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Abstract: High-altitude satellites are visible to more ground
station antennas for longer periods of time, its requests
often specify an antenna set and optional service windows,
consequently leaving huge scheduling search space. The
exploitation of reinforcement learning techniques provides
a novel approach to the problem of high-altitude orbit satel-
lite range scheduling. Upper sliding bound of request pass
was calculated, combining customized scheduling strategy
with overall antenna effectiveness, a frame of satellite range
scheduling for urgent request using reinforcement learning
was proposed. Simulations based on practical circum-
stances demonstrate the validity of the proposed method.
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1 Introduction

To ensure the required and reliable satellite-ground com-
munication capability, a set of ground stations are placed
over the country and abroad to provide TT&C services,
satellite payload data reception services, and launcher
tracking services for supported missions. A suite of appli-
cations that can cope with satellite range scheduling
were developed. These applications are automated and
rules based, but the scheduling strategy is evolved in line
with the space access requirement of current and future
missions. Satellite range scheduling means scheduling
communications between satellites in space and antennas
on the ground. Satellite communicate with ground station
antenna only during visible window. With the arrival of
new request for satellite-antenna pass, the scheduling

algorithm is in charge of solving conflict among passes.
All the requests are expected to be satisfied with certain
constraints. Urgent request from satellite reaches the sche-
duling application due to many kinds of uncertainties,
such as random satellite observation, scheduled antenna
breakdowns,mission cancellations, and other urgent events.
In general, regardless of normal request or urgent request,
the ground antennas are oversubscribed, and all the requests
cannot be satisfied.

For high-altitude orbit satellites, there are two spe-
cial situation of satellite-antenna pass in the scheduling
problem. First, the visible time is much longer than the
low-altitude satellites, but only part of the visible time
can be arranged to request satellite. Second, to overcome
the congestion issue between the scheduled pass and
request in future (before the start time of the scheduled
pass), allocated passes may be adjusted in the visible
window on different antennas. Since the search space is
usually large and with specific constraints, solving the
problem of high-altitude satellite range scheduling is
very computationally demanding.

In the past decades, various techniques are studied to
generate conflict free and high-efficient solutions for the
problem of satellite range scheduling (Petelin et al. 2021,
Luo et al. 2017, Li et al. 2015, Li et al. 2014, Zufferey et al.
2008, Zufferey and Michel 2015, Ling et al. 2013, Badaloni
et al. 2007, Bagchi 2009, Xhafa et al. 2013, Zhang et al.
2014). Heuristics methods provide a solution quickly, but fails
to scale to larger and more complex problems. Metaheuristics
such as genetic algorithm, simulated annealing and tabu
search take more time but output results closer to optimal
solution. Barbulescu et al. (2004) proved that satellite range
scheduling is NP complete, Marinelli et al. (2011) and Brown
etal.(2018)developedanewheuristicmethodbasedonLagran-
gian relaxation to overcome the difficulty that large-scale
variablesyield,and the formerapplied themethod toGALILEO
constellation. As far as we know, there exist few studies about
satellite range scheduling using reinforcement learning.

Reinforcement learning is about learning how to act to
achieve a goal in an uncertain environment to maximize
the reward in a particular situation, and it is a specialized
application of machine learning and deep learning
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techniques to solve various types of decision making pro-
blems (Sutton and Barto 2019, Wiering and Otterlo 2018).
The agent is trained to seek a new way to maximize the
reword, and by interacting with the environment, a neural
network storing experiences improves the performance.
The reinforcement learning algorithms are usually classi-
fied into three types: value-based approach, policy-based
approach and model-based approach. In a value-based
reinforcement learning algorithm, the agent will try to
maximize a value function and is expecting a long-term
return of current state. In a policy-based algorithm, the
agent will try to come up with such a policy that the action
performed in every state improves the return in the future.
In a model-based algorithm, a model was created in every
environment and the agent learns to perform in them.
Recently, reinforcement learning has also gained more and
more attention in scheduling. Cunha et al. (2021) created a
novel architecture that incorporates reinforcement learning
into scheduling systems. Shyalika et al. (2020) addressed the
reinforcement learning techniques used for dynamic task
scheduling. Luo (2020) developed a deep Q-network to solve
the dynamic job shop scheduling problem. Huang et al.
(2021) used deep deterministic policy gradient algorithm to
solve the satellite task scheduling problem. Inspired by the
aforementioned applications of reinforcement learning in
scheduling, solving the problem of satellite range sche-
duling by using reinforcement learning became feasible.

