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Abstract: Traditional atmospheric models are based on the analysis and fitting of various factors influencing the space
atmosphere density. Neural network models do not specifically analyze the polynomials of each influencing factor in the
atmospheric model, but use large data sets for network construction. Two traditional atmospheric model algorithms are
analyzed, the main factors affecting the atmospheric model are identified, and an atmospheric model based on neural
networks containing various influencing factors is proposed. According to the simulation error, the Levenberg-Marquardt
algorithm is used to iteratively realize the rapid network weight correction, and the optimal neural network atmospheric
model is obtained. The space atmosphere is simulated and calculated with an atmospheric model based on neural
networks, and its average error rate is lower than that of traditional atmospheric models such as the DTM2013 model and
the MSIS00 model. At the same time, the calculation complexity of the atmospheric model based on the neural networks
is significantly simplified than that of the traditional atmospheric model.
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1 Introduction
Recently, with the development of constellation theory and
application technology, a variety of low-earth orbit com-
munication constellations began to be deployed (Xu and
Zhang 2018). High precision orbit calculation of low-Earth
orbit satellites has become a matter of great concern once
again. For low orbit satellites, atmospheric resistance is
one of the main perturbation factors, and the model ac-
curacy of atmospheric density in low earth orbit directly
affects the calculation accuracy of low earth orbit (Hatten
et al. 2017). Since the 1960s, various factors affecting at-
mospheric models have been summarized, and a variety
of empirical models of atmospheric density have been es-
tablished. There are two main kinds of traditional atmo-
spheric models. In the first category, only the change of
atmospheric density with the ground height was consid-
ered, such as the exponential model, the improved Harris-
Priester model (Montenbruck and Gill 2001). In the second
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category, not only the influence of height but the influence
of longitude, latitude, and different periods was were taken
into accounts, such as the Jacchia series model (Jacchia
1970), the DTM series model (Berger et al. 1998), and the
MSIS series model (Hedin et al. 1977). Through the long-
term accumulation and analysis of historical measurement
data, these models have formed linear or nonlinear polyno-
mials for different atmospheric factors. These models have
relatively stable accuracy and are suitable for global atmo-
spheric prediction. The common disadvantages of these
models are their low accuracy. The error rates are gener-
ally more than 10-15% when the influencing factors are
stable (Marcos et al. 1994). The errors are usually about
30% when the various influencing factors are of high dis-
turbance, and the errors are even as high as 100% in some
years (Sarah et al. 2002).

With the development of neural networks and data
mining technology, researchers have tried to combine data
mining, artificial intelligence, and atmospheric models,
spacecraft orbit calculations, and other technologies to
improve the accuracy of spacecraft orbits and atmospheric
calculations. Tang et al. (2001) predicted the atmospheric
circulation over the Pacific Ocean by using neural networks,
and the results were superior to that of linear regression.
Zhang et al. (2014) solved the resource scheduling problem
of the Beidou constellation by intelligent distribution algo-
rithm. Cao et al. (2015) improved the accuracy of position
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and attitude estimation of satellite formation by an intel-
ligent unscented predictive filter. Rosangela et al. (2015)
used neural networks to perform data assimilation of at-
mospheric circulation model and achieved encouraging re-
sults. Jiang et al. (2017); Jiang (2018) studied the stability
of small satellites in the gravitational field of small celes-
tial bodies by intelligent classification. Liao et al. (2018)
used the spacecraft orbit data as the benchmark to form
the inversion error model, modified the space atmosphere
model based on the data mining method and improved the
accuracy of the atmosphere model.

2 Factors affecting the density of
space atmosphere

The NRLmsise-00 model (hereinafter abbreviated to the
MSIS00 model) proposed by the United States Naval Re-
search Laboratory (NRL) in 2000 (Picone et al. 2002) and the
DTM2013 Model (Bruinsma 2015) released by ATMOP (Ad-
vanced Thermosphere Model and Orbit Prediction project)
in 2013 are the two widely used high precision atmo-
spheric model. Since the vertical distribution of atmo-
spheric temperature determines the vertical distribution
of atmospheric density, various atmospheric models use
the upper atmosphere temperature as the representation
of atmospheric density (Li 1995). Both the two atmospheric
models calculate the atmospheric density by calculating
the atmospheric temperature.

