
Research Article

Marwan Gebran*, Kathleen Connick, Hikmat Farhat, Frédéric Paletou, and Ian Bentley

Deep learning application for stellar
parameters determination: I-constraining
the hyperparameters

https://doi.org/10.1515/astro-2022-0007
received November 22, 2021; accepted January 12, 2022

Abstract:Machine learning is an efficient method for ana-
lysing and interpreting the increasing amount of astro-
nomical data that are available. In this study, we show a
pedagogical approach that should benefit anyone willing
to experiment with deep learning techniques in the con-
text of stellar parameter determination. Using the convo-
lutional neural network architecture, we give a step-by-
step overview of how to select the optimal parameters for
deriving the most accurate values for the stellar para-
meters of stars: Teff, glog , [M/H], and v isine . Synthetic
spectra with random noise were used to constrain this
method and to mimic the observations. We found that
each stellar parameter requires a different combination
of network hyperparameters and the maximum accuracy
reached depends on this combination as well as the
signal-to-noise ratio of the observations, and the archi-
tecture of the network. We also show that this technique
can be applied to other spectral-types in different wave-
length ranges after the technique has been optimized.

Keywords: methods: data analysis, methods: statistical,
methods: deep learning, techniques: spectroscopic, stars:
fundamental parameters

1 Introduction

Machine learning (ML) applications have been used exten-
sively in astronomy over the last decade (Baron 2019). This
is mainly due to the large amount of data that are recov-
ered from space and ground-based observatories. There is
therefore a need to analyse these data in an automated
way. Statistical approaches, dimensionality reduction,
wavelet decomposition, ML, and deep learning (DL)
are all examples of the attempts that were performed
in order to derive more accurate stellar parameters
such as the effective temperature (Teff), surface gravity
(glog), projected equatorial rotational velocity (v isine),
and metallicity ([M/H]) using stellar spectra in different
wavelength ranges (Guiglion et al. 2020, Passegger et al.
2020, Portillo et al. 2020, Wang et al. 2020, Zhang et al.
2020, Bai et al. 2019, Kassounian et al. 2019, Fabbro et al.
2018, Gill et al. 2018, Li et al. 2017, Gebran et al. 2016,
Paletou et al. 2015a, b). DL is an ML method based on
deep artificial neural networks (ANN) that does not
usually require a specific statistical algorithm to predict
a solution but it is rather learned by experience and thus
require a very large dataset (Zhu et al. 2016) for training
in order to perform properly.

An overview of the automated techniques used in stellar
parameter determination can be found in the study of
Kassounian et al. (2019). We will mention some of the recent
studies that involve ML/DL. The increase of the computa-
tional power and the large availability of predefined opti-
mized ML packages (in e.g. Python, C++, and R) have
allowed astronomers to shift from classical techniques
to ML when using large data. One of the first trials to
derive the stellar parameters using neural networks was
carried out by Bailer-Jones (1997). This work demon-
strated that networks can give accurate spectral-type
classifications across the spectral-type range B2-M7.

Dafonte et al. (2016) presented an ANN architecture
that learns the function which can relate the stellar para-
meters to the input spectra. They obtained residuals in



* Corresponding author: Marwan Gebran, Department of Chemistry
and Physics, Saint Mary’s College, Notre Dame, IN 46556,
United States of America, e-mail: mgebran@saintmarys.edu
Kathleen Connick, Ian Bentley: Department of Chemistry and
Physics, Saint Mary’s College, Notre Dame, IN 46556,
United States of America
Hikmat Farhat: Department of Computer Science, Notre Dame
University-Louaize, PO Box 72, Zouk Mikaël, Lebanon
Frédéric Paletou: Université de Toulouse, Observatoire
Midi–Pyrénés, Irap, Cnrs, Cnes, 14 av. E. Belin, F–31400 Toulouse,
France

Open Astronomy 2022; 31: 38–57

Open Access. © 2022 Marwan Gebran et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/astro-2022-0007
mailto:mgebran@saintmarys.edu

the derivation of the metallicity below 0.1 dex for stars
with Gaia magnitude <G 12rvs mag, which accounts for a
number in the order of four million stars to be observed
by the radial velocity spectrograph of the Gaia satellite.¹
Ramírez Vélez et al. (2018) used an ML algorithm to mea-
sure the mean longitudinal magnetic field in stars from
polarized spectra of high resolution. They found a con-
siderable improvement of the results, allowing us to esti-
mate the errors associated with the measurements of
stellar magnetic fields at different noise levels.

Parks et al. (2018) developed and applied a convolu-
tional neural network (CNN) architecture using multi-
task learning to search for and characterize strong HI
Lyα absorption in quasar spectra. Fabbro et al. (2018)
applied a deep neural network architecture to analyse
both SDSS-III APOGEE DR13 and synthetic stellar spectra.
This work demonstrated that the stellar parameters are
determined with similar precision and accuracy to the
APOGEE pipeline.

Sharma et al. (2020) introduced an automated approach
for the classification of stellar spectra in the optical region
using CNN. They also showed that DL methods with a larger
number of layers allow the use of finer details in the spec-
trum, which results in improved accuracy and better gener-
alization with respect to traditional ML techniques.

Wang et al. (2020) introduced a DL method, SPCANet,
which derivedTeff and glog and 13 chemical abundances for
LAMOST Medium-Resolution Survey data. These authors
found abundance precision up to 0.19 dex for spectra
with a signal-to-noise ratio (SNR) down to ~10. The results
of SPCANet are consistent with those from other surveys,
such as APOGEE, GALAH, and RAVE, and are also validated
with the previous literature values including clusters and
field stars. Guiglion et al. (2020) derived the atmospheric
parameters and abundances of different species for 420165
RAVE spectra. They showed that CNN-based methods pro-
vide a powerful way to combine spectroscopic, photometric,
and astrometric data without the need to apply any priors in
the form of stellar evolutionary models.

More recently, Landa and Reuveni (2021) introduced
a multi-layer CNN to forecast solar flare events probability
occurrence of M and X classes. Chen et al. (2021) intro-
duced an AGN recognition method based on deep neural
network. Almeida et al. (2021) used MLmethods to generate
model special entry distributions (SEDs) and fit sparse
observations of low-luminosity active galactic nuclei. Rhea
et al. (2020), Rhea and Rousseau-Nepton (2021) used CNNs

and different ANNs to estimate emission-line parameters
and line ratios present in different filters of SITELLE spectro-
meter. Curran et al. (2021) used DL combined with k-Nearest
Neighbour and Decision Tree Regression algorithms to com-
pare the accuracy of the predicted photometric redshifts of
newly detected sources. Ofman et al. (2022) applied the
ThetaRay Artificial Intelligence algorithms to 10,803 light
curves of threshold crossing events and uncovered 39
new exoplanetary candidate targets. Bickley et al. (2021)
reached a classification accuracy of 88% while investigat-
ing the use of a CNN for automated merger classification.
Gafeira et al. (2021) used an assisted inversion techniques
based on CNN for solar Stokes profile inversions. In the
context of classification of galactic morphologies, Gan
et al. (2021) used ML generative adversarial networks to
convert ground-based Subaru Telescope blurred images
into quasi Hubble Space Telescope images. Garraffo et al.
(2021) presented StelNet, a deep neural network trained
on stellar evolutionary tracks that quickly and accurately
predict mass and age from absolute luminosity and effec-
tive temperature for stars of solar metallicity.

In this manuscript, we present both a new method
to derive stellar atmospheric parameters, and we also
demonstrate the effect of each of the CNN parameters
(such as the choice of the optimizers, loss function, and
activation function) on the accuracy of the results. We
will provide the procedure that can be followed in order
to find the most appropriate configuration independently
of the architecture of the CNN. This is intended as the first
in a series of papers that will help the astronomical com-
munity to understand the effect on the accuracy of the
prediction from most of the parameters and the architec-
ture of the network. CNN parameters are numerous and to
find the optimal ones is a very hard task. To do so, we
trained the CNNs with different configurations of the
parameters using purely synthetic spectra for the three
steps of training, cross-validation (hereafter called vali-
dation), and testing. Using synthetic spectra, we have
access to the true parameters during our tests. Noisy
spectra are tested in order to mimic observations.