The main contribution of this article is the proposal of
an innovative high-altitude satellite range schedulingmethod
for urgent request by adopting reinforcement learning. We
utilized Q learning as the learning model, and Q learning is
a value-based algorithm of providing information to inform
which action an agent should take (Watkins 1989, Watkins &
Dayan 1992). Our article is organized as follows. First, we
introduce the background of the problem and several basic
definitions. Section 2 is the analysis of high-altitude orbit
satellites urgent request scenario. Calculation of sliding bound
of request pass is described in Section 3. A novel frame of
satellite range scheduling using reinforcement learning is pro-
posed in Section 4. The simulation and discussion are pre-
sented in Section 5. Finally, we conclude this study and put
forward some future ideas in Section 6.

2 Analysis of high-altitude orbit
satellite request for ground
antenna

To introduce the problem of satellite range scheduling
clearly, several major definitions are listed as follows:

1) High-altitude orbit satellite request: When a high-
altitude orbit satellite need a supported service from
an antenna, it will send a resource requests message
to the scheduling system. The message mainly includes
the least last time (LLT, minimum duration) and the
request time (RT), LLT is the shortest service time that
the satellite need, RT is a time scope in which the service
time should be arranged. There are two types of resource
requests, normal request and urgent request. The normal
requests are periodic corresponding to the regular service
demand, and the urgent request is temporary corre-
sponding to the service demand in an emergency. The
present article focuses on the resources scheduling for
urgent request. Whenever an urgent request arrives,
there was already an antenna work plan generated by
the normal request scheduling process.

2) Resources scheduling system: It is the core system
in charge of antenna scheduling for normal and urgent
requests, a plan of scheduled passes for all antennas
would be generated after scheduling process.

3) Antenna service switch time: It is the antenna repo-
sitioning time between adjacent service time for dif-
ferent satellites, and it is a constant value for all
ground station antennas. The constraints of the switch
time, minimum elevation, and visibility are taken into
account, but they are neglected in the notations for
simplicity.

4) Scheduled pass and request pass: The scheduled
passes are the components of the service plan of an
antenna, it is the output of resources scheduling
system. A request pass is the pass with a length, which
is equal to the request LLT in the RT. All the passes
must be in the satellite-antenna visible time.

5) Service conflict: The conflict between two service
time is defined by pass conflict that one pass is over-
lapped with the adjacent one, while the antenna ser-
vice switch time must be considered.

6) Sliding operation: In a scheduling environment, a
request pass should be arranged on an antenna and
then all the scheduled passes should be conflict free. We
define the arrange operation as insert. When a pass
insert operation causes a conflict, all the passes in the
RT should try to move backward (to the earlier time or to
the left side) or forward (to the later time or to the right
side) to overcome the confliction. The move of pass on
an antenna is called slide, the request pass after slide
operation should be in the RT, and other pass after slide
operation should be in the visible time.

The design of urgent request data is to create an
interface for interoperability between the satellite and
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the scheduling system, and it specifies the service detail
that may be provided by an antenna. An urgent request
contains the following elements:
– a request satellite;
– a set of ground station antennas;
– request time (RT);
– least last time (LLT);
– the type of request service.

In the RT on an antenna belonging to the request antenna
set, there may be scheduled high-altitude satellite normal/
urgent passes, or scheduled low-altitude satellite passes.
To achieve the state of conflict free of all passes in the RT,
the scheduled high-altitude satellite passes and request
pass need to slide in a request-relevant time scope, and
the scheduled low-altitude satellite passes cannot slide
due to the relative short visible time. Let us assume that
Req is the urgent request of satellite s and the request
antenna set is { }= …D d d d, , , N1 2 , where N is the number
of request antennas, the request time window is Wr, the
LLT is Ws. Let W[i] denote the visible time of s on the
antenna di. Figure 1 shows the urgent request scheduling
scenario, and the approach to find a conflict free position
for request pass is as follows:
1) Calculate the intersection of visible time and request

time, that is, [ ] ∩W i Wr. Subtract the switch time from
the start time of intersection and the end time of inter-
section plus the switch time, and then we obtain the
maximum request time (MRT). The difference of RT
and MRT is the antenna switch time, and we use
MRT in the following sections.

2) Let W(LEO) denotes the scheduled low-altitude satellite
passes in MRT, and we obtain the scheduled high-alti-
tude satellite passes in MRT as [ ]= ∩ −W W i W Wx r
(LEO).

3) Constraints of the process of urgent request sche-
duling. Wx and Req may both need to slide, and the
sliding scope of the terms inWx are determined by the
corresponding original request.

4) The satellite range scheduling. This will be further
illustrated in Section 4.