For the DTM2013model, the atmospheric density at the
height Z is:

ρ(Z) =
∑︁

iρi(120 km)fi(Z) exp(Gi(L)) (1)

Where, ρi(120 km) are the density of atmosphere in-
gredients at the height 120 km. The ingredients include
O, O2, H, He, N, N2. 120 km is the minimum limit of DTM
models. fi(Z) = (T120/T(Z))1+α+γi exp(−σγiζ ), where T120
is the absolute temperature at the height of 120 km, T(Z)
is the absolute temperature at the height Z. Gi(L) is the
atmospheric ingredient density correction term based on
periodic and non-periodic factors. The non-periodic terms
include the latitude term, the solar activity term, and the
geomagnetic activity term. The periodic terms include the
annual term, semiannual term, diurnal term, and semidiur-
nal term. Theparameters ofGi(L) include the coefficients ai,
the associate Legendre polynomial coefficient Pmm based
on the solar incidence Angle, the solar radiation proxy of
the last day, the mean of F30 in 81 days ¯F30, the geomag-
netic index KP in 3 hours, the mean of KP in day K̄P, the
day of year d.

For the MSIS00 atmospheric model, the temperature
of atmosphere where the space higher than 117.2 km is:

T(z) = Tω + (Tω − TL)e
−δ×ϵ(Z,ZL) (2)

Where ϵ(Z, ZL) is determined by the height Z
and latitude B, ϵ(Z, ZL) = (Z−ZL)(RP+ZL)

RP+Z , RP =
2×980.616×10−5×(1−0.0026373×cos(2B))

3.085462×10−6+2.27×10−9×cos(2B) , ZL = 120 km. The low
order spherical harmonic function fitted with themeasured
atmospheric data in space is:

Gi(L) = Pi(31) +
13∑︁
j=1

Tj (3)

Where Pi(31) is the fitting constant, which is obtained from
the parameter table. T1 is the solar term (the solar radiation
proxy use F10.7). T3 is the symmetrical annual term. T4 is
the symmetrical semi-annual term. T5 is the asymmetrical
annual term. T6 is the asymmetrical semi-annual term. T7
is the diurnal term. T8 is the semidiurnal term. T9 is the
geomagnetic term (the geomagnetic index use AP). T10 is
the terdiurnal term. T11 is the longitude term. T12 is the
hybrid term of time and longitude. T13 is the hybrid term
of time, longitude, and geomagnetic (Picone et al. 2002).

For the space that lower than 117.2 km, the temper-
ature is calculated by interpolation at five height nodes
(Z1 = 120 km, Z2 = 110 km, Z3 = 100 km, Z4 =
90 km, Z5 = 72.5 km). The function of latitude such as
ϵ(Z, Z1) and ϵ(Z5, Z1) are used in the temperature function
T(Z). The GS(Pi) function is used in the fitting item of the
node function T(Z), and it can be written as:

GS(Pi) =
11∑︁
J=1

TJ (4)

Where T1 is the solar term (the solar radiation proxy use
F10.7). T3 is the symmetrical annual term. T4 is the symmet-
rical semi-annual term. T5 is the asymmetrical annual term.
T6 is the asymmetrical semi-annual term. T7 is the diurnal
term. T8 is the semidiurnal term. T9 is the geomagnetic
term (the geomagnetic index use AP). T10 is the terdiurnal
term. T11 is the longitude term.

Based on the analysis, the influence term distribution
of a spherical harmonic function of the DTM2013 model
and the MSIS00 model is completely consistent. In these
two models, the measurement time (including annual item,
semi-annual item, diurnal item, semidiurnal item, terdiur-
nal item), longitude, latitude, height, solar radiation prox-
ies, and geomagnetic indices are included. Therefore, the
algorithm of the DTM2013 model and the MSIS00 model is
to calculate the atmospheric temperature at a certain height
in the space indirectly and then obtain the atmospheric
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density. The atmospheric temperature at a certain location
is a function of the parameters such as height, measure-
ment time, longitude, latitude, solar radiation proxy (and
its 81-day mean), geomagnetic index (and its daily mean),
etc. The function of atmospheric density and influencing
factors is:

ρAtmos = f (t, longi, lati, Z, SRP, GI) (5)

Since the DTM2013 model and the MSIS00 model are all
semiempirical models, the polynomials and coefficients of
f (t, longi, lati, Z, SRP, GI) are derived by analyzing and
fitting historical measured data.