We have limited our work to a specific type of objects,
A stars, because as mentioned previously the purpose is
not to show how well we can derive the labelled stellar
parameters but what is the effect of specific parameters
on stellar spectra analysis. By applying our models to A
stars, we use previous results (Gebran et al. 2016, Kassou-
nian et al. 2019) as a reference for the expected accuracy
of the derived stellar parameters. In the same way, the
wavelength range and the resolving power are chosen to
be representative of values used by most available instru-
ments. Once the calibration of the hyperparameters was



1 The limited magnitude of the radial velocity spectrometer (RVS) is
around 15.5 mag (Cropper et al. 2014).

DL for stellar parameters  39

performed, we have tested our optimal network config-
urations on a set of FGK stars in Section 6, using the
wavelength range of Paletou et al. (2015a).

The training, validation, and test data are explained
in Section 2. Section 3 discusses the data preparation
previous to training. The neural network construction
and the parameter selection are explained in Section 4.
Results are summarized in Section 5. The application of
the optimal networks to FGK stars is performed in Section
6. Discussion and conclusion are gathered in Section 7.

2 Training spectra

Our learning or training databases (TDB) are constructed
from synthetic spectra for stars having effective tempera-
ture between 7,000 and 10,000 K, and the wavelength
range of 4,450–5,000 Å. This range was selected because
it is in the visible domain and contains metallic and
Balmer lines sensitive to all stellar parameters (Teff, glog ,
[M/H], v isine), especially for the spectra types selected in
this work. This region is also insensitive to microturbulent
velocity which was adopted to be = /ξ 2 km st based on
the work of Gebran et al. (2016, 2014). Surface gravity,

glog , is selected to be in the range of 2.0–5.0 dex. Pro-
jected rotational velocity, v isine , is calculated between 0
and 300 −km s 1. The metallicity, [M/H], is in the range of
−1.5 and +1.5 dex. Table 1 displays the range of all stellar
parameters. These spectra are used for both the training
and the validation phases. Approximately 55,000 noise
free synthetic spectra were calculated using a random
selection of the stellar parameters in the range of Table 1.
These spectra are used instead of the observations (test data
without noise). Gaussian SNRs, ranging between 5 and 300,
were added to these test spectra in order to check the accu-
racy of the technique on noisy data (test data with noise).

Details for the calculations of the synthetic spectra
can be found in the study of Gebran et al. (2016) or Kas-
sounian et al. (2019). In summary, 1D plane-parallel model

atmospheres were calculated using ATLAS9 (Kurucz 1992).
These models are in local thermodynamic equilibrium
(LTE) and in hydrostatic and radiative equilibrium. We
have used the new opacity distribution function in the
calculations (Castelli and Kurucz 2003) as well as a mixing
length parameter of 0.5 for ≤ ≤T7,000 K 8,500 Keff , and
1.25 for ≤T 7,000 Keff (Smalley 2004).

We have used Hubeny and Lanz (1992) SYNSPEC48 syn-
thetic spectra code to calculate all normalized spectra. The
adopted line lists are detailed in the study of Gebran et al.
(2016). This list is mainly compiled using the data from
Kurucz gfhyperall.dat², VALD³, and the NIST⁴ databases.

Finally, the resolving power is simulated to =R 60,000.
This value falls in the range between low and high resolution
spectrographs. The technique that will be shown in the next
sections can be used for any resolution. The construction and
the size of the TDB will be discussed in Section 5. The use of
synthetic spectra inML to constrain the stellar parameters has
shown to suffer from the so-called synthetic gap (Fabbro et al.
2018, Passegger et al. 2020). This gap refers to the differences
in feature distributions between synthetic and observed data.
We have decided to limit our work to synthetic data for two
reasons: first we would like to remove the hassle of the data
preparation steps (data reduction, flux calibration, flux nor-
malization, radial velocity correction, and so on), and second
because our intention is to find the strategy and technique
that should be adopted in ML for deriving stellar parameters.

We are working on a future paper that deals with the
architecture of the network as well as the choice of
the kernel sizes and the number of neurons. Combining
the best strategy to constrain the hyperparameters (this
manuscript) as well as the most optimal architecture
(future studies) will allow us to use a combination of syn-
thetic and observational data in our training database.
Having well-known stellar parameters, these observational
data will allow us to remove/minimize the synthetic gap
and better constrain the stellar parameters.

3 Data preparation

The TDB contains Nspectra spectra that span the wave-
length range of 4,450–5,000 Å. Having a wavelength
step of 0.05 Å, this results in =N 10,800λ flux points
per spectrum. The TDB can then be represented by a

Table 1: Ranges of the parameters used for the calculation of the
synthetic spectra TDBs

Parameters Range

Teff (K) []7,000, 11,000
glog (dex) []2.0, 5.0

[M/H] (dex) []−1.5, 1.5
v isine (km s −1) []0, 300

/λ λΔ 60,000



2 http://kurucz.harvard.edu.
3 vhttp://www.astro.uu.se/ vald/php/vald.php.
4 http://physics.nist.gov.

40  Marwan Gebran et al.

http://kurucz.harvard.edu
vhttp://www.astro.uu.se/ vald/php/vald.php
http://physics.nist.gov

matrix M of size ×N Nλspectra . A colour map of a sub-
sample of M is displayed in Figure 1. Although the syn-
thetic spectra are normalized, some wavelength points
could have fluxes larger than unity. This is due to the
noise that is incorporated during the so-called data
augmentation procedure, which will be explained in
Section 4.1.1.

Training a CNN using the M matrix is time con-
suming, especially if one should use a larger wavelength
range or a higher resolution. For that reason, we have
applied a dimensionality reduction technique, i.e. prin-
cipal component analysis (PCA), in order to reduce the
size of the training TDB as well as the size of the validation,
test, and noisy synthetic data. Although this step is optional,
we recommend its usewhenever the data can be represented
by a small number of coefficients. The PCA can reduce the
size of each spectrum from Nλ to nk. The choice of nk
depends on the many parameters, the size of the database,
the wavelength range, and the shape of the spectra lines. As
a first step, we need to find the principal components, and to
do so, we proceed as follows.

The matrix M is averaged along the Nspectra-axis and
the result is stored in a vector M̄ . Then, we calculate the
eigenvectors ()λek of the variance–covariance matrix C
defined as

() ()= − ⋅ −C M MM M¯ ¯ ,T (1)

where the superscript “T” stands for the transpose
operator. C has a dimension of ×N Nλ λ. Sorting the
eigenvectors of the variance–covariancematrix in decreasing
magnitude will result in the “principal components.” Each
spectrum of M is then projected on these principal com-
ponents in order to find its corresponding coefficient pjk

defined as

()= − ⋅ ep M M̄ .jk j k (2)

The choice of the number of coefficient is regulated
by the reconstructed error as detailed in the study of
Paletou et al. (2015a):

()
⎛

⎝
⎜

∣ ∣ ⎞

⎠
⎟

=

+ ∑ −
=

e
E k

M p M
M

¯
.k

k
jk k j

j
max

1
max

(3)

We have opted to a value for nk that reduces the mean
reconstructed error to a value of <0.5%. As an example,
using a database of 25,000 spectra with stellar para-
meters ranging randomly between the values in Table 1
requires less than seven coefficients to reach an accuracy
<1%, and a value of =n 17k to reach a 0.5% error as
shown in Figure 2. This technique has shown its effi-
ciency when applied to synthetic and/or real observa-
tional data with >T 4,000 Keff (see Gebran et al. 2016,
Paletou et al. 2015a, b, for more details).

Applying the same procedure to all our TDB and
taking the maximum value to be used for all, we have
adopted a constant value for =n 50k . This value takes
into account all the databases that will be dealt with in
this work, especially that some will be data augmented as
will be explained in Section 4.1.1. This means that instead
of training a matrix having a dimension of ×N Nλspectra ,
we are using one with dimension of ×N nkspectra , with

≪n Nk λ. In that case, our new data consist of a matrix
containing the coefficients that are calculated by pro-
jecting the spectra on the nk eigenvectors.

This projection procedure over the principal compo-
nents is then applied to the validation, test, and noisy
spectra datasets.

Figure 1: Colour map representing the fluxes for a sample of the
training database using data augmentation. Wavelengths are in Å.

