostatic
equilibrium are given, respectively, by
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Rearranging Eq. (2), we obtain

A
o dar GM(r). 3)

By performing the first derivative of Eq. (3), we obtain
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Combining Egs. (1) and (4), we obtain
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Now, by defining the dimensionless function 6 (Emden
function) as

p=po", ™

where p and p, are the density and central density, respec-
tively. The dimensionless variable ¢ could be written as
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By inserting Eqgs. (1) and (7) into Eq. (6), we obtain
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The derivative of the Emden function 6 could be
written as
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then the LE equation is given by
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which is called the NLE equation of the first kind. N is the
polytropic type. When N = 1 (polytropic slab), N = 2 (poly-
tropic cylinder), and N = 3 (polytropic sphere), Eq. (15)
indicates physical interest.

The spherical LE equation (N = 3) only has an exact
solution for the polytropic index n, which equals 0, 1, and 5.
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For other values of n, the LE equation must be integrated
numerically. For n = 0, the density of the solution as a
function of radius is constant p(r) = pc; this is the solution
for a constant-density incompressible sphere. The poly-
trope with n = 1-1.5 approximates a fully convective star,
i.e., a very cool late-type star such as an M, L, or T dwarf,
and for n = 3 could model the solar-like stars.
The mass contained in a radius r is given by

K(n 1)

M(x) = =4 =~ R D
and the radius is given by
n+ K2 L
R = - LDK ] an g, )

where & is the first zero of the Emden function.
The central density is computed from the equation
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and finally, the ratio of central density to mean density is
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3 ASE of NLE

3.1 Series solution

One advantage of power series is that it gives the value of

the LE function as a recurrent power series in radius.

Consequently, we can predict the Emden function at any

radius directly. Moreover, the analytical solution to a pro-

blem usually offers more profound insight into its nature.
Now, recalling the NLE as

&— &0 + (N - 1)6— = -&20n, (20)
dg? d¢
subject to the initial conditions:
dé
0(¢E=0)=1 and d—E=0.
Let a power series represent 6 on the following form:
0=Ag + Al + A8+ AL+ @D

According to the initial conditions,
AO = 1, A1 =0.

So,
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We aim to find a suitable expression for A’s since
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Inserting Egs. (23)-(25) into Eq. (20) yields
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After some manipulations, the series coefficients could
be computed by the recurrence relation:
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So, the series expression of the Emden function is
given by
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The radius of convergence of the series expansion (Eq.
(21)) is widely known to be the distance from & = 0 to the
closest singularity of 8(¢). Hunter (2001) describes two
types of singularities: permanent and moveable. Because
we have fixed singularities at £ = 0 and & = o, yet Eq. (21)
specifies an analytic function at £ = 0, the only finite sin-
gularities of 8(¢) that are feasible are moveable ones. We
may deal with the singularity in two ways: numerical inte-
gration and the U-V plane, as suggested by Milne (1930). In
the next section, we shall discuss how we can overcome the
singularity and convergence problems of the series using a
combination of two accelerating techniques.
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3.2 Accelerating techniques

As demonstrated by Nouh (2004), the series solution for the
Emden function, 6(¢), is only viable for small values of &
when the series converges before reaching the polytrope’s
surface. Divergent or slowly converging series, such as Eq.
(28), are common in mathematics and physical disciplines.
Several authors have used transformation to speed up the
convergence of the series. Examples include the Euler
transformation (Euler 1755), which is developed explicitly
for alternating series, the A% process (Aitken 1926), and
Wynn’s epsilon method (Wynn 1956).

In the following, we demonstrate how, instead of using a
single sequence transformation, we may solve the slowly con-
vergent series by combining two separate transformations.
To improve the convergence radii of the series, we use a
combination of two accelerating techniques, Euler—Abel
transformation and Pade’ approximant (Demodovich and
Maron 1973, Nouh 2004).

Let us write 0(é) as

0(8) = ap + £29(8), (29)
where
) = z a2
k=0
Therefore,
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Applying the Euler—Abel transformation to the power
series Y -oAaié?, p times, and after some manipulation,
1
p- E 2k

we obtain
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By setting t = &, we obtain the Euler—Abel-transformed
series (BE,) as
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where
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Following the Euler—Abel transformation of the power
series, we will proceed to the second step, which involves
approximating Eq. (31) using Pade’. The Pade’ approximant
is carried out by substituting a rational function P(x)/Q(x),
where P(x) and Q(x) are the polynomials of degree k and [,
for Eq. (31) truncated at some degree k x [.

