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Abstract: We consider the problem of building the relationship of high-energy electron flux between Geostationary Earth Orbit
(GEO) and Medium Earth Orbit (MEO). A time-series decomposition technique is first applied to the original data, resulting in
trend and detrended part for both GEO and MEO data. Then we predict MEO trend with GEO data using three machine learning
models: Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP). Experiment shows that RF gains best
performance in all scenarios. Feature extraction analysis demonstrates that the inclusion of lagged features and (possible) ahead
features is substantially helpful to the prediction. At last, an application of imputing missing values for MEO data is presented, in
which RF model with selected features is used to handle the trend part while a moving block method is for the detrended part.

Keywords: high-energy electron flux, GEO/MEO, time-series decomposition, random forest, feature extraction, moving block,
missing values

1 Introduction

It is well-known that high-energy electrons in the Earth’s outer
radiation belt are crucial risk factors of satellite internal charg-
ing (Gubby and Evans 2002; Horne et al. 2013). Such effect
can subsequently cause significant satellites anomalies, leading
to serious loss of service, such as communication interruption,
navigation precision degradation, etc (Ryden et al. 2008; Singh
et al. 2021). One way to avoid this effect is to use radiation-
hardened components with aluminum during satellite design,
but this can be expensive because of the additional mass and
increased launch costs (Horne et al. 2013). Therefore, it is
highly desirable to understand behavioral characteristics of
high-energy electrons and make reliable forecast and warning
of the radiation environment around our spacecrafts. With an
increasing number of satellites and its growing importance to
our life, this topic has attracted a large amount of attention over
past decades, resulting in lots of advances.

Most of these works focus on the Geostationary Earth Or-
bit (GEO) due to the large number of operational satellites and
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a wealth of available data, ranging from physical models to
machine learning models or their combination (Bengtson et al.
2018). Physical models are mainly driven by our understanding
about the physical mechanism of electron generation and accel-
eration. Typical study in this aspect includes Li and Temerin
(2001); Millan and Thorne (2007); Anderson et al. (2015), etc.
With the rapid progress of artificial intelligence (Onan et al.
2016b; Onan and Korukoğlu 2017; Onan and Toçoğlu 2021;
Onan 2021; Onan and Korukoğlu 2016), machine learning
models have been largely applied to forecasting high-energy
electron flux at GEO, yielding state-of-the-art results. Guo et al.
(2013) propose an artificial neural network model with the ra-
dial basis function, in which lagged values of flux, solar wind
parameters, and Ap-index are taken as input, achieving a predic-
tive efficiency (PE) of around 0.82 for years 2008-2010. Shin
et al. (2016) develop a different neural network scheme to pre-
dict GEO electron flux at a high time resolution, which exhibits
an excellent PE of 0.96 for GOES-15 and 0.93 for GOES-13
for 1-hour prediction (For detailed information about GOES
(Geostationary Operational Environmental Satellite), please
visit https://www.goes.noaa.gov/.). Wei et al. (2018) propose
to use the deep learning technique of long short-term memory
(LSTM) network for 1-day ahead integral flux, where various
feature combinations are studied; the LSTM method achieves
state-of-the-art performance as of that moment.

https://doi.org/10.1515/astro-2021-0008
https://www.goes.noaa.gov/
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Compared to GEO, studies at Medium Earth Orbit (MEO)
are relatively rare because of scarce available observations
and the accuracy is far from our expectation. The methods are
mainly physically driven, such as Radiation Belt Environment
(RBE) model (Fok et al. 2008), Versatile Electron Radiation
Belt (VERB) model (Subbotin and Shprits 2009), and SPACE-
CAST (Horne et al. 2013). Recent years, thanks to the Van
Allen Probe (VAP), some new models were developed; typ-
ical example is the dynamic linear model using the Kalman
filter (Tim et al. 2018). However, VAP-B was already deacti-
vated in 2019 and VAP-A is about to cease operations, which
makes it more challenging to study the behavior of high-energy
electrons at MEO.

