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Abstract: Satellite anomaly is a process of evolution.
Detecting this evolution and the underlying feature changes
is critical to satellite health prediction, fault early warning,
and response. Analyzing the correlation between telemetry
parameters is more convincing than detecting single-point
anomalies. In this article, principal component analysis
method was adopted to downscale the multivariate prob-
ability model, T? statistic was checked to determine the data
anomaly, without the trouble of threshold setting. After an
anomaly was detected, time-domain visualization and
dimension reduction methods were introduced to visualize
the satellite anomaly evolution, where the dimensions of
telemetry or features were reduced and presented in two-
or three-dimensional coordinates. Engineering practice
shows that this method facilitates the early detection of
satellite anomalies, and helps ground operators to respond
in the early stages of an anomaly.
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1 Introduction

The severity of the outer space environment and a large
number of satellite parameters to be checked in operation
mean that a single signal processing method is not
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adequate to monitor and detect the satellite operating
process (Li 2010, Hu and Jiang 2021, Li et al. 2019,
Flores-Abad et al. 2014). Any failure will cause huge eco-
nomic losses, therefore, online monitoring of satellite
status through telemetry is critical for timely detection
and identification of satellite faults (Sun and Huo 2016,
Opromolla et al. 2017). In this article, Kernel Principal
Component Analysis (KPCA) was introduced for feature
extraction and fault detection of high-dimensional data.
KPCA performs feature extraction based on historical opera-
tion data, and achieves fault detection by constructing mon-
itoring statistics in feature space, without dependence on
previous knowledge or mathematical model of the system.
The overall idea of this method is to first build a KPCA
model, and then use the squared prediction error statistic
and T? statistic to perform feature extraction and fault
detection on multiple variables in the process.

Since the 1950s, pattern recognition has been widely
used in text and speech recognition, remote sensing, and
medical diagnosis, etc. Pattern recognition is the main
theoretical basis for artificial intelligence and is becoming
more and more important with the advent of the era of intel-
ligence, information, computing, and networking (Tipaldi
and Bruenjes 2014, Ke et al. 2017, Bolandi et al. 2013). How-
ever, a massive amount of data set poses a great challenge in
its application, especially in the areas of fault diagnosis and
face recognition, where the data are featured with high
dimensions and huge volume, which in turn results in
“dimensional disaster” with phenomenal computation, and
increases the difficulty for subsequent detection (Gueddi
et al. 2017, Tong et al. 2014, Hou et al. 2015, Wu et al.
2015). Certain correlation exists in the correlation coefficient
vector, and there may be information overlap. Principal com-
ponent analysis (PCA) is a valid tool to convert high-dimen-
sional vectors to a low-dimensional feature space (Marton
2015, Gao and Duan 2014, Bonfe et al. 2006).

This article focuses on the satellite anomaly process
and anomaly feature identification. The specific scheme
is to extract the anomaly features in the anomaly evolu-
tion, and realize the reduction of computation and data
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convergence through data dimension reduction. After the
dimension reduction analysis, the visualization of the
anomaly evolution process is realized in the time domain,
two and three-dimension.

2 PCA dimension reduction
algorithm

2.1 PCA

The basic idea of PCA is to construct a series of linear
combinations of the original variables to form several
integrated geometric indicators to remove the correlation
of the data and to make the low-dimensional data main-
tain the variance information of the original high-dimen-
sional data to the maximum extent. The essence of PCA is
to extract several mutually orthogonal principal compo-
nents from the multidimensional original vector space,
where correlations exist to characterize the original data,
thus simplifying the analytical model. These principal
components retain most of the information of the original
data and also represent the hyperplane direction, which
captures the maximum possible residual variance in the
original variables while maintaining orthogonality with
other principal components. The eigenvectors of the raw
data covariance matrix are the principal components, and
the eigenvalues represent the variance captured by the cor-
responding eigenvectors. The original data matrix can also
be solved for the eigenvectors and eigenvalues by singular
value decomposition. In order to achieve dimension reduc-
tion, it is necessary to make the results of dimension reduc-
tion as dispersed as possible (too much overlap cannot
recover the original status), i.e., to retain as much original
information as possible, so that the principal components
after dimension reduction are orthogonal to each other and
have the largest variance in each dimension.