The process of constructing the atmospheric
model with the influencing factors can be transformed
into a training process of neural networks if the
f (t, longi, lati, Z, SRP, GI) is seen as themodel of a neural
networks. A part of the historical measured atmospheric
data is selected randomly to form the training data set.
The parameters such as time, longitude, latitude, height,
solar radiation proxies, geomagnetic indices in the training
set are taken as the input parameters, and the measured
atmospheric density data is taken as the expected output to
train the neural networks. So the trained neural networks is
the atmospheric model based on neural networks. Taking
the left measured data as the test data set, the input pa-
rameters are substituted into the atmospheric model based
on the neural networks to calculate the simulation results
of atmospheric density. The model error rate of the neural
networks can be obtained by comparing the measured den-
sity and the simulation results. Taking the minimumMAE
rate as the target, the optimal neural networks atmosphere
model can be obtained through iterative training and the
parameters correction by error back propagation.

The solar radiation proxy F30 and geomagnetic index
KP are used in the DTM2013 model, and the solar radia-
tion proxy F10.7 and geomagnetic index AP are used in the
MSIS00 model. There are four combinations of different
solar radiation proxies and geomagnetic indices in the at-
mosphericmodel based onneural networks. To simplify the
problem, KP index is matched with F30 and F10.7 proxy to
complete atmospheric modeling. Due to the equivalence of
AP index and KP index (Leif 1976), the accuracy and adapt-
ability of the model use KP index apply to the model that
use AP index.

3 Atmospheric density data sets
based on the GOCE measured
data and neural networks

GOCE (Gravity field and steady-state Ocean Circulation Ex-
plorer) is a low-orbit satellite launched by the European
Space Agency (ESA) in 2009, which is mainly used to detect
the earth gravity field and Ocean Circulation. It is equipped
with a highly sensitive gravimetric gradiometer capable of
making three-dimensional measurements of changes of
earth gravity field. The orbital period of GOCE is about 1.6
hours. ESA has released GOCE measured data as public
products for precision atmospheric models (Bruinsma et al.
2015).

The measured data of GOCE include measured time,
longitude, latitude, height, measured atmospheric den-
sity, and so on. These data can be combined with the mea-
sured data of solar radiation flux released by the NOAA
(National Oceanic and Atmospheric Administration) (Wang
et al. 2014) and the measured geomagnetic indices data
released by the NGDC (National Geophysical Data Center)
to construct two complete data sets of space atmosphere.

The atmospheric data measured by GOCE for 3 years
from November 2009 to November 2012 was fused with two
solar radiation proxies (F10.7 and F30) and geomagnetic
index KP. The data are divided into two data sets according
to different solar radiation proxies. Data set 1 includes:mea-
sured time, longitude, latitude, height, F10.7 proxy, 81-day
mean of F10.7, 3-hour geomagnetic index KP, daily mean
of KP and measured atmospheric density. The data set 2
includes: measured time, longitude, latitude, height, F30
proxy, 81-day mean of F30, 3-hour geomagnetic index KP,
daily mean of KP and measured atmospheric density.

Error Back Propagation was proposed by James et al.
(1987) of the PDP (Parallel Distributed Procession) group
firstly. Neural networks adopted the algorithm of Error Back
Propagation to adjust the weights of the networks, which
solved the learning problem of multi-layer neural networks
and greatly promoted the development of neural networks.
In the neural networks, the input layer, the hidden layers,
and the output layer are connected, and the neurons in
the same layer are isolated. The improved LM (Levenberg-
Marquardt) algorithm (Lera and Pinzolas 2002) is adopted
for the specific networks learning method. The main idea
of the LM algorithm is: Suppose the number of neurons
in the input layer are M, the number of neurons in the
hidden layers are I, the number of neurons in the output
layer are J, the m − th neuron of input layer is xm, the ith
neuron of hidden layer is ki, the j − th neuron of output
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layer is yj. The connection weight from xm to ki is ωmi, and
weight matrix from ki to yj in the hidden layers is ωij. The
weight matrix IW of input layer is composed by ωmi, and
the weight matrix LW of hidden layer is composed by ωij.
For the n + 1 iteration process, there are:

IW(n + 1) = IW(n) − H−1(n)g(n) (6)

LW(n + 1) = LW(n) − H−1(n)g(n) (7)

where H is the Hessian matrix of the error performance
function, g is the gradient. For the binary differentiable
function f (x, y), the Hessian matrix is:

H =
[︃ ∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂y∂x

∂2 f
∂y2

]︃

The Hessian matrix of the multiple variables function is
analogous. When the error performance function has the
form of squared error, the Hessian matrix can be approxi-
mated as H = JT J, and the gradient is g = JTe. J is a Jacobi
matrix containing the first derivative of the error perfor-
mance function to the networks weights. The function for
correct the weights of the networks in LM algorithm is:

ω(n + 1) = ω(n) − [JT J + µI]−1JTe (8)

Because the Jacobi matrix is easier to calculate than the
Hessian matrix, the LM algorithm can improve the learning
efficiency of neural networks.