To mitigate this problem, we aim to build a relationship
between GEO and MEO in this paper based on the current avail-
able data with machine learning techniques that are becoming
more and more popular in astronomy research (Danilov and
Karpov 2018; Boudreaux 2017; Peng and Bai 2019). Specif-
ically speaking, our focus is to create a model that predicts
high-energy electron fluxes detected by Beidou satellites at
MEO with the fluxes from GOES. Once the model is built, one
could use it to generate much more data that are out of the scope
of current available observations from Beidou because GOES
has far longer monitoring history. This is quite important in
lots of applications, e.g., such data could help us conduct fault
analysis for satellites at MEO that do not have high-energy

electron sensors installed therein. In data processing aspect,
this model could also be very helpful, e.g., it provides a good
way to impute missing values for the Beidou observations as
we will demonstrate in Section 4. In addition (perhaps more
importantly), we could use the learned relationship between
GEO and MEO to make more accurate forecast of high-energy
electron flux for both GEO and MEO, following the idea of
multi-task transfer learning (Jiang 2009; Samala et al. 2017).

To build such a model, we first apply a time-series decom-
position technique to simplify the structure of original data,
resulting in trend and detrended part for both GEO and MEO
data, which makes their relationship become clear. Then we
try three commonly-used machine learning methods: Linear
Regression (LR), Random Forest (RF), and Multi-Layer Per-
ceptron (MLP). A feature extraction analysis is conducted,
where we gradually add lagged values of GOES observations
and ahead values into the prediction model to check if these
additional features can improve the predictive performance.

The reminder of this paper proceeds as follows. Section 2
describes the source data and introduces our time-series decom-
position technique. Section 3.2 presents the prediction methods
and feature extraction analysis. Section 4 demonstrates an ap-
plication of the learned model to missing values imputation for
Beidou MEO data. Section 5 concludes this paper and gives
some discussion.

10
0

10
2

10
4

#/
cm

2 /s
r/s

High-energy Electron Flux from GOES

E06
E2

2019-01 2019-03 2019-05 2019-07 2019-09 2019-11 2020-01 2020-03
Time

10
4

10
6

10
8

#/
cm

2 /s
r/s

High-energy Electron Flux from a Beidou MEO Satellite

Flux1
Flux2
Flux3
Flux4

Figure 1. High-energy electron flux observations from 2019-01-01 to 2020-02-29 for GOES-15 over two energy channels (Top panel)
and for a Beidou MEO satellite over four energy channels (Bottom panel).
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Figure 2. High-energy electron flux observations from 2019-01-10 to 2019-01-14 for GOES-15 over two energy channels (Top panel)
and for a Beidou MEO satellite over four energy channels (Bottom panel).

2 Data Description and
Decomposition

2.1 Description

The high-energy electron flux data used in this study include
two parts: 5-min averaged observations from GOES-15 and 1-
min observations from a Beidou MEO satellite (Zou et al. 2018)
(It is well-known that the Beidou Navigation System consists of
three kinds of orbits: GEO, MEO, and IGSO (Inclined Geosyn-
chronous Orbit). The data used here is from one of the MEO
satellites that carries electron detectors.). We choose the data
ranging from January, 2019 to February, 2020 for two reasons:
first, GOES-15 ceased its service in March, 2020; second, the
Beidou spacecraft was launched in late 2018 and the beginning
of obtained data are not in good condition. The GOES-15 data,
available from the National Geophysical Data Center, contain
two energy channels: >600 KeV, denoted by ‘E06’, and >2
MeV, denoted by ‘E2’. The Beidou data include four energy
channels, denoted by ‘Flux1’, ‘Flux2’, ‘Flux3’, and ‘Flux4’,
whose details are shown in Table 1.

All chosen data are demonstrated in Figure 1, in which top
and bottom panes show GOES data and Beidou data respec-
tively. We see that the GOES data display good completeness
and robustness while the Beidou data contain a lot of missing

Table 1. Energy channel description of the Beidou MEO data
showing the center and width of four channels.

