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Abstract: This paper aims to study the effect of the triaxiality and the oblateness as a special case of primaries on the
locations and stability of the collinear equilibrium points of the elliptic restricted three body problem (in brief ERTBP).
The locations of the perturbed collinear equilibrium points are first determined in terms of mass ratio of the problem
(the smallest mass divided by the total mass of the system) and different concerned perturbing factors. The difference
between the locations of collinear points in the classical case of circular restricted three body problem and those in the
perturbed case is represented versus mass ratio over its range. The linear stability of the collinear points is discussed. It
is observed that the stability regions for our model depend mainly on the eccentricity of the orbits in addition to the
considered perturbations.
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1 Introduction
The general three-body problem is described as a third
body of infinitesimal massm3 that is attracted by two finite
masses called primaries but not influencing their motion,
moves in the plane defined by the two revolving primaries.
The primaries are of arbitrary masses m1 and m2 and re-
volve around their center of mass in circular orbits (this
system denoted briefly, CRTBP), see for instance, the fun-
damental celestial mechanics books, e.g. Szebehely (1976)
and Murray and Drmott (1999). For more generalization, it
is supposed that the primaries revolve around common cen-
ter of mass in elliptical orbits (this system denoted briefly,
ERTBP). ERTBP appears a more difficulty involved in han-
dling it. Even if the CRTBP is not integrable, a number of
special solutions can be found. The points where the third
body has zero velocity and zero acceleration in the rotating
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frame are special solutions. Such points are called equilib-
rium points. The position of the infinitesimal body is dis-
placed a little from the equilibrium point due to the some
perturbations. If the resultant motion of the infinitesimal
mass is a rapid departure from the vicinity of the point,
we can call such a position of equilibrium point an “unsta-
ble one”, if however the body merely oscillates about the
equilibrium point, it is said to be a “stable position” (in the
sense of Lyapunov), Abd El-Salam (2015). In general case,
the dynamics of circular and/or elliptical three-body prob-
lem has a wide applications in astrophysics for example
but not all stellar/solar system dynamics and Earth-Moon
system. So this problem received more attention from the
astronomers and dynamical system scientists and can’t be
enumerated. in spite of it, the solutions of this problem has
been developed over the past centuries.

The scientific history of the restricted three-body prob-
lem is very wealth to be mentioned but here is the most
related and recent studies dealt with CRTBP as well as
ERTBP with and without considering different perturba-
tions Sharma (1987), Tsirogiannis et al. (2006); Kushvah
and Ishwar (2006); Vishnu Namboori et al. (2008); Mital
et al. (2009); Singh and Ishwar (1999); Kumar and Ishwar
(2009); Rahoma and Abd El-Salam (2014); Rahoma (2016)
and references therein.
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It seems good to present some of the important related
works focused on the ERTBP, Sharma et al. (2001) analyzed
the equilibrium points stability retrieved that the triangu-
lar quilibrium points are stable conditionally but collinear
points are always unstable. Ammar (2008) analyzed solar
radiation pressure effect on the positions and stability of
the libration points in ERTBP. Singh (2011) formulated the
triangular libration points nonlinear stability under the ef-
fect Coriolis and centrifugal forces as small perturbations
in addition to the effect of primaries oblateness and radi-
ation pressures. Singh and Umar (2012) investigated the
stability of triangular equilibrium points in the ERTBP, con-
sidering both primaries are oblate and emit light energy
simultaneously. Singh and Umar (2013) investigated the
luminous and oblate spheroids of primaries effect on the
locations and stability of the collinear libration points. In
another work, Singh and Umar (2014) studied the effect
of the big primary’s triaxial and a spherical shape of the
companion on the locations and stability of the collinear
libration points. They found that the position of collinear
libration points and their stability are affected with their
considered perturbations in addition to the eccentricity and
the semi-major axis of the primaries orbit as well.

Katour et al. (2014); Singh and Bello (2014a,b, 2015a,b);
Abd El-Salam and Abd El-Bar (2015); Abd El-Bar et al. (2015)
and Bello and Singh (2016) concerned with the relativis-
tic R3BP in addition to some different perturbations; the
primaries oblateness, radiation from one of the primaries,
upon the equilibrium points locations and stability. They
noticed that the stability regions of the their concerned
equilibrium points are varied (expanding or shrinking) re-
lated to the critical mass value and depending upon the
value of their considered perturbations.