Figure 2: Mean reconstructed error as a function of the number of
principal components used for the projection. The dashed lines
represent the 1 and 0.5% error, respectively. For >n 17k , the spectra
can be reconstructed with more than 99.5% accuracy.

DL for stellar parameters  41

4 DL: ANN

This section begins with a brief description of supervised⁵
learning. Given a data set ()X Y, , the goal is to find a
function f such that ()f X is as “close” as possible to Y .
For example,Y could be the effective temperature or sur-
face gravity and X the corresponding spectra. This “clo-
seness” is typically measured by defining a loss function

(())L f X Y, that measures the difference between the pre-
dicted and actual values. Therefore, the goal of the
learning process is to find f that minimizes L for a given
dataset ()X Y, . Ultimately, the success of any learning
method is assessed by how well it generalizes. In other
words, once the optimal f is found for the training set
()X Y, , and given another data set ()U V, , how close is

()f U to V .
One of the most successful methods in tackling this

kind of problem is ANN, a subset of ML. As the name
suggests, an ANN is a set of connected building blocks
called neurons which are meant to mimic the operations
of biological neurons (Anthony and Bartlett 1999, Wang
2003). Different kinds of ANNs can be built by varying the
number of connections between and operations of individual
neurons. The operations performed by these neurons depend
on a number of parameters called weights and some non-
linear function called the activation. At a high level, an ANN
is just the function f that was described earlier. Since the
network architecture is chosen at the start, finding the
optimal f boils down to finding the optimal weight para-
meters that minimize the cost function L.

Regardless of the type of ANN used, the process of
finding the optimal weights is more or less the same,
and works as follows. After the network architecture is
chosen, the weights are initialized, then a variant of gra-
dient descent is applied to the training data. Gradient
descent changes the parameters iteratively, at a certain
rate proportional to their gradient, until the loss value is
sufficiently small (Ruder 2016). The proportionality con-
stant is called the learning rate. While this process is well-
known, there is to date no clear prescription for the
choice of different components. The main difficulty arises
from the fact that the loss function contains multiple
minima with different generalization properties. In other
words, not all minima of the loss function are equal in
terms of generalization. Which minimum is reached at
the end of training phase depends on the initial values
chosen for the weights, the optimization algorithm used,

including the learning rate and the training dataset (Zhang
et al. 2016). In the absence of clear theoretical prescrip-
tions for the components, one has to rely on experience
and best practices (Bengio 2012).

One popular type of ANN is the feedforward network,
where neurons are organized in layers, with the outputs
of each layer fully connected to the inputs of the next. By
increasing the number of layers (whence the “deep” in
“DL”), many types of data can be modelled to a high
degree of accuracy. Fully connected ANNs, however,
have some shortcomings, such as the large number
of parameters, slow convergence, overfitting, and most
importantly, failure to detect local patterns. Almost all
the aforementioned shortcomings are solved by using
convolution layers.

4.1 CNN

A CNN is a multi-layer network where at least one of the
layers is a convolution layer LeCun (1989). As the name
suggests, the output of a convolution layer is the result of
a convolution operation, rather than matrix multiplica-
tion, as in feedforward layers, on its input. Typically, this
convolution operation is performed via a set of filters.
CNNs have been very successful in image recognition
tasks (Yim et al. 2015). Most commonly, CNNs are used
in conjunction with pooling layers. In this work, since the
input to the CNN has been already processed with PCA
to reduce the dimension of the training database, we
decided to omit pooling layers in our work. Even though
CNNs have been mostly used for processing image data,
which can be viewed as 2D grid data, they can also be
used for 1D data as well.

The architecture of a CNN differs among various stu-
dies. There is no perfect model, it all depends on the type
and size of the input data, and on the type of the pre-
dicted parameters. In this work, we will not be con-
straining the architecture of the model but rather we
will be providing the best strategy to constrain the para-
meters of the model for a specific and defined architec-
ture. Figure 3 shows a flow chart of a typical CNN. Table 2
represents the different layers, the output shape for each
layer, and the number of parameters used in our model.
In the same table, “Conv” stands for convolutional layer,
“Flat” for flattening layer which transforms the matrix
of data to one dimensional, and “Full” stands for fully
connected layer. The total number of parameters to be
trained every iteration is 764,357. The choice of such an
architecture is based on aF trial and error procedure that



5 Supervised learning refers to algorithms that calculate a predic-
tive model using data points with known labels/outcomes.

42  Marwan Gebran et al.

we performed in order to find the best model that can
handle all types of training databases used in this work.
The strategy of selecting the number of hidden layers and
the size of the convolution layers will be described in a
future paper. We decided to do all our tests using the ML
platform TensorFlow⁶with the Keras⁷ interface. The reason
is that these two options are open-source and written in
Python.

Although the calculation time is an important para-
meter constraining the choice of a network, we have
decided not to take it into consideration while selecting
the optimal network. The reason for that is that the cal-
culation time depends mainly on the network’s architec-
ture which is not discussed in this article. Two parameters
are also constraining the calculation time, the number of
epochs, and the batch size (related to the size of the TDB).
Calculation time increases with increasing epoch number
and decreases with increasing batch size. The main goal
of this work is to find the optimal configuration for the
parameters independently of the calculation time and
the Network architecture. As a rule of thumb, using a
Database of 70,000 spectra and 50 eigenvectors, it takes

around 17 h to run the CNN over 2,000 epochs using 64
batches and a Dropout of 30%. These calculations are
done on a Intel Core i7-8750H CPU ×@ 2.20 GHz 6 CPU.

4.1.1 Data augmentation

Data augmentation is a regularization technique that
increases the diversity of the training data by applying
different transformations to the existing one. It is usually
used for image classification (Shorten and Khoshgoftaar
2019) and speech recognition (Jaitly and Hinton 2013). We
tested this approach in our procedure in order to take into

Figure 3: CNN architecture used in this work. A PCA dimension reduction transforms the spectra into a matrix of input coefficient. This input
passes through several convolutional layers and fully connected layers in order to train the data and predict the stellar parameters.

Table 2: Different layers that are used in the CNN used in our work

Layer Output shape # Parameters

Conv ×50 8 40
Conv ×50 4 132
Conv ×50 4 68
Flat 200 0
Full 1,024 205,824
Full 512 524,800
Full 64 32,832
Full 10 650
Full 1 11



6 https://www.tensorflow.org/.
7 https://keras.io/.

DL for stellar parameters  43

https://www.tensorflow.org/
https://keras.io/

account some modifications that could occur in the shape
of the observed spectra due to a bad normalization or
inappropriate data reduction. We also took into account
the fact that observed spectra are affected by noise and
that the learning process should include the effect of this
parameter.

For each spectrum in the TDB, five replicas were per-
formed. Each of these five replicas has different amount
of flux values but they all have the same stellar labelsTeff,

glog , [M/H], and v isine . The modifications are done as
follows:
– A Gaussian noise is added to the spectrum with an SNR

ranging randomly between 5 and 300.
– The flux is multiplied in a uniform way with a scaling

factor between 0.95 and 1.05.
– The flux is multiplied with a new scaling factor and

noise was added.
– The flux is multiplied by a second-degree polynomial

with values ranging between 0.95 and 1.05 and having
its maximum randomly selected between 4,450 and
5,000 Å.

– The flux is multiplied by a second-degree polynomial
and Gaussian noise added to it.

The purpose of this choice is to increase the dimen-
sion of the TDB from ×N Nλspectra to × ×N N6 λspectra and to
introduce some modifications in the training spectra that
could appear in the observations that we need to analyse.
Suchmodifications are the noise and the commonly observed
departures from a perfect continuum normalization.

Distortions in observed spectra could appear due to bad
selection in the continuum points. We have tested the two
options, with and without data augmentation, and the
results are shown in Section 5. Figure 4 displays one syn-
thetic spectrum having =T 8,800 Keff , =glog 4.0 dex,

=
−v isin 14 km se

1, and [M/H] = 0.0 dex as well as the
extra five modifications that were performed on this spec-
trum. We have decided to use a continuous SNR between 5
and 300 but different modifications could be tested. As an
example, González-Marcos et al. (2017) adapted the SNR of
the spectra used in the training dataset to the SNR of the
spectra for which the atmospheric parameters are needed
(evaluation set). They concluded that in case of Teff, only
two regression models are needed (SNR = 50 and 10) to
cover the entire SNR range.