Channel Name Flux1 Flux2 Flux3 Flux4
Channel Center (KeV) 600 1000 1600 2500
Channel Width (KeV) 300 400 800 1000

values and some outliers. To get deeper characteristics of the
data, we select five days of observations (from 2019-01-10 to
2019-01-14) to show in Figure 2. We see that the two data show
largely different features, which is mainly due to the orbit dis-
tinction. The GOES data have a one-day seasonality, which is
reasonable because of the period of GEO satellites. The Beidou
data show stronger seasonality, where high-value peaks and
zero values appear alternately. This is because the Beidou MEO
spacecraft passes through the Earth’s radiation belt twice per
cycle: the flux is high when the satellite is in the belt while it is
almost zero when the satellite is out of the belt.

2.2 Decomposition

From the analysis in Section 2.1 (as shown in Figure 2), it
seems quite difficult to directly build a connection between the
two data, primarily because of the large difference in terms of
spatial characteristics. To solve this problem, we propose to
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decompose the time series for both data to remove the spatial
effect.

For Beidou data, the idea follows a two-step procedure
as shown in Figure 3, where we take Flux1 from 2019-01-10
to 2019-01-14 as an example. The first step is to extract the
maximum value of each block from the original observations,
where a block means the set of values via the Earth’s radiation
belt once (see an example marked in red rectangle box in Fig-
ure 3). The extracted maximum values constitute trend of the
original data. In order to enforce robustness of the first step,
the maximum for each block is obtained by taking median of
the first ten maximum values over all observations within that
block. The second step is to detrend the original data, which
is implemented by using the trend to divide the original data.
Note that the division operation in this step is conducted block-
wisely, in the sense that all observations within a block are
divided by its corresponding maximum value and this is done
block by block. The resulting detrended data is shown in the
bottom panel of Figure 3.

For GEO data, the idea is relatively straightforward com-
pared to the MEO data. We simply take the moving average
with a window size of a day over the original data, resulting
in the trend of GEO data. Here we do not talk about how to

detrend GEO data since only the trend part is required in the
subsequent analysis.

With the procedure mentioned above, we extract the trend
for all energy channels of both GOES-15 and Beidou data. The
results are shown in Figure 4, from which we see that the two
kinds of data show a similar fluctuation property. Compared to
the original data shown in Figures 1 and 2, the relationship be-
tween GEO data and MEO data now becomes straightforward,
which lays the foundation for us to build their connection.

One problem remained prior to modeling is the time reso-
lution distinction between two data: the trend of GOES data is
recorded every 5 minutes while the time resolution for Beidou
trend data is about 386.6 minutes (half of the Beidou MEO
satellite period). To solve this problem, we downsample the
GOES trend data with a window size of 386.6 minutes and
mean function, in the sense that the mean over values within
a window is taken as representation of that window. Note that
since 386.6 is not integral multiples of 5 the number of values
within a window differs over time, but this does not matter for
the mean function (It does matter for some other functions, e.g.,
‘sum’).
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Figure 3. Top panel: Flux1 of Beidou data (in blue) and the extracted trend (in yellow) from 2019-01-10 to 2019-01-14 with the red
rectangle box representing a ‘block’; Bottom panel: detrended Flux1, also called seasonality, obtained by using the trend to divide
original data.
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Figure 4. The extracted trend of high-energy electron flux observations from 2019-01-01 to 2020-02-29 for all energy channels of
GOES-15 data (Top panel) and of Beidou MEO data (Bottom panel).

3 Methods and Results

In this section, we present our methods for predicting high-
energy electron fluxes of Beidou data with GOES observations
and the experimental results. Since the detrended part of Beidou
data (see Figure 3) is mainly determined by orbit property of the
Beidou MEO satellite and is not related to GEO observations,
we only talk about predicting the trend of Beidou data with
GOES trend data in the subsequent analysis.