4 Construction of atmospheric
model based on neural networks

The steps of constructing the atmospheric model based on
neural networks are as follows:

1. Clean and fusion the measured atmospheric data of
GOCE, solar radiation proxy data, and geomagnetic
index data. Form integrated data set that includes
measured time, longitude, latitude, height, solar radi-
ation proxy, geomagnetic activity index,measured at-
mospheric density. There are 7954820 samples were
collected after eliminating some errors and meaning-
less data (such as some measured atmospheric den-
sity is a minus and some geomagnetic index has no
measured value). Since the value space of all kinds of
data vary greatly, the data set is normalized linearly
based on their maximum and minimum values (Jin
et al. 2016);

2. Conduct random classification of the above data set,
among which 3000000 samples are randomly se-
lected to form the training data set, and the remain-
ing 4954820 samples are the test data set;

3. Construct neural networks f (t, longi, lati, Z, SRP, GI) =
ρAtmos. The neural networks for atmospheric density
simulation is set to contain 1 − N hidden layers,
and the number of node neurons in a single hidden
layer is between 5-25 because too many hidden layers
and too many neurons in a single hidden layer will
increase the computational and application com-
plexity of the neural networks. The training iteration
limitation is set as 1000 times. The initial value of
the weight matrix IW and LW(n)(n = 1, 2, . . . , N) in
the input layer and hidden layers of neural networks
adopts random sequence;

4. Train the neural networks by the training data set
in 2). The input parameters of the training sample
include time, longitude, latitude, height, F10.7 (F30),
81-days mean of F10.7 (F30), KP, and day mean of
KP. The expected output is the atmospheric density
at the corresponding time and position. Carried out
linear normalization on the input parameters. Add
constant term to the input parameters, multiply the
input sequence by the weight matrix IW, and carry
out the Tan-Sigmoid transformon the input sequence
and complete the calculation of the input layer. Make
the calculation times of the hidden layer n = 1;

5. Add constant term to the input sequence, multiply
the transformed input sequence by LW(n) and carry
out the Tan-Sigmoid transform to the input sequence,
complete the calculation of the n − th hidden layer;

6. If n = N, turn to step 7) to the calculation process of
the output layer; If n < N, make n = n + 1, repeat
step 5), complete the calculation process of the n− th
hidden layer;

7. Since the output layer transform function is linear,
no operation is required in the output layer. Carried
out reverse linear normalization on the calculation
results to obtain the simulation atmospheric density
in neural networks;

8. Input the input sequence of the test data set into
the trained neural networks. Compare the simula-
tion results with the GOCE measured atmospheric
density of the same input sequence, and calculate
the mean absolute error rate. If the mean absolute
error rate meets the requirements or the number of
iterations has reached the limitation, the calculation
will stop and turn to step 9); Otherwise, according to
the change of gradient, improve various weights in
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the weight matrix IW and LW(n) = (n = 1, 2, . . . , N)
based on equation (8), re-enter the step 4);

9. Record the weight matrix IW and LW(n)(n =
1, 2, . . . , N) of the last iteration and normalization
parameters of the neural networks. The atmospheric
model based on neural networks is constructed by
the above parameters.

The neural networks were set as 1-4 hidden layers and
5-43 neurons. The neural networks were trained by GOCE
training data set 1. Relative to the number of hidden layers
and neurons, the curve of model MAE rates was as follows:

It can be seen from Figure 1 that the performance of
the neural network changes greatly with the number of
hidden layers and the number of neurons increases. For
a single hidden layer neural network, the MAE rate drops
rapidly and converges as the number of neurons increases.
In a neural network with 2 or 3 hidden layers, the MAE
rate decreases slowly as the number of neurons increases.
In a neural network with 3 hidden layers and 40 neurons,
the minimum MAE rate is about 9.6%. As the number of
neurons increases continuously, the MAE rate gradually in-
creases. As the number of neurons increases, the MAE rate
rises rapidly. This shows that when the hidden layer ismore
than 3, the entire network is over-fitting. On the contrary,
the neural network is under-fitting when the hidden layer
is less than 3. Synthesizing the data in the figure, a neural
network composed of 3 hidden layers and 40 neurons is
optimal.