4 Results

Using the accelerated series, Eq. (31), and the recurrence
relation, Eq. (27), we developed a MATHEMATICA 13.2 code
to calculate various polytropic models for the polytropic
index range n = 0-5.

Without any acceleration techniques, the power series
solution of LE (Eq. (28)) is quite constrained. As pointed out
by Hunter (2001) and Nouh (2004), for spherical polytrope
(N = 3), the series rapidly converges for values of the poly-
tropic indices between 0 and 1.9; after that, it converges.
However, even when increasing the series terms over
100, the solution is either slowly converging or divergent
beyond these levels for all values of N and n. It is worth
noting that the inaccuracy steadily grows with the poly-
tropic index n. As a result, the divergent power series solu-
tions have a limited physical range, and the polytropes’
physical characteristics may be erroneous.

Suppose that the number of terms in the original series
is m. In that case, the number of terms in the converted
series is my, Pade’s approximant order is k x [, and p is the
number of times the Euler—Abel transformation is applied.
A trial-and-error method is used to determine the para-
meters of the accelerated series (m, my, p, k x I) governed
by the best absolute error. We obtained (20, 20, 1, 6 x 6) for
all values of N and n, except for N = 3, (50, 50, 1, 6 x 6) for
n=3and (70, 70, 1, 36 x 35). For an example of calculations,
we depict the Emden function findings in Figure 1, where
we may evaluate the series’ diverging behavior; the series
converges till £ = 3.9 and then diverges.

The first few terms of the explicit forms of the accel-
erated series for slab polytrope with n =1, cylindrical poly-

p (o]
BE,(t) = Z Alao ot [ﬁ] Z AP[(-Dkay]tk, (31 trope with n =1.5, and spherical polytrope with n = 3 could
) k=0 be given as
6/ @ 253692 166,591¢* 70131766 2,234,77988 842,503£10
0(E) = 498 3¢ N 1 §(~T0 * 2030 ~ 368800 * 19001600 ~ 3178291200 + 2988,969984,000
41-8F 20-8F 1-¢ -y ’
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0(8) = (1523437584)/(1 - £2)° — (5EM)/(A(1 - E2)2) + 1/(1 - &2) + (£8(~1.8219401041666667 + 0.325286865234375¢>
~ 0.028599624633789063&* + 0.0019164382086859807&° — 0.00010616615313251002&8 ,

+ 0.000005324916331236865810))/(1 — £2)3

EG _ 7,957 + 276,019¢2 _ 2,534,789¢* 76,670,62356 118, 995,910,381¢8 232, 476,125, 477810
G(E) _ 163{:4 ~ 752 N 1 5,040 1,088, 640 66, 528,000 13, 343, 616, 000 137,305, 808, 640, 000 1,778, 437,140, 480, 000 .
1201 -2 61-¢&)* 1-¢* 1-¢&»?
. relative error for the slab is 0.1%, the cylinder is 0%, and
the sphere is 0.07%. Table 2 lists the central condensation
099 Accelerated series (p./py) of the polytropic gas slab, cylinder, and sphere; as
o84 0\ 2 L= it the polytropic index n increases, the central condensation
0.7 - increases rapidly.
0.6 - Tables 3 and 4 provide the results for the polytropic
& o index n = 1,3. Column 1 is the dimensionless parameter;
column 2 is the Emden function calculated by the exact
S solutions (for n = 1 and numerical integration for n = 3;
03 column 3 is the ASE solution, and column 4 is the absolute
027 error such that E1=|exact/numerical-ASE |. The maximum
0.1 absolute error for n =1 is about 0.75%, and for n = 3, it is
0 . . 1.05%, reflecting the accelerated series’ efficiency in solving
0o 05 1 the LE equation.

Figure 1: Emden function (6) calculated for the polytropic index n = 2. The
dashed line is for the calculation without the acceleration technique, and
the solid line is for the calculation with the acceleration technique.