3.1 Problem Formulation and Feature
Extraction

One simple idea for our prediction is to find a function f (·),
such that

Yt = f (Xt),

where Xt = (E06, E2)t and Yt = (Flux1, Flux2, Flux3, Flux4)t
denote the model input and output at time t respectively. This
idea is straightforward and correct in theory, but may not yield
good performance in practice for some reasons, e.g., noises or
time delay.

To this end, we propose to include two-step lagged fea-
tures, denoted by (Xt−2, Xt−1) and ahead features, denoted by
(Xt+1, Xt+2), into our prediction model. Then, the prediction
problem becomes

Yt = f (Xt−2, Xt−1, Xt , Xt+1, Xt+2).

Note that the ahead features may not be available in some
situations, e.g., when the prediction happens at current time and
future values have not yet arrived. In this scenario, the input
features reduce to combination of lagged values and raw values,
i.e., (Xt−2, Xt−1, Xt).

We will explore how the inclusion of lagged and ahead
features influence the prediction performance in Section 3.3
through experiments.

3.2 Methods

We consider three commonly-used machine learning methods:
Linear Regression (LR), Random Forest (RF), and Multi-Layer
Perceptron (MLP).
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LR is a method that assumes linear relationship between
features and target, which can be expressed as

y = b +
p∑︁
j=1

wjxj + ϵ , with ϵ ∼ N(0, σ2).

The goal is to learn proper parameters b* and w* that produce
minimum errors between predictions and true values, which
is usually implemented through Ordinary Least Squares, as
shown in (︁

w*, b*
)︁
= argmin

(w,b)

n∑︁
i=1

(w · x + b − yi)2 .

RF is an ensemble method that takes Decision Tree as
its base estimator and uses bagging (bootstrap aggregating)
strategy to combine results of base estimators, which usually
consists of two steps. The first step is to bootstrap the original
data to generate multiple datasets and to train a decision tree
model on each of these datasets, yielding multiple predictive
results. The second step is to aggregate these results to obtain a
more accurate and robust prediction. See Liaw et al. (2002) for
more details about random forest models.

MLP is a feed-forward artificial neural network that gen-
erates a set of outputs from a set of inputs via a set of hidden
units, as shown in Figure 5 that demonstrates a simple MLP
with two hidden layers. One could determine the number of
hidden layers and number of neurons per layer flexibly accord-
ing to a specific problem, which enables MLP a powerful tool
for a wide range of applications.

Figure 5. A multi-layer perceptron with two-hidden layers.

3.3 Experiments

The data used here are the trend of GOES-15 data and Beidou
MEO data resulting from procedures in Section 2.2, which
range from January, 2019 to February, 2020 (totally 1580

records). After removing those with missing values (all from
Beidou MEO data), we get 1179 valid records. Then we take
the logarithm of all the valid data as our final experimental data
(the subsequent assessment is based on the logarithm scale and
this is a commonly-used step in electron flux data modeling Wei
et al. (2018)). For each evaluation, we randomly select 75% of
the experimental data as train set and the rest 25% as test set.

Two metrics are used to evaluate the predictive perfor-
mance: prediction efficiency (PE) and root mean absolute error
(RMSE), which are defined as

PE = 1 −
∑︀n

i=1(yi − ŷi)
2∑︀n

i=1(yi − ȳ)2
, with ȳ = 1

n

n∑︁
i=1

yi ,

RMSE =

⎯⎸⎸⎷1
n

n∑︁
i=1

(yi − ŷi)2 ,

where yi and ŷi denote true and predicted values respectively.
The PE measures how well the predictive model is compared to
a naive method (just taking average value of the observations as
predicted values): zero means equally well performance while
one means perfect performance. The RMSE reflects difference
between the true values and the values predicted by the model.
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Figure 6. Predictive efficiency (PE) on validation set as a function
of the number of epochs for Multi-Layer Perceptron (MLP) with
input feature RL12A12 for the four targets (Flux1, Flux2, Flux3,
and Flux4).