The MSE (mean square error) variation curve of 1000
training sessions of the atmosphericmodel based on neural
networks is shown in Figure 2.

The atmospheric model training process based on neu-
ral networks with 3 hidden layer is shown in Figure 2.When
the number of iterations is less than 100 times, the MSE
drops rapidly, which shows that the gradient of the network
drops quickly and the learning efficiency is high during
this period. When the number of iterations exceeds 700,
the MSE of the system gradually converges and shrinks
to a plateau. This shows that the gradient of the network
changes very little and the learning efficiency is very low
during this period. The above data shows that it is reason-
able to set the upper limit of learning times of the neural
network to 1000, and the optimal performance has been
reached in the learning of the neural network, and more
learning cannot continue to achieve a significant improve-
ment in the performance of the neural network.

5 Simulation Results
The MAE rate of F30 proxy neural networks atmospheric
model is 9.31%. Figure 3 is the MAE rate after interval sam-
pling.

The MAE rate of F10.7 proxy neural networks model is
9.60%. Figure 4 is the MAE rate after interval sampling.

It can be seen from Figure 3 and Figure 4 that the MAE
rates of the two neural networks models are extremely ap-
proximate. The MAE rate of the atmospheric model based
on F10.7 neural networks is slightly greater for some out-
lier data with large errors than that based on F30 neural
networks. The reason for this phenomenon is that the F10.7
proxy will bring greater model error than the F30 proxy
when the data variance is larger (Cui et al. 2020).

The atmospheric density sampling of GOCE in March
2012 was selected as an example to analyze the accuracy
of the two models in a large space range over a long pe-
riod. The atmospheric density simulation results of the
two neural network models corresponding to the GOCE
orbital position were compared with the GOCE measured
data. The global atmospheric density data measured by
GOCE in March 2012 is shown in Figure 5.

The global atmospheric density F10.7 neural networks
model simulation results inMarch 2012 is shown in Figure 6.

The global atmospheric density F30 neural networks
model simulation results inMarch 2012 is shown in Figure 7.

The MAE rates of the atmospheric model are based on
F10.7 and F30 are 8.18% and 8.07% respectively of the atmo-
spheric density simulation experiment for data in March
2012. It can be seen from Figure 5, Figure 6, and Figure 7
that two neural networksmodels have completed the recon-
struction of atmospheric density data in sampling points.
Compared with the measured data, the simulation data of
the two neural networks atmospheric models are smoother,
and the simulation accuracy of local extremum points is
insufficient. In the comparison between the two neural
networks models, the simulation results of the local ex-
tremum points by the neural networks model based on F30
proxy is slightly better than that based on F10.7 proxy. As
a large number of training data are concentrated on the
non-extreme points, the neural network will have the prob-
lem of no training or insufficient training for some extreme
points. This situation is shown in the figure, which shows
that the atmospheric model based on neural network has a
poor generalization effect on some extreme points.

To give specific model simulation results, the GOCE
measureddata for each year from2009 to 2012 are randomly
selected. With the time, longitude, latitude, and altitude in
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Fig. 1. The MAE of the neural networks with different hidden layers and neurons

Fig. 2. Neural networks training iteration error graph based on GOCE training data sets

the data as input parameters, the accuracy of the two neu-
ral network models and the two traditional atmospheric
models were compared. The input parameters are calcu-
lated using DTM2013 mode, MSIS00 mode and two neural
network atmospheric mode respectively. The randomly se-
lected GOCE measured data input parameters are shown in
Table 1.

The GOCE measured atmospheric density and the at-
mospheric density simulation results of the four models
are as shown in Table 2.

The atmospheric density simulation MAE rates of the
four models are shown in Table 3.