To reach the region beyond the inner points of the poly-
trope (¢ = 1), we accelerated the series using Euler—Able
transformation and Pade’ approximant. We calculated poly-
tropic models for the slab, cylinder, and gas spheres for the
range of the polytropic indices n = 0-5. We compared in
Table 1 the zeros of the polytrope that were calculated
numerically using the Runge-Kutta integration and that
using the accelerated series expansion. The maximum

Table 2: Central condensation of the N-dimensional polytope

n pc/ P

Slab Cylinder Sphere
0 1 1 1
1 1.5707 2.3161 3.2895
1.5 1.8395 3.3036 5.9985
2 2.1032 4.6112 11.4019
3 2.6219 8.6288 54.1856
4 3.1341 15.6150 593.8943
5 3.6418 27.6283 o

Table 1: Comparison of & obtained by the accelerated power series and numerical integration for slab, cylinder, and sphere polytropes

&
Slab Cylinder Sphere
n Numerical Series n Numerical Series n Numerical Series
0 1.4142 1.4142 0 2.0 2.0 0 2.4494 2.4494
1 1.5707 1.5707 1 2.4048 2.4048 1 3.1415 3.1415
1.5 1.6453 1.6453 1.5 2.6477 2.6477 1.5 3.6537 3.6538
2 1.7173 1.7173 2 2.9213 2.9213 2 4.3528 4.3527
3 1.8540 1.8540 3 3.5739 3.5739 3 6.8968 6.8973
4 1.9823 1.9840 4 4.3952 4.3952 4 14.9713 14.9822
5 2.1032 2.1011 5 5.4275 5.4275 4.5 31.8364 31.8452
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Table 3: Emden function for the spherical polytrope with n =1 calculated
by exact and ASE methods

DE GRUYTER

Table 4: Emden function for the spherical polytrope with n = 3 calculated
by Runge-Kutta and ASE methods

§ Ocx Oase E1% § Ork Oase E1%
0 1 1 0 0 1 1 0
0.2 0.9932 0.9933 0.0066 0.4 0.9738 0.9739 0.0130
0.4 0.9734 0.9735 0.0134 0.8 0.9024 0.9026 0.0245
0.6 0.9408 0.9410 0.0205 1.2 0.8023 0.8025 0.0337
0.8 0.8964 0.8966 0.0278 1.6 0.6912 0.6915 0.0403
1.0 0.8411 0.8414 0.0358 2.0 0.5825 0.5828 0.0448
1.2 0.7763 0.7766 0.0444 2.4 0.4836 0.4839 0.0479
1.4 0.7035 0.7038 0.0542 2.8 0.3973 0.3975 0.0502
1.6 0.6243 0.6247 0.0654 3.2 0.3237 0.3239 0.0522
1.8 0.5405 0.5410 0.0789 3.6 0.2615 0.2616 0.0544
2.0 0.4542 0.4546 0.0958 4.0 0.2091 0.2092 0.0574
2.2 0.3670 0.3674 0.1183 4.4 0.1649 0.1650 0.0616
2.4 0.2810 0.2814 0.1510 4.8 0.1273 0.1274 0.0678
2.6 0.1978 0.1982 0.2050 5.2 0.0953 0.0953 0.0778
2.8 0.1192 0.1196 0.3178 5.6 0.0676 0.0677 0.0950
3.0 0.0466 0.0470 0.7401 6.0 0.0436 0.0437 0.1281
3.14 0.0005 0.0005 0.1222 6.4 0.0226 0.0227 0.2174
6.8 0.0041 0.0041 1.0572

Figures 2-4 plot the accelerated Emden function for
the N-dimensional polytropes calculated by ASE (solid
lines) and the numerical integration (open circles). The
Emden function of the polytropic sphere (the upper-left
panels of Figures 2-4) converges smoothly to the zeros
for n = 0-4.5; for the index of a sphere with n = 5, we
truncated the calculation to & = 30 since it has no zeros.
Also, the Emden function converges to the desired value
calculated by numerical integration for the slab and cylind-
rical sphere. The absolute errors between the ASE and the
numerical integration are also plotted for the three cases:
slab, cylinder, and sphere. Comparison between ASE and
numerical integration gives good agreement with max-
imum absolute errors of about 107 for polytropic gas
slab, 10~ for polytropic gas cylinder, and 10~ for poly-
tropic gas sphere.

The density fraction (6" = p/p,) is depicted to show
how it increases with n and approaches the polytropic
slab’s central plane. The density profiles for the polytropic
slab, cylinder, and sphere are shown in the upper-right
panel of Figures 2-4. With increasing n and getting closer
to the polytrope’s center axis, the polytropic cylinder displays
the same characteristic. While the graphs of the density pro-
files for all polytropic slab, cylinder, and sphere models
appear identical, the parameter magnitudes for the same
indices decline rapidly from spherical models to cylindrical
and slab models, respectively. Furthermore, in the lower-
dimensional models, the magnitudes remain limited.