4.1.2 Initializers: Kernel and bias

The initialization defines the way to set the initial weights.
There are various ways to initialize, and we will be testing
the following:
– Zeros: weights are initialized with 0. In that case, the

activation in all neurons is the same and the derivative
of the loss function is similar for every weight in every
neuron. This results in a linear behaviour for the
model.

– Ones: a similar behaviour as the Zeros but using the
value of 1 instead of 0.

– RandomNormal: initialization with a normal distribution.

Figure 4: The effect of the data augmentation on the shape of the spectra. Upper left: spectrum represents the original synthetic spectra.
Upper middle: Gaussian noise added to the synthetic spectra. Upper right: synthetic spectrum with the intensities multiplied by a constant
scale factor. Bottom left: Gaussian noise added to the synthetic spectra and multiplied by a constant scale factor. Bottom middle: synthetic
spectrum with the intensities multiplied by a second-degree polynomial. Bottom right: Gaussian noise added to the synthetic spectra and
multiplied by a second-degree polynomial. All these spectra have the same stellar parameters (=T 8,800 Keff , =glog 4.3 dex,

=v isin 45 km se
−1, [M/H] = 0.0 dex).

44  Marwan Gebran et al.

– RandomUniform: initializationwith a uniform distribution.
– TruncatedNormal: initialization with a truncated normal

distribution.
– VarianceScaling: initialization that adapts its scale to

the shape of weights.
– Orthogonal: initialization that generates a random

orthogonal matrix.
– Identity: initialization that generates the identity matrix.
– Lecun_uniform: LeCun uniform initializer (Lecun et al.

1998).
– Glorot_normal: Xavier normal initializer (Glorot and

Bengio 2010).
– Glorot_uniform: Xavier uniform initializer (Glorot and

Bengio 2010).
– he_normal: He normal initializer (He et al. 2015).
– Lecun_normal: LeCun normal initializer (Lecun et al. 1998).
– he_uniform: He uniform variance scaling initializer (He

et al. 2015).

For all of these initializers, the biases are initialized
with a value of zero. It will be shown later that most of
these initializers give the same accuracy except for the
zeros and ones.

4.1.3 Optimizer

Once the (parameterized) network architecture is chosen,
the next step is to find the optimal values for the para-
meters. If we denote by θ the collective set of parameters,
then, by definition, the optimal values, ∗θ , are the ones
that minimize a certain loss function ()L θ ; a measure of
difference between the predicted and the actual values.
This optimization problem is, typically, solved in an
iterative manner, by computing the gradient of the loss
function with respect to the parameters.

Let θt denote the set of parameters at iteration t. The
iterative optimization process produces a sequence of
values, … ∗θ θ, ,1 that converges to the optimal values ∗θ .
At a given step t we define the history of that process
as the set { () ()}= ∇

=
� θ L θ L θ, ,t i i i i

t
0. The values +θt 1 are

obtained from θt according to some update rule �

()=+ �θ H γ, ,t t t1 (4)

where γt is a set of hyperparameters such as the
learning rate.

Different optimization techniques use a different
update rule. For example, in the so-called “vanilla” gra-
dient descent, the update rule depends on the most
recent gradient only:

()= − ∇+θ θ γ L θ .t t t1 (5)

Other methods include the whole history with different
functional dependence on the gradient and different rates
for each step (see Choi et al. 2020 for a survey). Different
optimization techniques are available in keras and we
will be testing the following:
– Adam: an adaptive moment estimation that is widely

used for problems with noise and sparse gradients.
Practically, this optimizer requires little tuning for dif-
ferent problems.

– RMSprop: a root mean square propagation that itera-
tively updates the learning rates for each trainable
parameter by using the running average of the squares
of previous gradients.

– Adadelta: it is an adaptive delta, where delta refers to
the difference between the current weight and the
newly updated weight. It also works as a stochastic
gradient descent method.

– Adamax: an adaptive stochastic gradient descent method
and a variant of Adam are based on the infinity norm. It
is also less sensitive to the learning rates than other
optimizers.

– Nadam: Nesterov-accelerated Adam optimizer that is
used for gradients with noise or with high curvatures.
It uses an accelerated learning process by summing up
the exponential decay of the moving averages for the
previous and current gradient. It is also an adaptive
learning rate algorithm and requires less tuning of the
hyperparameters.

4.1.4 Learning rate

As mentioned in the beginning of the section the training
rate can affect the minimum reached by the loss function
and therefore has a large effect on the generalization
property of the solution. In this article, we followed the
recommendation of Bengio (2012) and chose the learning
rate value to be half of the largest rate that causes
divergence.

4.1.5 Dropout

Dropout is a regularization technique for neural networks
and DL models that prevent the network from overfitting
(Srivastava et al. 2014). When dropout is applied, ran-
domly selected neurons removed each iteration of the
training and do not contribute to the forward propagation
and no weight updates are applied to these neurons

DL for stellar parameters  45

during backward propagation. Statistically, this has the
effect of doing ensemble average over different sub-net-
works obtained from the original base network. We tried
to find the optimal number for the dropped out fraction of
neurons. Dropout layers are put after each convolutional
one. Tests were performed with dropout fraction ranging
between 0 and 1.

4.1.6 Pooling

Pooling layer is a way to down sample the features (i.e.
reducing the dimension of the data) in the database by
taking patches together during the training. The most
common pooling methods are the average and the max
pooling Zhou and Chellappa (1988). The average one
summarizes the mean intensity of the features in a patch
and the max one considers only the most intense (i.e.
highest value) value in a patch. The size of the patches
and the number of filters used are decided by the user.
The standard way to do that is to add a pooling layer after
the convolutional layer and this can be repeated one or
more times in a given CNN. However, pooling makes
the input invariant to small translations. In image detec-
tion, we need to know if the features exist and not their
exact position. That is why this technique has shown to
be valuable when analysing images (Goodfellow et al.
2016). This is not the case in spectra because the position
of the lines needs to be well-known (Section 5). But also,
as discussed previously, pooling layers are not needed in
our case because the dimension of the TDB was already
reduced drastically by applying PCA.

4.1.7 Activation functions

The activation function is a non linear transformation
that is applied on the output of a layer and this output is
then sent to the next layer of neurons as input. Activation
functions play a crucial role in deriving the output of a
model, determining its accuracy and computational effi-
ciency. In some cases, activation functions might prevent
the network from converging.

The activation function for the inner layers of deep
networks must be nonlinear, otherwise no matter how
deep the network is, it would be equivalent to single
layer (i.e. regression/logistic regression). Having said
that we have tested five activation functions that are as
follows:

– sigmoid: () =
+

−
f x e

1
1 x

– tanh: () =
−

+

−

−
f x e e

e e

x x

x x

– relu: () ()=f x xMax 0,

– elu: () ⎧
⎨⎩ ()

=
≥

− <
f x x x

α e x
0

1 0x

– selu: () ⎧
⎨⎩ ()

=
≥

− <

f x λx x
λα e x

0
1 0.x

It is important to note that in this section we discuss
the choice of the activation function for inner layers only.
The choice of the activation for the last layer is usually
more or less fixed by the type of the problem and how one
is modelling it. For example, if one is performing binary
classification, then a sigmoid-like activation is usually
used (or softmax for multiclass classification) and inter-
preted as a probability. However, for regression-like pro-
blems a linear activation is usually used for the last layer.
In our case, which is a purely regression problem, the last
layer will have a linear activation function.

The sigmoid and tanh restrict the magnitude of the
output of the layer to be ≤1. Both, however, suffer from
the vanishing gradient problem (Glorot et al. 2011). For
relatively large magnitudes both functions saturate and
their gradient becomes very small. Since deep networks
rely on backpropagation for training the gradient, the
first few layers, being a product of the succeeding layers,
become increasingly small. The rectifier class of activa-
tion, relu, elu, and so on seem to minimize the vanishing
gradient problem. Also, they lead to sparse representa-
tion, which seems to give better results (He et al. 2015,
Maas 2013).