If the variables in the original data are redundant or
correlated, the number of non-zero eigenvalues is equal
to the rank of the covariance matrix, and the original data
matrix can be reproduced exactly without considering
the eigenvectors corresponding to the zero eigenvalues.
Thus, PCA reduces the dimension of the covariance matrix
by extracting the linear relationships in the covariance
matrix. In practical applications, the measured variables
are usually contaminated with errors, and none of the
eigenvalues are exactly zero, but the eigenvectors corre-
sponding to smaller eigenvalues consist almost exclusively
of errors. Therefore, the effect of errors can be reduced by
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eliminating the eigenvectors corresponding to small eigen-

values and reconstructing the dimension-reduced eigen-

space as the original data matrix.
The main process of the PCA dimension reduction is
shown as follows:

1) Zero-average the original data matrix;

2) Derive the covariance matrix;

3) Calculate the eigenvalues and corresponding eigen-
vectors of the covariance matrix;

4) The eigenvectors are arranged into matrices according
to the corresponding eigenvalue magnitudes, and the
first k is taken to form matrix P (the largest k eigenvec-
tors are retained).

Let the original data be n x n dimensional matrix
Xuxn, the transformation matrix be Ay.,(k < n), and the
reduced dimensional data be k x n dimensional matrix
Yixn. The reduction process is as follows:

ayg ... Qin X N
A-X=|: " 1] =l:|=Y, @
kr -+ Qkn Xn |nn Vi
where the proportion of the variance corresponding to a
principal component in the total variance is the contribu-
tion of that principal component, and the contribution of
the principal component Ay is expressed as:
Ak
>
i:lAi

The principal components, as well as the corresponding
eigenvalues and eigenvectors, are selected according to the
desired contribution rate, and the final principal element
model is obtained as follows:

X = AX, 3)

where X is the original high-dimensional data and A is
the transformation matrix.

For multivariate normal random variables, a uni-
variate normal random variable can be obtained after
dimension reduction via PCA because the eigenvalue of
the one with the largest covariance matrix contains more
than 99% of the information of the original data (as in
Figure 1), so the transformation matrix is the eigenvector
corresponding to the largest eigenvalue. It is known from
the linear combination of multivariate normal distribu-
tions to maintain normality that the datum after dimen-
sion reduction is a univariate normal random variable.

)

2.2 Anomaly detection of T2 statistic

Anomaly detection based on principal component ana-
lysis usually uses the T? statistic to detect whether the
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Figure 1: Schematic diagram of the projection variance of sample
points.

process is anomalous. The T? statistic measures the var-
iation of variables in the principal component space. The
detection function is as follows:

T? = xXTAK'ATx < T2, (4)

where x is the vector of correlation coefficients of the
samples, A = diag{A;, --- ,Ax}, and T,f is the T2 control
limit with confidence degree.

2
o% = %Fk,p—k;m (5)
where Fi ,_i;q is the F distribution with the first degree of
freedom k and second degree of freedom p - k. a is
usually taken as 0.01, 0.5, and 0.1. The test samples
should satisfy T2 < T2, otherwise it is judged as abnormal.

2.3 Further identification of anomalous
telemetry

After the anomaly is detected by the earlier method, the
data in the low-dimensional space are reconstructed into
the high-dimensional space. The reconstruction error
between the reconstructed high-dimensional data and
the original low-dimensional data, as well as the contri-
bution ratio of each component to the reconstruction
error, is calculated. The larger the contribution ratio,
the higher the possibility of an anomaly in that compo-
nent. The telemetry parameters with anomalies can be
roughly determined by cross-referencing the components
with larger contribution ratios, which will serve as clues
for further identification of fault locations.
The reconstruction error equation is as follows:

U=|X - X, (6)

where X is the original high-dimensional data, and X is the
reconstructed high-dimensional data. X is calculated as:
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X =AA'X + X, )

where A is the transformation matrix, and X is the mean
value of the original high-dimensional data.

The proportion of each component to the reconstruc-
tion error is calculated as:

Xy - Xl

u,-]- U N (8)
i

where X;; denotes the jth component of the ith original
data, Xij the jth component of the ith reconstructed data,
and U; denotes the reconstruction error of the ith original
data.

3 Experiment and analysis

3.1 Anomaly description

The following is an analysis of a power subsystem failure
on one meteorological satellite. When the satellite entered
the contact pass, the downloaded telemetry data indicated
an anomalous telemetry voltage jump of one discharge
module, from 28.79 to 54 V. Data playback showed that
this voltage anomaly occurred at 5:46:24 the day before.
After that, the telemetry voltage was maintained in an
abnormal state. The telemetry curve directly reflecting
the abnormal state is shown in Figure 2.