The statistical figure of MAE rates of the above four
models is shown in Figure 8.
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Fig. 3.MAE rate distribution of F30 neural networks atmospheric model

Fig. 4.MAE rate distribution of F10.7 neural networks atmospheric model

It can be seen from Table 1, Table 2, Table 3, and Figure
8 that in the simulation results of the atmospheric density
of random sampling space locations in different years, the
performance of the two neural networks models is signifi-
cantly better than that of the two traditional atmospheric
models. The MAE rates of the neural networks models are
about 1/3-1/2 of that of the traditional models. In the two tra-

ditional atmospheric models, the MAE rate of the DTM2013
model is slightly lower than that of the MSIS00 model. In
the two atmospheric models based on neural networks,
the MAE rate of the F30 neural networks model is slightly
lower than that of the F10.7 neural networks model. For the
calculation of atmospheric density at the same time and
space, the MAE rates of the two traditional atmospheric
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Fig. 5. Global atmospheric density F10.7 data measured by GOCE in March 2012

Fig. 6. Global atmospheric density F30 neural networks model simulation results in March 2012

models show a certain consistency, and the two neural net-
works atmospheric models also show a certain consistency.
According to equations (1)-(4), the consistency of the two
traditional models stems from the fact that the two models
are basically the same pattern in calculating atmospheric
density. The consistency of the two neural network models

stems from the fact that the input parameters and calcula-
tion methods of the atmospheric models in the two models
are also the same, the difference is only that different solar
radiation parameters are used.

It can be seen from equations (1)-(4) that the calcu-
lation process of the traditional atmospheric model is as
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Fig. 7. Global atmospheric density F30 neural networks model simulation results in March 2012
Table 1. Input data of GOCE orbit sampled randomly

index Date&Time
Longitude
(∘)

Latitude
(∘)

Height
(km)

F10.7 ¯F10.7 F30 ¯F30 KP K̄P

1
2009-11-07
15:06:10.000

57.078 -57.058 287.139 70.90 70.70 47.00 46.60 1 1

2
2009-12-12
08:06:10.000

160.527 -50.927 272.660 72.20 72.90 49.00 49.00 6 5

3
2010-04-12
13:11:30.000

66.282 60.087 269.670 74.500 82.400 52.000 55.500 11 30

4
2010-06-27
04:50:00.000

75.006 81.480 273.966 74.400 73.800 55.000 51.000 51 26

5
2010-11-01
17:00:50.000

27.533 -31.070 271.095 81.20 80.50 57.00 57.10 3 7

6
2011-03-22
13:52:10.000

234.481 -69.731 282.374 100.900 96.200 61.000 62.800 13 11

7
2011-07-27
14:36:30.000

251.167 49.755 263.218 93.40 93.60 61.00 69.10 0 3

8
2011-07-30
17:32:20.000

200.798 11.859 260.824 111.700 93.700 69.00 68.80 30 24

9
2011-12-02
13:00:50.000

267.948 -7.581 262.127 152.40 145.10 100.00 98.50 6 10

10
2012-01-04
07:02:30.000

171.669 47.012 264.095 134.80 146.10 96.00 102.10 2 4

11
2012-05-05
10:22:30.000

324.891 65.761 268.947 113.90 112.30 75.00 76.20 8 3

12
2012-09-28
13:23:30.000

103.207 -68.370 279.995 133.200 121.900 108.000 84.100 14 13
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Table 2. The GOCE measured result and Simulation results of four models

index Date&Time

GOCE
Measured
result(e-11)

Simulation results of four models(e-11)

DTM2013 MSIS00 F10.7 NN model F30 NN model
1 2009-11-07 15:06:10.000 0.791684 1.14584 1.40300 0.79150 0.70942
2 2009-12-12 08:06:10.000 1.33798 1.79250 2.20300 1.39692 1.26890
3 2010-04-12 13:11:30.000 3.17176 2.93828 3.25100 2.52090 2.55937
4 2010-06-27 04:50:00.000 2.60328 2.68413 2.31500 2.05854 2.14868
5 2010-11-01 17:00:50.000 2.02270 2.57600 2.44600 1.89619 2.05931
6 2011-03-22 13:52:10.000 1.47715 1.43991 2.04100 1.74983 1.49182
7 2011-07-27 14:36:30.000 2.07180 2.63557 2.43400 2.38089 2.17151
8 2011-07-30 17:32:20.000 2.23447 3.12897 2.88700 2.78608 2.90875
9 2011-12-02 13:00:50.000 4.87579 5.02776 5.31800 5.12038 4.88317
10 2012-01-04 07:02:30.000 3.49073 4.46605 4.29500 3.08013 3.37713
11 2012-05-05 10:22:30.000 3.04203 3.84076 3.68400 3.13390 3.36234
12 2012-09-28 13:23:30.000 2.91271 4.16896 3.31200 2.59259 2.91280