In terms of the input features, we consider five different
combinations of raw, lagged, and ahead features, which are
listed in Table 2, where ✓ and × represent inclusion and ex-
clusion of corresponding features respectively. For implemen-
tation of the three methods introduced in Section 3.2, we use
scikit-learn (https://scikit-learn.org), a free open source Python
machine learning library. The hyper-parameters for RF and

https://scikit-learn.org
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Table 2. Description of five input feature combinations, denoted by ‘R’, ‘RL1’, ‘RL12’, ‘RL12A1’, and ‘RL12A12’, where ✓ and × repre-
sent inclusion and exclusion of corresponding features respectively.

Raw features (Xt) Lag1 (Xt−1) Lag2 (Xt−2) Ahead1 (Xt+1) Ahead2 (Xt+2)
R ✓ × × × ×

RL1 ✓ ✓ × × ×
RL12 ✓ ✓ ✓ × ×

RL12A1 ✓ ✓ ✓ ✓ ×
RL12A12 ✓ ✓ ✓ ✓ ✓
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Figure 7. Predictive efficiency (PE) and root mean squared error (RMSE) of Linear Regression (LR), Random Forest (RF), and Multi-
Layer Perceptron (MLP) with five different input feature combinations for the four targets (Flux1, Flux2, Flux3, and Flux4), showing the
mean over 20 times repeated experiments.
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MLP are chosen automatically with the so-called ‘randomized
search cross validation’ strategy that is also implemented in
scikit-learn.

Before going into the performance of all involved methods,
we first check the convergence and generalization property
of MLP since it is a relatively complex model (the number
of parameters is big), which may have a risk of overfitting.
Figure 6 shows PE on validation set (randomly set aside 10%
of training data) over the number of epochs for MLP with input
feature RL12A12 for the four targets (Flux1, Flux2, Flux3, and
Flux4). The reason why we choose RL12A12 as our experiment
is because the number of input features in this case is the most,
constituting the easiest case of getting stuck in overfitting. We
can see that the model displays a good property of convergence
and generalization, in the sense that PE tends to get stable after
50 epochs and it reaches a decent result on validation set.

The comparative results of LR, RF, and MLR with the five
input feature combinations are shown in Figure 7, displaying
the mean of PE and RMSE over 20 times repeated experiments
for the four targets (Flux1, Flux2, Flux3, and Flux4) respec-
tively (Here it means we conduct 20 times experiments for each
setting, e.g., (Input features=RL1, Method=RF, Target=Flux4),
in which different experiments take different train/test split, in
the sense that we resample the train set for a new started ex-
periment.). In the dimension of methods, we see that Random

Forest substantially outperforms LR and MLP in both PE and
RMSE regardless of input features and targets, showing best
performance. In terms of the targets, Flux1 is the easiest one
to predict while Flux4 is the hardest one. With respect to the
input features, it is clear that inclusion of lagged and ahead
features can significantly improve the predictive performance
of all the methods, especially for Flux1 and Flux2. To conclude,
the Random Forest method with some lagged and ahead fea-
tures gives the best results: PE is greater than 0.75 for all fluxes
and it almost reaches 0.9 for Flux1, which means quite good
prediction. Therefore, we claim that it is a fairly good idea to
predict MEO high-energy electron fluxes with GEO data to
solve the problem of data scarcity at MEO.

4 Application: Missing Values
Imputation for Beidou MEO
Data

As shown in the bottom panel of Figure 1, there exist a lot of
missing values in Beidou MEO data, which poses a challenge
for the subsequent data analysis and applications. Therefore,
it is important and necessary to impute these values before
going forward. In this section, we introduce an approach to
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Figure 8. Top panel: Trend of original Beidou MEO data (contain lots of missing data); Bottom panel: Trend of imputed data (the missing
data have been imputed).