4.1.8 Loss functions

The loss function controls the prediction error of an NN as
explained in Section 4. It is an important criterion in
controlling the updates of the weights in an NN, mainly
during the backward propagation. The selection of the
type of the loss function is decided depending on the
types of output labels. If the output is a categorical vari-
able, one can use the categorical crossentropy or the
sparse categorical crossentropy. If we are dealing with a
binary classification, binary crossentropy will be the
normal choice for a loss function. Finally, in case of a
regression problem like the one used in stellar spectra
parameters determination, variants of mean squared error
loss functions are used. In our work, we have tested the
following functions:

– Mean squared error: ()∑ −
=

y ŷN i
N

i i
1

1
2

46  Marwan Gebran et al.

– Mean squared logarithmic error: ()∑
=

+

+

logN i
N y

y
1

1
1
1 ˆ

2i

i

– Mean absolute error: ∣ ∣∑ −
=

y ŷN i
N

i i
1

1

y being the actual label, ŷ the predicted ones, and N the
number of spectra in the training dataset.

Loss function selection can differ from one study to
the other (Rosasco et al. 2004). For that reason, we have
tested the above three functions in deriving the stellar
parameters.

4.1.9 Epochs

The number of epochs is the number of times the whole
dataset is used for the forward and the backward propaga-
tion. The number of Epochs controls the number of times the
weights of the neurons are updated. While increasing the
number of Epochs, we can move from underfitting to over-
fitting passing through the optimal solution for our network.

4.1.10 Batches

Instead of passing the whole training dataset into the NN,
we can divide it in NBatches batches and iterate on all
batches per epoch. In that case, the number of iteration
will be the number of batches needed to complete one
epoch. Batches are used in order to avoid the saturation
of the computer memory and the decrease of iterations
speed. However, the selection of the optimal batch number
is not straightforward. Adopted values are usually 32, 64,
or 128 (Keskar et al. 2016).

One of the most important measures of the success
for a deep neural network is how well it generalizes on
some test data, not included in the training phase. In
current deep neural networks, the loss function has mul-
tiple minima. Many experimental studies have shown
that, during the training phase, the path to reaching a
minimum is as important as the final value (Neyshabur
et al. 2017, Zou et al. 2019, Zhang et al. 2016). A good rule
of thumb is that a “small,” less than 1% the size of the
data, batch size generalizes better than “large” batches,
about 10% of the training data (Keskar et al. 2016).

5 Results and analysis

The effect of each CNN parameter on the accuracy of the
stellar parameters has been tested. To do so, we have

used the same CNN with the same parameters for all
our tests while changing only the concerned one at
each time. For example, to find the best epoch numbers,
we fix the activation function, the optimizer, the number
of batches, the dropout percentage, the loss function, and
the kernel initializer while iterating on the number of
epochs. The same parameters are used again for finding
the optimal dropout percentage and so on. The fixed
values used in these calculations are the he_normal for
the kernel initializer, the mean squared error for the loss
function, the “ADAM” optimizer, the relu activation func-
tion, 50% of dropout, 64 batches. These tests are performed
with epochs of 100, 500, 1,000, 2,000, 3,000, 4,000, and
5,000. In all tests, the distribution of Training and Validation
is 80% and 20%, respectively.

The results will be a combination of test errors span-
ning over different number of epochs for each stellar
parameter and CNN configuration. The variation with
the number of epochs ensures that the trends are real
and not due to local minima as a result of the low number
of iterations. The tests are a collection of 110,000 syn-
thetic spectra, half of them without noise and half with
random noise as introduced in Section 2.

To better visualize the results and to have a better
conclusion about the optimal configurations, we display
in Figures 5–8 the relative error of the observations.
These errors are calculated by dividing the values by
the maximum observation standard deviation in all con-
figurations (i.e. including all epoch simulations). This
will allow us to target the minimum values and pinpoint
the best parameters.

In what follows, we show the results that were per-
formed using a training dataset of 40,000 randomly
generated synthetic spectra in the ranges of Table 1. In
Section 5.5, we discuss the effect of using a small or a
large training database and the effect of using or not
data augmentation.

5.1 Effective temperature

According to Figure 5, the use of a relu or elu activation
functions leads to a similar conclusion within a difference
of few percents. And this could be applied independently
of the number of epochs. As for the Optimizer, Adam and
Adamax optimizers seem to be consistently accurate
across all epoch numbers. The optimal number of batches
is found to be between 32 and 64. The number of epochs
is tightly related to the batch number, however, in case of
64 batches, the optimal number of epochs is found to be

DL for stellar parameters  47

2,000. The dropout factor is, as introduced in Section
4.1.5, a regularization technique that avoids overfitting.
This means that the optimal value depends on the size of
the training database. In the case of our 40,000 sample
database, the optimal dropout is found to be between 10
and 60%. Neural networks minimize a loss function and
accordingly derive the coefficient that will be used later to
predict the parameters of the observations. Among the
three loss functions that we tested, small differences are
found among them. We will be using the mean squared
logarithmic error for Teff . Finally, the initialization of the
network coefficients could be done using any initializer
with an exception of Zeros and Ones. Neural networks tend
to get stuck in local minima when using these two options.
The ratio of the standard deviation with respect to the max-
imum exhibits an up and down variation that resembles a
jig-saw pattern with respect to the epoch number. This is
mainly due to the fact that points correspond to different
runs. Also, we can notice that the variation of the relative
error corresponds to the smallest variations between the
different hyperparameters, and this is the case for all stellar

parameters. Of course, the search will depend on the size of
the training database, the spectral region, the spectral-type,
the resolution, and so on.

The optimal configuration that we found for Teff cor-
responds to the following parameters:

Activation function: relu.
Optimizer: Adam.
Batches: 64.
Epochs: 2,000.
Dropout: 30%.
Loss function: mean squared logarithmic error.
Kernel initializer: he_normal.

5.2 Surface gravity

The accuracies for gravity behave differently than the one
of Teff with respect to the various parameters. According
to Figure 6, the optimal values are found to be relu
or tanh for the activation function; Adam, Adamax, or

Figure 5: Effect of varying the CNN parameters on the accuracy of Teff for different epoch numbers. The results are displayed by dividing the
observation standard deviation by their maximum value in each test.

48  Marwan Gebran et al.

RMSprop for the optimizer, a number of batches between
32 and 128, an epoch number of 3,000, a Dropout fraction
between 0.3 and 0.4, a mean squared logarithmic error
loss function, and all kinds of initializers except for zeros
and ones.

In case of glog the optimal configuration is found to
be using the following parameters:

Activation function: tanh.
Optimizer: Adamax.
Batches: 128.
Epochs: 3,000.
Dropout: 30%.
Loss function: mean squared logarithmic error.
Kernel initializer: he_normal.

5.3 Metallicity

The metallicity parameter, [M/H], also behaves differ-
ently than Teff and glog . As seen in Figure 7, [M/H]

requires a different combination of parameters in our
CNN in order to reach optimal results. tanh or relu activa-
tion functions give the least error in most epoch number
situations. Adam and RMSprop optimizer lead to similar
results within few percents of differences. A combination
of 16 batches and 1,000 epochs is appropriate to derive
[M/H] with low errors. A dropout between 10 and 30%, a
mean absolute error for a loss function, and a RandomU-
niform kernel initializer are to be used in order to reach
the highest possible accuracy for [M/H]. Our technique
was applied to A stars and extrapolated to FGK stars
(Section 6). However, specific considerations should be
taken into account when deriving the metallicities of cool
stars due to forests of molecular lines that are present in
the spectra (Passegger et al. 2021).

In case of [M/H], the optimal configuration is found
to be using the following parameters:

Activation function: tanh.
Optimizer: Adam.
Batches: 16.

Figure 6: Same as Figure 5 but for glog .

DL for stellar parameters  49

Epochs: 1,000.
Dropout: 20%.
Loss function: mean absolute error.
Kernel initializer: RandomUniform.

5.4 Projected equatorial rotational velocity

Finally, in case of the equatorial projected rotational
velocity, v isine , tanh seems to be the optimal activation
function independently of the epoch and batches number
(Figure 8). Adam or Adamax optimizers can be used for
v isine with small differences in the derived accuracies. A
combination of 32 batches with 3,000 epochs is the one
that gives the minimum error for the derived v isine
values. A dropout fraction between 0.1 and 0.4 yields
very close errors. A mean squared error can be used for
the loss function and all kernel initializers can also be
applied except the zeros and ones for the same reason
explained in Section 5.1.