3 Calculation of the sliding upper
bound

In this section, the sliding bound of the high-altitude satel-
lite request pass will be provided. We call upper bound
of sliding operation a maximum time scope, such that
in which one high-altitude satellite pass can move. The
initial condition for a conflict free scheduling solution is

≥ ≤p llt r let,x x x x, where px is the visible time of request
satellite on antenna d, lltx is the LLT of the urgent request
t r,x x is the start time of px and letx is latest ending time
which equal to the end time of the request. Each high-
altitude satellite scheduled pass had an corresponding
original request, and the parameters of the original request
will be parsed for calculation of the upper sliding bound.

For the case of sliding backward in Figure 2, sv and fv
are the start time and the end time of a scheduled pass tv,
respectively.

−
px 1 is the visible time of the satellite of

scheduled pass
−

tx 1 at the left of tx on antenna d,
−

tx 2
and

−
tx 3 are scheduled high-altitude satellite passes and

ti and −
ti 1 are scheduled low-altitude orbit satellite passes.

For low-altitude satellite, the whole visible time will be
arranged by the scheduling system if conflict does not
exist; consequently, the scheduled pass cannot slide in
visible time. For scheduled passes of high-altitude satel-
lites, the time length of sliding backward is determined
by two items: one is the start time of visible window and
the other is the end time of the left hand scheduled pass.
If

−
tx 1 is a scheduled high-altitude orbit satellite pass, and

there are u1 scheduled high-altitude orbit satellite passes
between

−
tx 1 and the low-altitude orbit satellite scheduled

passes, then the sliding upper bound of
−

tx 1 to the left side
is expressed as follows:
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For the case of sliding forward in Figure 3,
+

tx 1 and

+
tx 2 are scheduled high-altitude orbit satellite passes, and

Ws

W[i]
Wr
Wx

di

Low altitude orbit
satellite pass

Req

Low altitude orbit
satellite pass

High altitude orbit
satellite pass

Figure 1: Example of an urgent request scheduling scenario.
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ti and +
ti 1 are scheduled low-altitude orbit satellite passes.

+
lltx 1 is the LLT of the request of

+
tx 1 and +

letx 1 is the latest
ending time of request of

+
tx 1. For scheduled passes of

high-altitude satellites, the time length of sliding forward
is determined by three items: one is the end time of
visible window, the second is the latest ending time,
and the third is the start time of the right hand scheduled
pass. The high-altitude satellite passes from the right side
slide one by one, and start time of the sliding pass will be
updated. If there are u2 scheduled high-altitude orbit
satellite passes between

+
tx 1 and the low-altitude orbit

satellite scheduled passes, then the sliding upper bound
of

+
tx 1 to the right side is expressed as follows:
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Updated values of
+ +

sx j1 after every slide were used in
calculation of Δr in Eq. (2).

We learn from Eqs. (1) and (2) that the length of the
total time window for request pass after sliding on d is

= + + −
+ −

T s fΔ Δ Δ .l r x x1 1 (3)

The time length TΔ is the maximum idle time window
on antenna d that an urgent request can be arranged. If

TΔ is not longer than LLT, the corresponding request will
be rejected on antenna d immediately. Consequently,

scheduling process ended before reinforcement learning
module.

4 A frame of satellite range
scheduling using reinforcement
learning

Scheduling strategy is the reference policy for the
scheduling method and is the principle of sliding
operation (Pinedo 2016, Conway et al. 2003). The stra-
tegies describe that how the request pass slide to
avoid overlap. We design two scheduling strategies
for high-altitude satellite urgent request, mono-layer,
and multi-layer scheduling.
– Mono-layer scheduling strategy. The request pass is

only permitted to be arranged on the current antenna,
the scheduled passes in the MRT of the request cannot
be transferred to the other antenna belonging to the
corresponding request antenna set.

– Multi-layer scheduling strategy. The request pass
can be arranged on an antenna belonging to the
request antenna set, and the scheduled high-altitude
satellite passes can be transferred to the any other
antenna belonging to the corresponding original request
antenna set.

Compared with the mono-layer strategy, the multi-layer
strategy may change the work plan of other antenna, this
will bring instability to the entire plan of the network
and further increase the searching space. However, the
advantage of multi-layer strategy lies in providing more
scheduling solutions. It can utilize various optimization
techniques, such as load balancing between different
antennas, user-oriented antenna preference, and overall
antenna service efficiency. If the scheduling method uti-
lizing mono-layer strategy is failed to generate a conflict
free scheme, then the multi-layer strategy could be
selected as the second stage of the high-altitude satellite
request scheduling.