70 R. Cui et al., Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO

0.00

0.25

0.50

0.75

1.00

original seasonality for Flux1

2019-02-01 2019-02-02 2019-02-03 2019-02-04 2019-02-05 2019-02-06
Time

0.00

0.25

0.50

0.75

1.00

imputed seasonality for Flux1

Figure 9. Top panel: Seasonality (detrended part) of original Beidou MEO data (contain lots of missing data); Bottom panel: Seasonality
of imputed data (the missing data have been imputed). Showing Flux1 from 2019-02-01 to 2019-02-05.
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accomplish this goal, in which the Random Forest method
presented in Section 3.2 is used to handle the trend part while a
moving block method is for the detrended part (seasonality).

Impute trend part: With the available data, we can learn
a Random Forest model that predicts MEO fluxes with GEO ob-
servations in terms of the trend. Since GEO data are complete,
we can take the GEO data whose corresponding MEO obser-
vations are missing as input to the learned model, resulting in
the imputed values of the trend part of MEO data. The original
trend and imputed trend of Beidou MEO data are shown in
Figure 8, showing all energy channels. We see that the imputed
trend is complete and looks quite reasonable.

Impute detrended part: From Figure 3, we see that the
blocks for detrended data show quite similar behavior. On the
basis of this fundamental characteristic, we use a simple mov-
ing block technique to impute the detrended part of Beidou
MEO data, in the sense that we randomly choose a block from
available data (non-missing part) and take it as values of the
missing block. We repeat this procedure for all missing blocks,
resulting in a complete detrended data. Figure 9 displays orig-
inal and imputed seasonality for Flux1 from 2019-02-01 to
2019-02-05, which shows good and sensible results. To save
space, we only show the results for Flux1. The results for Flux2,
Flux3, and Flux4 have similar picture.

The imputed trend times the imputed seasonality results in
imputed raw data, as shown in Figure 10, where original and
imputed Flux1 from 2019-02-01 to 2019-02-05 are displayed.

5 Conclusion and Discussion

In this paper, we proposed a machine learning approach that
predicts Beidou MEO high-energy electron fluxes with its coun-
terpart of GOES-15 satellite. This proposal provides a way to
mitigate the problem of data scarcity at MEO, which could
subsequently facilitate the understanding and exploration of
MEO environment. The approach first decomposes the original
data to get trend and detrended part, then applies a regression
technique to predict the trend of Beidou MEO data with the
trend of GOES-15 data.

In the experiments, we explored three commonly-used
regression models and found that Random Forest outperforms
Linear Regression and Multi-Layer Perceptron substantially,
reaching a predictive efficiency (PE) around 89% for Flux4 with
all features. A feature engineering analysis shows that including
lagged features and (possible) ahead features into the prediction
model is rather helpful to improve model performance, leading
to an advance ranging from 1% to 10% w.r.t. PE. We also
checked the convergence and generalization property of MLP
to avoid overfitting, and find that it performs quite good and

gets stable after around 50 epochs. At last, we illustrated our
method by presenting an application of imputing missing values
for Beidou MEO data.

In the current analysis, we focused on predicting MEO
values with GEO data, not the other way around, which is
mainly because this direction is of greater importance due to
data scarcity at MEO that does not exist at GEO. In the future,
we would consider both directions, which could enable a more
accurate forecast of the high-energy electron flux for both GEO
and MEO since the learned relationship between them provides
a way for them to borrow information from each other. This
could be implemented following the idea of multi-task transfer
learning (Samala et al. 2017).

While we only consider three commonly-used models, one
could explore more methods, use ensemble strategies (Hastie
et al. 2009; Onan et al. 2016a; Onan 2018; Onan et al. 2017)
or even try an automatic machine learning scheme (Zeng and
Luo 2017). It is also encouraged to include more satellites data
other than GOES-15 to achieve better results. Given that there
are just few available data at MEO for now, we did not take
deep learning models (Lecun et al. 2015) into account, but it is
fairly possible and advisable to try them in the future as more
and more data become available.
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