Table 3.MAE rates statistics of atmospheric density simulation of the four models

index Date&Time DTM2013 MSIS00 F10.7 NN model F30 NN model
1 2009-11-07 15:06:10.000 44.735 77.217 0.023 10.391
2 2009-12-12 08:06:10.000 33.971 64.651 4.405 5.163
3 2010-03-11 13:25:10.000 7.361 2.498 20.520 19.308
4 2010-07-03 19:58:30.000 3.106 11.074 20.925 17.463
5 2010-11-01 17:00:50.000 27.355 20.927 6.255 1.810
6 2011-03-22 13:52:10.000 2.521 38.171 18.460 0.993
7 2011-07-27 14:36:30.000 27.212 17.482 14.919 4.813
8 2011-07-30 17:32:20.000 40.032 29.203 24.686 30.176
9 2011-12-02 13:00:50.000 3.117 9.070 5.016 0.151
10 2012-01-04 07:02:30.000 27.940 23.040 11.763 3.254
11 2012-05-05 10:22:30.000 26.256 21.103 3.020 10.529
12 2012-09-28 13:23:30.000 43.130 13.709 10.990 0.003

MAE rate 23.895 27.346 11.749 8.671

follows: polynomial fitting is carried out for several factors
affecting the atmosphere, the fitting results are summed up,
and then the atmospheric temperature is calculated accord-
ing to the results. Finally, the corresponding atmospheric
density is obtained from the atmospheric temperature. But
for the atmospheric model based on a neural network, its
calculation process is as follows: multiple factors affecting
the atmosphere are multiplied by the neural network ma-
trix, then the corresponding atmospheric density can be
obtained. The atmospheric model based on neural network
does not need to calculate a large number of atmospheric
factors fitting polynomials, and does not need to pre-set a
large number of atmospheric component coefficients in the
algorithm, just need to use the neural network matrix, its
calculation process is much simpler than the traditional
atmospheric model. On the HP ProLiant DL388 Gen10, the
atmosphericmodel based onneural network performs a sin-
gle computation in about 1.5-3ms, compared with about 5-7

ms for the traditional atmosphere model. The speed of the
neural network atmosphere model is obviously faster than
that of the traditional atmosphere model. In the orbit calcu-
lation of a low-Earth orbit spacecraft with a height close to
GOCE, through the atmospheric model based on the neural
network, it is possible to obtain the high-precision atmo-
spheric density of the spacecraft position in quasi real-time
and calculate the spacecraft by simply relying on matrix
multiplication. The resistance of the device improves the
orbit determination accuracy of the device.

6 Conclusion
A novel atmosphere model based on neural networks is
derived. In the atmospheric model based on neural net-
works, the atmospheric density measurement data of GOCE
is taken as the basic data. The measured time, longitude,
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Fig. 8. Simulation MAE rates of 4 models

latitude, height, solar radiation proxies, and geomagnetic
indices of the measured space taken as the input parame-
ters, and the atmospheric density of the space position is
taken as the label. Compared to the simulation results of
the DTM2013model, the MSIS00model, and the two neural
networks, it is confirmed that the atmospheric model based
on neural networks has increased the calculation accuracy
significantly and simplified the calculation method signif-
icantly. Besides, the atmospheric model based on neural
networks can be updated rapidly and iteratively with the
new spatial atmospheric measurement data which im-
proves the accuracy of the model. The atmospheric model
based on neural network can be applied to orbit determi-
nation and orbit prediction of low earth orbit satellites.
In the future, if more than one observation is introduced
into the method, the range of satellite altitudes that can
be applied to it will be expanded. The main limitation of
the neural networks model based on GOCE data is that the
adaptability of the atmospheric model is limited because
the height of GOCE is relatively fixed (about 250-280 km),
more measured data of different space height should be
added in the future research to wider the adaptability of
the model, such as data from satellites such as CHAMP and
GRACE. The value of solar radiation proxy F10.7 and F30 is
relatively high compared with the low solar activity years
because 2009-2012 is an active period of solar activity. So
more measured data of different stages of the solar activity
cycle also should be added in the subsequent studies.
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