In recent works, the calculations of the effect of differ-
ent perturbations like oblateness, ellipsoidal primaries and
photogravitational relativistic on the equilibrium points
locations and its stability in the restricted three-body prob-
lem are investigated, Wang et al. (2018); Wu et al. (2018);
Abd El-SalamandAbdEl-Bar (2018) andXin andHou (2017).
They concluded that the collinear points stability is highly
affected at a whole range of mass, contrary to the stability
regions of the triangular points which are affected differ-
ently depend on the perturbations kind.

The aim of this study is the determination of the loca-
tions of the collinear equilibrium points and investigating
their linear stability in the ERTBP taking into considera-
tion both primaries triaxial. The oblateness is discussed as
a special case of triaxiality.This aim comes as a continua-
tion study for a previously started work by Abd El-Salam
(2015). The equations of ERTBP is not adequate easy to
dealing with because the Hamiltonian of the problem be-

comes time-dependent. Utilizing from the pulsating and
non-uniformly rotating coordinate reference frame, the sys-
tem can be brought to a form where the primaries positions
become at fixed and the infinitesimal body motion can be
analyzed relative to their locations.

This paper will be organized after this introduction
section as follows: the equation of motion in ERTBP with
oblate and triaxial primaries will be formulated in section
2, the computations related to the location of equilibrium
points in ERTBP with the considered perturbations will
be introduced in section 3. Sec. 4 highlighted the small
displacement effect of a test particle located in collinear
points. In sec. 5 all the computations related to the stabil-
ity of collinear points are introduced. Finally a numerical
simulations are presented in sec. 6 with discussion and a
work conclusion is shown in sec. 7.

2 Equations of motion
The motion of an infinitesimal particle in the ERTBP with
oblate and triaxial primaries in a dimensionless, barycen-
tric and pulsating rotating coordinate system (ξ , η) is de-
scribed by Abd El-Salam (2015)

d2ξ
df 2 − 2dηdf = (1 + e cos f )−1 ∂U∂ξ (1)

d2η
df 2 + 2dξdf = (1 + e cos f )−1 ∂U∂η (2)

With the potential-like function U given by

U = 1
2

[︁
(1 − µ) r21 + µr22

]︁
+ 1
n2

(︂
1 − µ
r1

+ µ
r2

)︂
(3)

+ 1
2n2

(︂
Aσ

1 − µ
r31

+ Aγ
µ
r32

)︂
where f is the true anomaly of the more massive primary,
m1, e is the eccentricity of any primary’s orbit, µ is the
ratio of the mass of smaller primary to the total mass of
the primaries and it satisfies 0 < µ ≤ 1/2, n is the mean
motion, Aσ = A1 + (2σ1 − σ2) and Aγ = A2 + (2γ1 − γ2) are
the total averaged oblateness and triaxiality coefficients for
larger and smaller primaries respectively.A1,A2, (2σ1 − σ2)
and (2γ1 − γ2) are the oblateness and triaxiality factors for
larger and smaller primaries respectively. r1 and r2, the
distances of the infinitesimal mass from larger and smaller
primaries respectively are given by.

r1 =
√︁
(ξ + µ)2 + η2

r2 =
√︁
(ξ + µ − 1)2 + η2
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Finally the mean motion of the system is given by

n2 = 1
a
(︀
1 − e2

)︀ (︂1 + 3
2Aσ +

3
2Aγ

)︂

3 Existence of the collinear
equilibrium points

Since the equilibrium points have zero relative velocities
and zero relative accelerations, then the locations of them
is determined by equating the partial derivatives of the
potential-like function to zero,

∂U
∂ξ = ∂U∂η = 0 (4)

where

n2ξ − (1 − µ) (ξ + µ)
r31

− 3
2Aσ

(1 − µ) (ξ + µ)
r51

(5)

− µ (ξ + µ − 1)
r32

− 3
2Aγ

µ (ξ + µ − 1)
r52

= 0

and

n2η −
(︂
1 − µ
r31

+ 3
2Aσ

(1 − µ)
r51

+ µ
r32

+ 3
2Aγ

µ
r52

)︂
η = 0 (6)

The solutions of the Eqs. (5-6) with η = ̸ 0 give the location
of the triangular equilibrium points L4 and L5 whereas the
trivial solution η = 0 gives the location of the collinear
equilibrium points L1, L2 and L3 which are the cases of
our study. Ignoring the perturbing coefficients in Eqs. (5-6),
oblateness, triaxiality and ellipticity, The system will be
retrieved to CRTBP system.