After the discussion of scheduling strategy, we pro-
pose an overall antenna effectiveness (OAE) function to
represent the benefit of different sliding operations:

( ( ) ( ))∑=

−

−

=

O
T T
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i
s

1 0 0
1 0 (4)

where T0 is the start time of MRT and T1 is end time of
MRT,Ti

s is the start time of request pass or scheduled pass
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Figure 2: Scheduled high-altitude orbit satellite passes slide
backward.
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Figure 3: Scheduled high-altitude orbit satellite passes slide
forward.
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ti, and Ti
e is the end time of request pass or scheduled

pass ti. N is the total number of passes in MRT. The OAE
function will be calculated on the basis of conflict free
scheduling result, that is, if the scheduling is failed, then
the value of OAE will be 0. If the passes in MRT trying to
occupy the time in the MRT, not out of MRT, then the OAE
function may obtain a bigger value. A bigger value means
a higher percentage of service time, while the antenna is
online. If part of one pass is out of MRT, then the upper
bound of OAE is expressed as follows:
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where ( )= −t T TΔ max e
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s
2 1 , If all the

passes are perfectly in the MRT, then the value of OAE
will be a constant:
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From Eqs. (5) and (6), we find that the value of OAE
ranges from Oc to Om for a conflict free scheme.

The new satellite range scheduling frame for urgent
request of high-altitude orbit satellites begins from some
main components of reinforcement learning. The details
are as follows:
– Agent: There are two types of time windows, LLT and

MRT in high-altitude satellite request. These two terms
are regarded as entities, which slide forward or back-
ward on an antenna in the scheduling environment.

– Action: The action of the agents is sliding from one
state to another, which means that the agent can stay
still, move forward, or backward on the antenna, and
the time scope of sliding operation is limited.

– Environment: In a scheduling scenario, there would
be one ground station antenna or several antennas,
one high-altitude satellite request, and scheduled passes
in the request-relevant MRT. To achieve the objective that
all the scheduled passes are conflict free after sliding
actions, the agents need to slide according to the value
of reward. The state of agents will be updated after each
sliding. The direction and magnitude of the sliding are
the key factors of each action.

– State: The state of the scheduling environment con-
sists of the start time and the end time of each time
window on the corresponding antenna, and the result
of the value function at the end of the sliding action.

– Value function: We use overall antenna effectiveness
as value function, it is a measure of how well a sche-
duling operation is utilized in the MRT, compared to
full potential of an antenna during the visible time

window. It specifies the value of a state, and the agents
should be expected maximizing the overall antenna
effectiveness in the MRT on an antenna for a high-
altitude satellite request. If clashes between two passes
are detected, then the value of OAE will be 0.

In Figure 4, we design an architecture to illustrate
the scheduling mechanism that employs reinforcement
learning techniques. When a new urgent request arrives,
visible time, antennas, RT, and LLT will be parsed from
request. Mono-layer scheduling strategy is selected if
single antenna was requested. Then sliding upper bound
is adopted as a basic filter for the following process,
which was described at the end of Section 3. User-
oriented design of value function makes this frame flex-
ible for various situations, and current design comes from
the perspective of service provider. This scheduling frame
works as a loop according to the requested antennas,
and the process continues with next antenna if the pre-
vious antenna failed to output a conflict free window.

Urgent request of high
altitude orbit satellites

Calculation of sliding
upper bound

Scheduled passes in MRT

Agents of request pass and
scheduled passes

Sliding
constraints

Strategies
selection

Value function
design

Scheduling utilizing Q
learning

Conflict-free ?

Scheduling result output

Yes

No

Antenna set
in request

Visible time

RT and LLT

Figure 4: Scheduling procedure utilizing reinforcement learning.
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The scheduling frame breaks out of the loop if a valid
result is generated. Two major factors are considered in
the real circumstance of satellite range scheduling: the
quality of the scheduling result and the time consumed
to obtain it. Both the scheduling strategy and the value
function of reinforcement learning will react on the objective.
The proposed frame of scheduling is not to generate the
best solution, but a result good enough that is obtained
by an intelligent scheduling system using reinforcement
learning.