In case of v isine , the optimal configuration is found
to be using the following parameters:

Activation function: tanh.
Optimizer: Adamax.
Batches: 32.
Epochs: 3,000.
Dropout: 30%.
Loss function: mean squared error.
Kernel initializer: he_Uniform.

5.5 Database size and the role of
augmentation

In order to check the dependency of the performance of
the CNN on the size of the training set, three databases
are used. The first database (TDB1) contains 25,000 random
synthetic spectra as explained in Section 5, the second
database (TDB2) contains 40,000 random spectra, and
the third (TDB3) contains 70,000 spectra, resulting from

Figure 7: Same as Figure 5 but for [M/H].

50  Marwan Gebran et al.

the same TDB1 parameter ranges. We have also checked
the importance of using Data Augmentation as a regular-
ization technique for deriving accurate parameters (see
Section 4.1.1 for details).

For each stellar parameter, we used the optimal CNN
with the configuration that was derived in Sections 5.1–5.4.
Each configuration was tested with TDB1, TDB2, and TDB3
with and without Data Augmentation. Figure 9 displays
the average relative standard deviation for each stellar
parameter with respect to the maximum values, for the
training, validation, test, and observation sets. In order to
quantify these proxies for the uncertainties of the techni-
ques, Table 3 collects the standard deviations for the four
stellar parameters as a function of the training database.

According to Table 3, each parameter behaves differ-
ently with respect to the change of the databases. This is
mainly due to the number of unique values of the parameter
in the database. For that reason, [M/H] is well represented
by TDB1 without data augmentation, whereas T glogeff and

v isine require a larger database to be well represented. glog
can be well represented with TDB3 with data augmentation,
whereasTeff can be predicted with TDB2 with data augmen-
tation. Finally, v isine can be predicted using TDB3 with
data augmentation.

5.6 Accuracy for the optimal configuration

After selecting the optimal configuration for each stellar
parameter, the predicted parameters are displayed in
Figure 10 as a function of the input ones for the training,
validation, and the two sets of test datasets. All data
points are located around the =y x line. The dispersion
of the observation around that line is due to spectra with
very low signal to noise. The accuracy that we found
using our CNN architecture seems to be appropriate for
A stars as they are comparable to most of the previous

Figure 8: Same as Figure 5 but for v isine .

DL for stellar parameters  51

studies using classical tools (Aydi et al. 2014) or more
complicated statistical tools (Gebran et al. 2016, Kassou-
nian et al. 2019). The same is true for all parameters.

In order to verify the effect of the noise on the pre-
dicted parameters, Figure 11 displays the variation of the
accuracy of the predicted values with respect to the input
SNR. The figure also displays the observations depending
on the values of v isine . The reason for that is that
increasing v isine induces blending in the spectra and
thus less information to be used in the prediction. This
is reflected in the case of low v isine for which the

predicted values are found to be more accurate than the
case of large v isine .

6 Extrapolating to other
spectral-types

In order to verify how universal the results are, we checked
that the optimization of the code is not dependent on

Figure 9: Relative errors for each stellar parameter using TDB1,
TDB2, and TDB3 with and without data augmentation as a training
dataset.

Table 3: Derived standard deviation for each parameter using TDB1,
TDB2, and TDB3 with and without data augmentation

Database σTeff (K) σ glog

(dex)
[/]σ M H

(dex)
σ km sv isin

−1
e

TDB1
Training 78 0.03 0.06 0.97
Validation 112 0.11 0.07 4.00
Test without
noise

98 0.10 0.07 3.30

Test with noise 133 0.13 0.07 5.25
TDB1 with data augmentation

Training 109 0.03 0.09 1.40
Validation 129 0.07 0.09 3.36
Test without
noise

129 0.10 0.10 3.66

Test with noise 152 0.12 0.10 5.00
TDB2

Training 79 0.04 0.08 1.55
Validation 104 0.10 0.08 4.00
Test without
noise

99 0.09 0.09 2.90

Test with noise 139 0.11 0.09 5.50
TDB2 with data augmentation

Training 89 0.04 0.10 1.85
Validation 107 0.07 0.10 3.40
Test without
noise

103 0.09 0.10 3.12

Test with noise 127 0.10 0.11 4.36
TDB3

Training 92 0.04 0.07 1.60
Validation 112 0.08 0.08 3.50
Test without
noise

105 0.08 0.08 2.70

Test with noise 140 0.10 0.09 4.90
TDB3 with data augmentation

Training 128 0.04 0.11 1.95
Validation 136 0.06 0.11 3.20
Test without
noise

131 0.07 0.11 2.70

Test with noise 150 0.08 0.12 3.90

The values for the Training, Validation, and the two sets of Test are
depicted in this table.

52  Marwan Gebran et al.

wavelength and/or spectral-type, we also tested the proce-
dure on FGK stars. To do that, we have calculated a TDB
specific for FGK stars using the parameters displayed in
Table 4. The wavelength range was selected to coincide
with the one of Paletou et al. (2015a). This range is sensitive
to all the concerned stellar parameters.

A database of 50,000 random synthetic spectra with
known stellar labels is used in the training. About 20,000
test data, with and without noise, were calculated in
the same range of Table 4 to be used for verification.
The optimal NNs that were introduced in Section 5 were
used again, as a proof of concept, for the FGK TDB. The
results are displayed in Table 5 for training, validation,
and tests.

Because of the low rotational velocities for FGK stars
(<

−v isin 100 km se
1), the results are more accurate. That

is not surprising because v isine drastically affects the
shape of the lines as in A stars. The derived errors on
the stellar parameters are found to be 82 K, 0.07 dex,
0.90 −km s 1, and 0.06 dex for Teff, glog , v isine , and
[M/H], respectively (Table 5). These results are very

promising, but we should be aware of the complications
that would arise when using real observations, espe-
cially in the case of the cool M stars. These stars have
been analysed in the context of exoplanet search (Shan
et al. 2021, Passegger et al. 2020) and show complica-
tions in their spectra mainly related to the continuum
normalization. Adapting the data preparation and the
CNN will be inevitable in order to take into account
these effects. These results also show that when deriving
the stellar parameters for specific spectral-types, the
wavelength region should be selected according to these
spectral lines/bands most sensitive to the variations of
the parameters one seeks.

7 Discussion and conclusion

The purpose of this work is not only to find the best tool
for the accurate prediction of parameters but also to
show the steps that should be taken in order to reach

Figure 10: Predicted stellar parameters using the optimal CNN configurations forTeff, glog , v isine , and [M/H] as a function of the input ones
for the training, validation, and test databases as well as for the noise added observations.

DL for stellar parameters  53

the optimal selection of the CNN parameters. Often scien-
tists use DL as a black box without explaining the choice of
the parameters and/or architecture. In this manuscript, we
have explained the reason for selecting specific hyperpara-
meters while emphasizing the pedagogical approach. To
have a more effective tool, one should change the architec-
ture of the model. The architecture of the model depends on
the type and range of the input. In this work, we have fixed
the architecture and iterated on the hyperparameters only.
Sections 5.1–5.4 show that for each stellar parameter, the
setup of the network should be changed. This means that
for a specific network and a specific stellar parameter, a
study should be made to find the optimal configuration of
hyperparameters. This is due to the contribution of the spe-
cific stellar parameter on the shape of the input spectrum.
Using the PCA decomposition, we have reduced the size of
the input parameters to only 50 points per spectrum while
keeping more than 99.5% of the information. This is recom-
mended in case of large databases and wide wavelength
range and could avoid the use of extra pooling layers in
the network. This projection technique is not only applic-
able for AFGK stars but can also be used for cooler stars.

Figure 11: Average error bars for the observation predicted stellar parameters as a function of the SNR and for different ranges of stellar
rotation.