4 Linear stability analysis
To study the stability of the equilibrium points, a small dis-
placement is occurred to a test particle located in those
points due to the included perturbations. We will call
the point a “stable position” if the body simply oscillates
around the equilibrium point, also the point can be called
as an “unstable one” if the body leavs rapidly from the point
neighborhood; in the Lyapunov sense. In order to study the
effect of a small displacement on a test particle subjected on
the equilibrium collinear points, the equations of motion
must be linearized around these points. Similarity trans-
formation technique is used in order to solve the system
of linear differential equation resulted from the lineariza-
tion process. Consider a small displacement (X, Y) from the

collinear equilibrium points (ξi , ηi) , i = 1, 2, 3 such that
ξ = ξi + X and η = ηi + Y, the linearized equation can be
expressed as

X� − 2Yf = F
{︁
X U(Li)

ξξ + Y U(Li)
ξη

}︁
, (7)

Y� + 2Xf = F
{︁
X ULiξη + Y ULiηη

}︁
, (8)

U(Li)
ξξ = 1 + 2

n2

(︃
1 − µ

|ξi + µ|3
+ µ
|ξi + µ − 1|3

)︃
(9)

+ 6
n2

(︃
Aσ

1 − µ
|ξi + µ|5

+ Aγ
µ

|ξi + µ − 1|5

)︃
,

U(Li)
ηη = 1 − 1

n2

(︃
1 − µ

|ξi + µ|3
+ µ
|ξi + µ − 1|3

)︃
(10)

− 3
2n2

(︃
Aσ

1 − µ
|ξi + µ|5

+ Aγ
µ

|ξi + µ − 1|5

)︃
,

U(Li)
ξη = 0 (11)

Where F = (1 + e cos f )−1, Xf , X� , Yf and Y� are the par-
tial derivatives of the small displacement with respect to
true anomaly f and U(Li)

ξ , U(Li)
ξξ , U(Li)

η , U(Li)
ηη and U(Li)

ξη are
the partial derivatives of the potential-like function at the
equilibrium point Li , i = 1, 2, 3. The general solution of
the linearized equation is

X =
4∑︁
j=1

αjeλj f , Y =
4∑︁
j=1

βjeλj f (12)

where λj are the characteristic roots, which can be evalu-
ated from the corresponding characteristic equation

λ4 + ULi λ
2 + VLi = 0 (13)

where

ULi = 4 − F
(︁
U(Li)
ξξ + U(Li)

ηη

)︁
(14)

VLi = F2U(Li)
ξξ U

(Li)
ηη (15)

Also αj and βj are dependent constants and they are defined
as

βj =
λ2j − FU(Li)

ξξ
2λj

αj (16)

By meditation at Eq. (12), the positive eigenvalue gives rise
to exponential growth that lead to instability case whereas
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the imaginary eigenvalue gives rise to oscillation terms that
lead to stability case. The exponential decay is resulted from
negative eigenvalue. However, from Eq. (13) the negative
eigenvalue is resulted together with positive one from the
equation.

λ1,2 = ± 1√
2

√︂
−ULi −

√︁(︀
ULi
)︀2 − 4VLi , (17)

λ3,4 = ± 1√
2

√︂
−ULi +

√︁(︀
ULi
)︀2 − 4VLi

It is clear that λ1 = −λ2 and λ3 = −λ4, then at the stable
points, the roots of the characteristic equation must satisfy
λ21 = λ22 < 0 and λ23 = λ24 < 0. This implies that for stabil-
ity case the following sufficient and necessary conditions
should be satisfied simultaneously

U(Li)
ξξ U

(Li)
ηη > 0, U(Li)

ξξ + U(Li)
ηη < 4

F
(18)

5 Perturbed locations of
Lagrangian points

The location of collinear Lagrangian points in the case of
CRTBP is determined in many textbooks of celestial me-
chanics, e.g. ?. In this section, the required computation
is to determine the locations of these collinear libration
points in ERTBP with oblate and triaxial primaries. These
new locations will be obtained as a perturbation of CRTBP
Lagrangian points’ locations as follows.