5 Simulation

The simulation is implemented in a real operational con-
text, 30 ground station antennas, 250 satellites including
30 high-altitude orbit satellites, and a plan of scheduled
passes for normal requests with a period of 7 days was
involved. The data environment for mono-layer strategy
scheduling is presented in Table 1, where s_3 represents a
low-altitude orbit satellite, other satellites are high-alti-
tude orbit satellites. For high-altitude orbit satellite’s
pass in MRT of s_1, it has an original request that is listed
in its second line. The antenna service switch time is
considered in the start time and end time in Table 1,
where “Sat” represents a satellite or a satellite pass,
“ST” represents the start time of the pass, “ET” represents
the end time of the pass, “Type” means that the pass of
line is a high-altitude orbit satellite scheduled/request
pass or a low-altitude orbit satellite pass. The MRT of
urgent request of s_1 is from 13:49:00UTC to 16:39:20UTC.

We apply Q learning to the scheduling for urgent
request of s_1. The pass of s_3 cannot slide, the reinforce-
ment learning parameters are as follows: initial pass
position of s_1 is 13:55:12UTC-14:10:12UTC, learning rate
is 0.001, and slide step is 3 s. Figure 5 shows the variation
of OAE for different values of training times.

We find from Figure 5 that the maximum value of
OAE is 0.632 (the corresponding scheduled result for
s_5 is 16:31:09UTC-20:17:49UTC) and lies in the range of

=O 0.582c and =O 0.63296m (the corresponding theore-
tical position for s_5 is 16:30:58UTC-20:18:58UTC).

The data environment for multi-layer strategy sche-
duling is presented in Tables 2 and 3. The request pass
and scheduled passes in the MRT of s_1 on the first pre-
ferred antenna d_1 are listed in Table 2, The scheduled
passes in the MRT of s_2 on the first preferred antenna
d_2 except d_1 are listed in Table 3. Five agents are
request of s_1, scheduled passes s_2, s_7, s_8, and s_9,
learning rate is 0.001, and slide step is 3 s. The training
result is shown in Figure 6, due to the failure in the first
stage of mono-layer strategy scheduling, s_2 was trans-
ferred to d_2 and the multi-layer strategy is implemented.

Table 1: Data environment for mono-layer strategy simulation

Sat ST/UTC ET/UTC LLT/second Type

s_1 13:55:00 16:33:20 900 Urgent request
s_2 13:55:12 14:10:12 900 Scheduled pass
s_2 13:55:00 16:33:20 900 Original request
s_3 14:31:19 14:41:28 — Low altitude
s_4 14:58:36 15:54:06 3,330 Scheduled pass
s_4 14:58:30 16:21:46 3,330 Original request
s_5 16:35:33 20:22:13 13,600 Scheduled pass
s_5 16:11:40 20:50:35 13,600 Original request

Figure 5: Variation of OAE for different values of training times with
mono-layer strategy.

Table 2: Data environment for multi-layer strategy simulation
on d_1

Sat ST/UTC ET/UTC LLT/second Type

s_1 13:55:00 15:50:00 900 Urgent request
s_2 13:45:00 14:00:00 900 Scheduled pass
s_2 12:00:00 14:00:00 900 Original request
s_3 14:08:57 14:28:57 1,200 Scheduled pass
s_3 08:59:57 14:57:30 1,200 Original request
s_4 14:50:58 15:10:58 1,200 Scheduled pass
s_4 14:43:58 17:54:49 1,200 Original request
s_5 15:17:00 15:32:00 900 Scheduled pass
s_5 14:36:00 16:31:00 900 Original request
s_6 15:38:12 15:53:12 900 Scheduled pass
s_6 14:55:00 16:50:00 900 Original request
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Then the value of OAE equal to =O 0.434c after the suc-
cessful slide of s_2, s_8, and s_9 on d_2.

In the experiment with amore larger scale, for example,
there are more than 15 high-altitude orbit satellite passes in
one MRT, it is difficult to have a good control on the search.
An additional high-altitude scheduled pass in MRT can lead
to a slightly drawback in run time. On the contrary, a low-
altitude scheduled pass in MRT instead of high-altitude
pass can result in a similar OAE. Improving the overall
performance of the method on large-scale scenario will be
an important research topic in the future.

6 Conclusion

This article demonstrates how reinforcement learning
can be used in high-altitude satellites range scheduling
for urgent request. In the frame of our implementation,
calculation of pass sliding bound and overall antenna
effectiveness was introduced, Q learning was utilized as
the learning model. Two kinds of scheduling strategies
make our novel approach feasible to be extended to

any other user-oriented scheduling method. The trained
model can directly generate a scheduling result without
retraining a new instance. Although not considered in our
article, the proposed method can easily incorporate urgent
request scheduling for request from low-altitude satellites.
Numerical experiments are conducted on a large-scale of
practical context, and results of simulations prove that the
proposed method is feasible.
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Figure 6: Variation of OAE for different values of training times with
multi-layer strategy.
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