The relation gives the ratio of the temperature to the
central temperature, which is provided by T/T. = 6™*1, This
relation is plotted in the lower-left panels of Figures 2-4
and shows a remarkable difference for the different poly-
tropic geometry; the change of the ratio with changing
the polytropic index is small for the polytropic slab and
increases for the polytropic cylinder and sphere. The frac-
tion of mass contained within a layer has a dimensional
parameter ¢ to the total mass, which is given by £0/£6'¢,
i.e., it is a function only the first derivative of the Emden
function 6’. We plotted the mass fraction of the polytropes
in the lower-right panel of Figures 2-4. The mass fraction
increases rapidly until the points near the surface of the
polytrope (r/R > 0.8) and then shows a slow increase.

We compared the current polytropic gas sphere results
to several prior methods, such as Saad (2004) and Hunter
(2001). Hunter (2001) employed the Euler transformation to
speed the convergence of the power series. For n =3, n =
3.5, and n = 4 spherical polytropes, respectively, 60-term,
120-term, and 300-term are required to obtain the Emden
function to 7-decimal place precision out to the surface.
Hunter’s Euler-transformed series converges much faster
than the series in the enclosed mass proposed by Roxburgh
and Stockman (1999), who reported that the series requires
around 1,000 terms to converge for the polytropic indexes
n=15and n = 3. Saad (2004) used a 46-term series to find
the zero of the Emden function for n = 1.5 and a 24-term
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Figure 2: Emden function (6, upper-left panel), the absolute errors in 6 (upper-right panel), the density profile (p/p., middle-left panel), the
temperature profile (T/T;, middle-right panel), and the mass fraction (m(r)/M, lower panel) calculated for the polytropic gas slab.
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Figure 3: Emden function (6, upper-left panel), the absolute errors in 6 (upper-right panel), the density profile (p/p,, middle-left panel), the
temperature profile (T/T;, middle-right panel), and the mass fraction (m(r)/M, lower panel) calculated for polytropic gas cylinder.
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series for n = 3. For the slab and cylindrical polytropes, our
series reached the surface of the polytrope using 20 terms
and 6 x 6 Pade’ approximants. In comparison, Saad (2004)
reached the surface of the polytrope with 26 and 38 terms
for the slab and cylindrical, respectively.

5 Conclusion

We solved the NLE equation by constructing a recurrence
relation for the coefficient ay  in the power series expan-
sion. We calculated 21 models for the polytropic slab,
cylinder, and sphere. We reached the region beyond the inner
points of the polytrope (¢ = 1) using the accelerated series
(ASE, Euler-Able transformation, and Pade’ approximant).
We calculated polytropic models for the slab, cylinder, and
gas spheres for the range of the polytropic indices n = 0-5.
The Emden function of the polytropic sphere converges
smoothly to the zeros for n = 0-4.5; for the index of a sphere
with n = 5, we truncated the calculation to ¢ = 30 since it has no
zeros. It is found that the Emden function converges to the desired
value calculated by numerical integration for the slab and cylind-
rical sphere. Comparison between the zeros of the Emden func-
tions for polytropes computed by ASE and the numerical one
reveals good agreement with a maximum relative error of
0.1%. We conclude the results obtained in the following points:
¢ Density profiles for the polytropic slab, cylinder, and
sphere appear identical; parameter magnitudes for the
same polytropic indices decrease fast from spherical to
cylindrical and slab models, respectively. The central
condensation (p,/p,,,) of the polytropic gas slab, cylinder,
and sphere; as the polytropic index n increases, the cen-
tral condensation increases rapidly. The density profile
shows how it grows with n and approaches the core
plane of the polytropic slab.
The polytropic cylinder exhibits the same property as the
polytropic index increases and gets closer to the central
axis. The density profiles for all polytropic slab, cylinder,
and sphere models appear identical. Yet, the parameter
magnitudes for the same indices decrease fast from sphe-
rical models to cylindrical and slab models.

» The temperature to central temperature ratio (T/I;)
varies significantly for each polytropic geometry; the
change in ratio with increasing the polytropic index is
minor for the polytropic slab and grows for the poly-
tropic cylinder and sphere.

* The fraction of mass contained within a layer increases
rapidly until the points near the surface of the polytrope
(r/R > 0.8) and then shows a slow increase.

DE GRUYTER

* We compared the results with numerical integration and
analytical methods by different authors. This compar-
ison shows good agreement with the solutions by Saad
(2004) and is better than the results by Hunter (2001).
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