Table 4: Ranges of the parameters used for the calculation of the
FGK synthetic spectra TDB

Parameters Range

Teff (K) []4,000, 7,000
glog (dex) []3.0, 5.0

[M/H] (dex) []−1.5, 1.5
v isine (km s −1) []0, 100
λ (Å) []5,000, 5,400

/λ λΔ 60,000

Table 5: Derived standard deviation for each parameter using the
TDB for FGK stars

Training Validation Test (no
noise)

Test
(noise)

σTeff (K) 59 62 62 82

σ glog (dex) 0.04 0.05 0.05 0.07

σv isine

(km s −1)
0.40 0.50 0.55 0.90

[]/σ M H (dex) 0.04 0.05 0.05 0.06

54  Marwan Gebran et al.

Furthermore, (Houdebine et al. 2016, Paletou et al. 2015b),
Sarro et al. (2018) have applied a projection pursuit regres-
sion model based on the independent component analysis
compression coefficients to derive Teff, glog , and [M/H] of
M-type stars.

Although the CNN architecture was not optimized,
we were able, using a strategy of finding the best hyper-
parameters, to reach a level of accuracy that is compar-
able to other adopted techniques. In fact, we found for
A stars, an average accuracy of 0.08 dex for glog , 0.07
dex for [M/H], −3.90 km s 1 for v isine , and 127 K forTeff . In
the case of stars with v isine less than −100 km s 1, we
found the accuracy to be 90 K, 0.06 dex, 0.06 dex, and

−2.0 km s 1, for Teff, glog , [M/H] and v isine , respectively.
These accuracy values are signal to noise dependant and
reduce as long as the signal to noise increases. Extrapolating
the technique to FGK stars also shows that the same network
could be applied to different spectral-types anddifferentwave-
length ranges.

The technique that we followed in this article could
be transferable to any classification problem that involves
neural network. In the future, we plan to develop a strategy
to find the best CNN architecture depending on the input
data and the type of the predicted parameters. Once the
architecture and the configuration of the parameters are
settled, we will be testing the procedure on observational
spectra as we did in the studies of Paletou et al. (2015a),
Paletou et al. (2015b), Gebran et al. (2016), and Kassounian
et al. (2019). Using only observational data or a combination
of synthetic spectra and real observations with well-known
parameters will allow us to constrain the derived stellar
labels while minimizing the critical synthetic gap (Fabbro
et al. 2018). One more criterion that should be taken into
account is when applying this technique to real observa-
tions, thorough data preparation work should be done to
take into account the characteristics of each spectral-type
(e.g. continuum normalization inM and giant stars, and low
number of lines in hot stars).

Conflict of interest: Authors state no conflict of interest.

References

Almeida I, Duarte R, Nemmen R. 2021. Deep learning model for
multiwavelength emission from low-luminosity active galactic
nuclei. arXiv e-prints. page arXiv: 2102.05809.

Anthony M, Bartlett PL. 1999. Neural Network Learning: Theoretical
Foundations. Cambridge: Cambridge University Press.

Aydi E, Gebran M, Monier R, Royer F, Lobel A, Blomme R. 2014.
Automated procedure to derive fundamental parameters of B

and A stars: Application to the young cluster NGC 3293. In:
Ballet J, Martins F, Bournaud F, Monier R, Reylé C, editors,
SF2A-2014: Proceedings of the Annual meeting of the French
Society of Astronomy and Astrophysics, p. 451–455.

Bai Y, Liu J, Bai Z, Wang S, Fan D. 2019. Machine-learning regression
of stellar effective temperatures in the second gaia data
release. AJ, 158(2):93.

Bailer-Jones CAL. 1997. Neural network classification of stellar
spectra. PASP. 109:932.

Baron D. 2019. Machine Learning in Astronomy: a practical over-
view. arXiv e-prints, page arXiv: 1904.07248.

Bengio Y. 2012. Practical recommendations for gradient-based
training of deep architectures. In Neural networks: tricks of the
trade. Berlin, Heidelberg: Springer.

Bickley RW, Bottrell C, Hani MH, Ellison SL, Teimoorinia H, Yi KM,
et al. 2021. Convolutional neural network identification of
galaxy post-mergers in UNIONS using IllustrisTNG. MNRAS.
504:372–92.

Castelli F, Kurucz RL. 2003. New grids of ATLAS9 model atmo-
spheres. In Piskunov N, Weiss WW, Gray DF, editors. Modelling
of Stellar Atmospheres. vol. 210, p. A20.

Chen BH, Goto T, Kim SJ, Wang TW, Santos DJD, Ho SCC, et al. 2021.
An active galactic nucleus recognition model based on deep
neural network. MNRAS, 501(3):3951–3961.

Choi D, Shallue CJ, Nado Z, Lee J, Maddison CJ, Dahl GE. 2020. On
empirical comparisons of optimizers for deep learning. arXiv
preprint arXiv:1910.05446.

Cropper M, Katz D, Sartoretti P, Panuzzo P, Seabroke G, Smith M,
et al. 2014. Gaia radial velocity spectrometer performance. In
EAS Publications Series. vol. 67–68 p. 69–73.

Curran SJ, Moss JP, Perrott YC. 2021. QSO photometric redshifts
using machine learning and neural networks. MNRAS.
503:2639–2650.

Dafonte C, Fustes D, Manteiga M, Garabato D, Álvarez MA, Ulla A,
et al. 2016. On the estimation of stellar parameters with uncer-
tainty prediction from generative artificial neural networks:
application to Gaia RVS simulated spectra. A&A. 594:A68.

Fabbro S, Venn KA, O’Briain T, Bialek S, Kielty CL, Jahandar F, et al.
2018. An application of deep learning in the analysis of stellar
spectra. MNRAS. 475(3):2978–2993.

Gafeira R, Orozco Suárez D, Milić I, Quintero Noda C, Ruiz Cobo B,
Uitenbroek H. 2021. Machine learning initialization to accel-
erate Stokes profile inversions. A&A. 651:A31.

Gan FK, Bekki K, Hashemizadeh H. 2021. SeeingGAN: Galactic Image
Deblurring with Deep Learning for Better Morphological
Classification of Galaxies. arXiv e-prints, page
arXiv:2103.09711.

Garraffo C, Protopapas P, Drake JJ, Becker I, Cargile P. 2021.
StelNet: Hierarchical Neural Network for Automatic Inference
in Stellar Characterization. arXiv e-prints, page
arXiv:2106.07655.

Gebran M, Farah W, Paletou F, Monier R, Watson V. 2016. A new
method for the inversion of atmospheric parameters of A/Am
stars. A&A. 589:A83.

Gebran M, Monier R, Royer F, Lobel A, Blomme R. 2014.
Microturbulence in A/F Am/Fm stars. In Mathys G, Griffin ER,
Kochukhov O, Monier R, Wahlgren GM, editors. Putting A Stars
into Context: Evolution, Environment, and Related Stars,
Proceedings of the International Conference. 2013 Jun 3–7;
Moscow, Russia. p. 193–198.

DL for stellar parameters  55

Gill S, Maxted PFL, Smalley B. 2018. The atmospheric parameters of
FGK stars using wavelet analysis of CORALIE spectra. A&A.
612:A111.

Glorot X, Bengio Y. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Teh YW, Titterington M,
editors. Proceedings of the 13th International Conference on
Artifficial Intelligence and Statistics. 2010 May 13–15; Sardinia,
Italy. JMLR, 2010. p. 249–256.

Glorot X, Bordes A, Bengio Y. 2011. Deep sparse rectifier neural
networks. In Gordon G, Dunson D, DudÃÂŋk M, editors.
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research. p. 315–323. FL,
USA: Fort Lauderdale, JMLR Workshop and Conference
Proceedings.

González-Marcos A, Sarro LM, Ordieres-Meré J, Bello-García A. 2017.
Evaluation of data compression techniques for the inference of
stellar atmospheric parameters from high-resolution spectra.
MNRAS. 465(4):4556–4571.

Goodfellow I, Bengio Y, Courville A. 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Guiglion G, Matijevič G, Queiroz ABA, Valentini M, Steinmetz M,
Chiappini C, et al. 2020. The RAdial Velocity Experiment
(RAVE): Parameterisation of RAVE spectra based on convolu-
tional neural networks. A&A. 644:A168.

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers:
Surpassing human-level performance on imagenet
classification. In 2015 IEEE International Conference on
Computer Vision (ICCV). p. 1026–1034. Doi: 10.1109/
ICCV.2015.123.