After the analysis of the data before and after the
failure, the onboard power demand was just around
the solar panel output power limit at the moment of the
failure in the discharge regulator circuit, which resulted
in frequent switch on/off of the discharge regulator con-
trolled by the shunt error amplification signal and caused
a high-power shock on the discharge regulator tube.
Therefore, the most likely cause of the discharge regulator
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Figure 2: Telemetry curve directly correlated with the anomaly.
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circuit failure is the short-circuit failure of the discharge
regulator tube after the power shock. From Figure 2, it can
be seen that the telemetry voltage of the B-channel dis-
charge module (5) presented a sudden jump. In order to
investigate the evolution of the satellite from normal to
deviation and further to an anomaly, all features related
to the anomaly need to be extracted. A total of 69 telemetry
channels and 3,715,104 sample data were extracted from
telemetry data collected within 1 month before and after
the anomaly, respectively. In order to reduce the computa-
tional effort, 1/32 uniform sampling was performed on the
samples, resulting in a total of 116,097 samples. Because
some telemetry samples were correlated with the anomaly,
and others were not, irrelevant telemetry needed to be
eliminated.

3.2 Feature extraction

The telemetry was rejected according to the standard devia-
tion. For telemetry that maintains a constant value throughout
the process, the correlation with any telemetry or anomalies
is zero. Initial statistics were performed for power subsystem
telemetry. Since each telemetry represented a different phy-
sical meaning and range of values, the telemetry was first
standardized to observe the fluctuation of each telemetry on
the same scale. The standardized value of the telemetry fell
in the range of [0,1]. The variance is then calculated for each
telemetry, and we find that part of the telemetry signal is
equal to 0 or close to 0. Combined with expert experience, it
was determined that these telemetries were not related to
anomalous states from a physical mechanism and were,
therefore, excluded from the sample.

The satellite anomaly subsystem has at least dozens
and even hundreds of telemetry. Each sample charac-
terizes a point in a high-dimensional space, and the dis-
tribution of the samples in the high-dimensional space is
unobservable. Therefore, the features need to be down-
scaled. On the other hand, in the subsequent anomaly
identification, having too many features as the input to
the algorithm will cause relatively large computation, and
nonrelated telemetry input may also impact the algorithm’s
convergence. It is necessary to reduce the dimensions of
the anomaly features from the points of visualization, com-
putational effort, and algorithm convergence.

In this article, to visualize the evolution of the satellite
from normal to deviation to abnormality, the abnormal
features were reduced in dimensionality by the principal
component analysis method.

The dimension reduction will lead to the loss of infor-
mation. The more the dimensions are reduced, the more
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Figure 3: Information retention rate and retained dimensions.

information will be lost. After the dimension reduction of
telemetry related to this anomaly for a satellite, the rela-
tionship between the information retention rate and the
number of retained dimensions is shown in Figure 3.

Table 1 shows the information retention rate and the
dimensions.

As shown in Figure 3, the information retention rate
was about 63% when the dimensions of power subsystem
telemetry were reduced from 63 to 1 (5 telemetry had already
been eliminated by the variance method). The retention rate
was 73% when the dimensions were reduced to 2. The rate
was 99.6% when the dimensions were reduced to 20, which
implied that the 20 features contained 99.6% of information
in the original data, with an information loss of only 0.42.

4 Visualization of anomaly
evolution
4.1 Time-domain visualization

Satellite telemetry data are typical time-series data, whereas
time-domain visualization is the most intuitive way to

Table 1: Relationship between information retention rate (IRR) and
dimensionality

Dimension IRR (%) Dimension IRR (%)
1 63.46 1 97.36
2 73.45 12 97.83
3 82.25 13 98.18
4 86.92 14 98.48
5 89.76 15 98.75
6 91.87 16 98.97
7 93.24 17 99.16
8 94.60 18 99.33
9 95.84 19 99.47
10 96.69 20 99.58
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visualize the anomaly evolution. In the time-domain visua-
lization, we drew the telemetry curves aligned with time,
and investigated the evolution process by observing the
telemetry curves, as shown in Figures 4-6.

4.2 Two-dimensional visualization

First, we downscaled all the extracted telemetry samples

to two dimensions and displayed them on a two-dimen-

sional diagram, as shown in Figure 7(a). The purple color
in the figure denotes the normal sample points and the
red denotes the abnormal sample points.