Houdebine ER, Mullan DJ, Paletou F, Gebran M. 2016. Rotation-
activity correlations in K and M Dwarfs. I. Stellar Parameters
and Compilations of v sin I and P/sin I for a Large Sample of
Late-K and M Dwarfs. ApJ. 822(2):97.

Hubeny I, Lanz T. 1992. Accelerated complete-linearization method
for calculating NLTE model stellar atmospheres. A&A.
262(2):501–514.

Jaitly N, Hinton E. 2013. Vocal tract length perturbation (VTLP)
improves speech recognition. In Proceedings on ICML
Workshop on Deep Learning for Audio, Speech and Language.
vol. 117: p. 21.

Kassounian S, Gebran M, Paletou F, Watson V. 2019. Sliced Inverse
Regression: application to fundamental stellar parameters.
Open Astron. 28(1):68–84.

Keskar NS, Mudigere D, Nocedal J, Smelyanskiy M, Tang PTP. 2016.
On large-batch training for deep learning: Generalization gap
and sharp minima. cite arxiv:1609.04836 Comment: Accepted
as a conference paper at ICLR 2017.

Kurucz RL. 1992. Atomic and molecular data for opacity calculations.
RMXAA. 23:45.

Landa V, Reuveni Y. 2021. Low dimensional convolutional neural
network for solar flares GOES time series classification. arXiv
e-prints, page arXiv: 2101.12550.

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based
learning applied to document recognition. Proc IEEE.
86(11):2278–2324.

LeCun Y. 1989. Generalization and network design strategies.
Connectionism Perspect. 19:143–155.

Li X-R, Pan R-Y, Duan F-Q. 2017. Parameterizing stellar spectra using
deep neural networks. Res Astronom Astrophys. 17(4):36.

Maas AL. 2013. Rectifier nonlinearities improve neural network
acoustic models. In Proc ICML. Vol. 30, No. 1, p. 3.

Neyshabur B, Bhojanapalli S, Mcallester D, Srebro N. 2017.
Exploring generalization in deep learning. In Guyon I,
Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S,
et al. editors. Advances in Neural Information Processing
Systems. vol 30, p. 5947–5956. Curran Associates, Inc.

Ofman L, Averbuch A, Shliselberg A, Benaun I, Segev D, Rissman A.
2022. Automated identification of transiting exoplanet
candidates in NASA Transiting Exoplanets Survey Satellite
(TESS) data with machine learning methods. New Astron.
91:101693.

Paletou F, Böhm T, Watson V, Trouilhet JF. 2015a. Inversion of stellar
fundamental parameters from ESPaDOnS and Narval high-
resolution spectra. A&A. 573:A67.

Paletou F, Gebran M, Houdebine ER, Watson V. 2015b. Principal
component analysis-based inversion of effective temperatures
for late-type stars. A&A. 580:A78.

Parks D, Prochaska JX, Dong S, Cai Z. 2018. Deep learning of quasar
spectra to discover and characterize damped Lyα systems.
MNRAS. 476(1):1151–1168.

Passegger VM, Bello-García A, Ordieres-Meré J, Antoniadis-
Karnavas A, Marfil E, Duque-Arribas C, et al. 2021. Metallicities
in M dwarfs: Investigating different determination techniques.
arXiv e-prints, page arXiv: 2111. 14950.

Passegger VM, Bello-García A, Ordieres-Meré J, Caballero JA,
Schweitzer A, González-Marcos A, et al. 2020. The CARMENES
search for exoplanets around M dwarfs. A deep learning
approach to determine fundamental parameters of target stars.
A&A. 642:A22.

Portillo SKN, Parejko JK, Vergara JR, Connolly AJ. 2020.
Dimensionality reduction of SDSS spectra with variational
autoencoders. AJ. 160(1):45.

Ramírez Vélez JC, Yáñez Márquez C, Córdova Barbosa JP. 2018.
Using machine learning algorithms to measure stellar magnetic
fields. A&A. 619:A22.

Rhea C, Rousseau-Nepton L. 2021. Application of machine learning
to optical spectra – kinematic constraints. In American
Astronomical Society Meeting Abstracts. volume 53 of
American Astronomical Society Meeting Abstracts. 208.01.

Rhea C, Rousseau-Nepton L, Prunet S, Hlavacek-Larrondo J,
Fabbro S. 2020. A machine-learning approach to integral field
unit spectroscopy observations. I. H ii region kinematics. ApJ.
901(2):152.

Rosasco L, Vito ED, Caponnetto A, Piana M, Verri A. 2004. Are loss
functions all the same? Neural Comput. 16(5):1063–1076.

Ruder S. 2016. An overview of gradient descent optimization algo-
rithms. CoRR. abs/1609.04747.

Sarro LM, Ordieres-Meré J, Bello-García A, González-Marcos A,
Solano E. 2018. Estimates of the atmospheric parameters of
M-type stars: a machine-learning perspective. MNRAS.
476(1):1120–1139.

Shan Y, Reiners A, Fabbian D, Marfil E, Montes D, Tabernero HM,
et al. 2021. The CARMENES search for exoplanets around M
dwarfs. Not-so-fine hyperfine-split vanadium lines in cool star
spectra. A&A. 654:A118.

Sharma K, Kembhavi A, Kembhavi A, Sivarani T, Abraham S,
Vaghmare K. 2020. Application of convolutional neural net-
works for stellar spectral classification. MNRAS.
491(2):2280–2300.

56  Marwan Gebran et al.

http://www.deeplearningbook.org

Shorten C, Khoshgoftaar T. 2019. A survey on image data augmen-
tation for deep learning. J Big Data. 6:1–48.

Smalley B. 2004. Observations of convection in A-type stars. In
Zverko J, Ziznovsky J, Adelman SJ, Weiss WW, editors.
Proceedings of the International Astronomical Union 2004
(IAUS224), The A-Star Puzzle. p. 131–138. Cambridge, UK:
Cambridge University Press.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
2014. Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res. 15(1):1929–1958.

Wang R, Luo AL, Chen J-J, Hou W, Zhang S, Zhao Y-H, LAMOST MRS
collaboration, et al. 2020. SPCANet: stellar parameters and
chemical abundances network for LAMOST-II medium resolu-
tion survey. ApJ. 891(1):23.

Wang S-C. 2003. Artificial neural network. pp. 81–100. US, Boston,
MA: Springer.

Yim J, Ju J, Jung H, Kim J. 2015. Image classification using convolu-
tional neural networks with multi-stage feature. In Kim J-H,

Yang W, Jo J, Sincak P, Myung H, editors. Robot Intelligence
Technology and Applications 3. Cham: Springer International
Publishing, p. 587–594.

Zhang B, Liu C, Deng L-C. 2020. Deriving the Stellar Labels of
LAMOST Spectra with the Stellar LAbel Machine (SLAM).
ApJS. 246(1):9.

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. 2016.
Understanding deep learning requires rethinking generaliza-
tion. In 5th International Conference on Learning
Representations, ICLR 2017 - Conference Track
Proceedings. arXiv:1611.03530.

Zhou Y-T, Chellappa R. 1988. Computation of optical flow using
a neural network. In ICNN. p. 71–78.

Zhu X, Vondrick C, Fowlkes CC, Ramanan D. 2016. Do we need more
training data? Int J Comput Vision. 119(1):76–92.

Zou D, Cao Y, Zhou D, Gu Q. 2019. Gradient descent optimizes
over-parameterized deep relu networks. Mach Learn.
109:467–492.

DL for stellar parameters  57

	1 Introduction
	2 Training spectra
	3 Data preparation
	4 DL: ANN
	4.1 CNN
	4.1.1 Data augmentation
	4.1.2 Initializers: Kernel and bias
	4.1.3 Optimizer
	4.1.4 Learning rate
	4.1.5 Dropout
	4.1.6 Pooling
	4.1.7 Activation functions
	4.1.8 Loss functions
	4.1.9 Epochs
	4.1.10 Batches

	5 Results and analysis
	5.1 Effective temperature
	5.2 Surface gravity
	5.3 Metallicity
	5.4 Projected equatorial rotational velocity
	5.5 Database size and the role of augmentation
	5.6 Accuracy for the optimal configuration

	6 Extrapolating to other spectral-�types
	7 Discussion and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