The following conclusions can be drawn from the
analysis of the earlier figure.

1) After the multidimensional features were reduced to
two dimensions, there was a large portion of overlap
between the two types of samples, which indicates that
the classifier cannot distinguish well between normal
and abnormal if two-dimensional features are used as
input in the subsequent identification of the anomaly
evolution process. Therefore, it is also necessary to
expand the number of features to classify the two types
of samples in a high-dimensional space.
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Figure 6: Battery pack temperatures.

2) Whether normal or abnormal samples, there was a
large dispersion, which was due to the constantly
changing power supply operating state during the
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Figure 7: Two-dimensional diagram showing the anomaly evolution

process. (a) Two-dimensional gamut map and (b) Two-dimensional
gamut map of large sample.
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satellite’s operation in orbit, including the battery
charging/discharging state, the temperature of each
battery, and the charging/discharging current.

3) The anomalous samples were more dispersed, and
the center of gravity of the sample points had
a significant shift before and after the anomaly
occurred, indicating that there was a shift in the
location of the sample distribution in the high-
dimensional space.

In order to observe the change process of the satellite
from normal to deviation to abnormal in more detail,
the color of the sample points was displayed in a gra-
dient, with the initial sample point in purple and the
latest sample point in red, with a gradual color transition
in between, as shown in Figure 7(b).

As can be seen from the figure, with the passage of
time, there was no obvious change in the position of the
sample points when the sample was not abnormal, i.e.,
the green sample points in the figure. When the abnorm-
ality occurred, the position of the sample points gradu-
ally shifted, as shown in the earthy yellow sample points,
and finally reached the position of the red sample points,
i.e., the abnormal points.

4.3 3D visualization

We downscaled the telemetry of the power subsystem
to a 3D, as shown in Figure 8(a), with the red color
indicating the normal sample points and blue color
indicating the abnormal samples. As can be seen from
the figure, the differentiation of the two types of sample
points in the three-dimensional space was improved relative
to the two-dimensional, and the red samples had better
aggregation. As the state changes to abnormal, the dis-
tribution of the samples in the three-dimensional space
changes accordingly, as shown in the blue sample
points, but some of the sample points and the red sam-
ples have overlapped.

In order to observe the evolution process of satellite
status from normal to deviation to abnormal in more
detail, the sample color was correlated with time, and
the three-dimensional diagram was shown with the gra-
dual change of time. As can be seen from Figure 8(a), the
first 58,000 samples were more concentrated in distribu-
tion and were normal samples; the 58,000th to 87,000th
samples gradually transitioned from normal to abnormal
(the obvious abnormal point starts with the 62,000th
sample); the 87,000th and later samples had been clearly
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Figure 8: Three-dimensional diagram showing the anomalous evo-
lution process. (a) 3D point cloud image and (b) 3D point cloud
image of large sample.

separated from the normal samples, and, the subsequent
classifier may be able to identify them effectively.

4.4 Visualization method analysis

The advantages and disadvantages of the three visualiza-
tion methods can be summarized as: (i) Time-domain
method is more intuitive with easy curve drawing. However,
each diagram can only present one or a few telemetries. To
fully understand all the information of anomaly, it is neces-
sary to analyze all the telemetry one by one, which is unrea-
listic due to a large number of telemetries and a huge
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workload. (i) Both two- and three-dimensional visualization
can be classified as spatial visualization, where all changes in
telemetry can be reflected in one diagram with a big picture.
However, dimension reduction has to be performed, which
will introduce information loss, resulting in incomplete and
unintuitive information in the diagram.

5 Conclusion

A feature extraction method based on standard deviation
and PCA is proposed to investigate the anomaly evolution
in satellites. First, telemetry with a standard deviation
of 0 or close to 0 was eliminated, and then dimensionality
was reduced by PCA, which can greatly reduce the com-
putational effort in subsequent anomaly recognition model
training. Second, the relationship between information
retention rate and retention dimensionality was analyzed
based on the actual satellite measurement data in orbit,
and the spatial visualization method of the anomaly pro-
cess through dimension reduction is proposed, including
two and three-dimensional visualization, which has the
advantage of being able to reflect the changes of all tele-
metry in one diagram with a better big picture. The disad-
vantage is also analyzed, that is, the spatial visualization
needs to perform dimension reduction, which will result in
information loss. The proposed method has been applied in
engineering practice, and it helps the ground operators
detect early warnings and respond to satellite faults to avoid
accidents.
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