5.1 Location of L1

The location of L1 in the case of CRTBP is determined by
the following power series,

R1 = 1 − α + 1
3α

2 + 1
9α

3 + 23
81α

4 + O
[︁
α5
]︁

(19)

with R1 + R2 = 1 , α =
[︁

µ
3(1−µ)

]︁1/3
where R1 and R2 are the

positions of L1 with respect to m1 and m2, respectively. In
the case of ERTBP with oblatness and triaxiality case, R1
and R2 will be slightly changed due to the perturbations in
addition to ellipticity of the primaries orbit,

r1 = R1 + ε1, r2 = R2 + ε2 (20)

where ε1 and ε2 are small perturbations factors. For the
case of perturbed first Lagrangian point L1 (ξ1, 0) we have

r1 = ξ1 + µ, r2 = 1 − ξ1 − µ (21)

Denote ε1 = ε and R1 = R then using Eq. (20) and Eq. (21)
yields

ξ1 = R − µ + ε
r1 = R + ε
r2 = [1 − R] − ε

⎫⎪⎪⎬⎪⎪⎭ (22)

Substitute Eq. (22) into Eq. (5) yields

n2 [R − µ + ε] − (1 − µ) [R + ε]−2 − 3
2Aσ (1 − µ) [R + ε]

−4

+ µ [[1 − R] − ε ]−2 + 3
2Aγ µ [[1 − R] − ε ]

−4 = 0

This equation can be written as

n2 [R − µ + ε] − (1 − µ)
{︁
R
[︁
1 + ε

R

]︁}︁−2
− 3
2Aσ (1 − µ)

{︁
R
[︁
1 + ε

R

]︁}︁−4
+ µ

{︁
[1 − R]

[︁
1 − ε

1 − R

]︁}︁−2
+ 3
2Aγ µ

{︁
[1 − R]

[︁
1 − ε

1 − R

]︁}︁−4
= 0

Since ε
R << 1, ε

1−R << 1 then we can use the Maclaurin
formula (1 ±M)m 1 ± mM

n2 [R − µ + ε] − (1 − µ) R−2
[︁
1 − 2 εR

]︁
− 3
2Aσ (1 − µ) R

−4
[︁
1 − 4 εR

]︁
+ µ [1 − R]−2

[︁
1 + 2 ε

1 − R

]︁
+ 3
2Aγ µ [1 − R]

−4
[︁
1 + 4 ε

1 − R

]︁
= 0

The solution will be

ε = (23)

n2 [µ − R] +
{︁
1−µ
R2 − µ

[1−R]2
}︁
+ 3

2

{︁
Aσ 1−µR4 − Aγ µ

[1−R]4
}︁

n2 + 2
{︁
1−µ
R3 + µ

[1−R]3
}︁
+ 6
{︁
Aσ 1−µR5 + Aγ µ

[1−R]5
}︁

Provided

n2 + 2
{︂
1 − µ
R3 + µ

[1 − R]3

}︂
(24)

+ 6
{︂
Aσ

1 − µ
R5 + Aγ

µ
[1 − R]5

}︂
��=0

By looking at Eq. (23), we find that ε equals to the nega-
tive ratio of the first partial derivative of the potential-like
function with respect to ξ at r1 = R1 = R of non perturbed
location of L1 to that the second partial derivative of the
potential-like function with respect to the same variable at
r1 = R1 = R, i.e.

ε = −
U[R]
ξ

U[R]
ξξ

, U[R]
ξξ ��=0 (25)
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Then the perturbed location of L1 can be expressed as,⎛⎝R − µ − U[R]
ξ

U[R]
ξξ

, 0

⎞⎠ ,

U[R]
ξξ ��=0

R = 1 − α + 1
3α

2 + 1
9α

3 + 23
81α

4 + O
[︁
α5
]︁
,

α =
[︂

µ
3 (1 − µ)

]︂1/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(26)

Removing all oblatness and triaxility factors for both Larger
and smaller primaries (Aσ , Aγ → 0) also remove the ellip-
ticity factor (n → 1), the perturbation factor will approach
to zero, i.e.,

lim
(n,Aσ ,Aγ)→(1,0,0)

ε = 0 (27)

Which confirms the unperturbed location obtained, see Eq.
(19).

5.2 Location of L2

The location of L2 in the case of CRTBP can be determined
as

R1 = 1 + α + 1
3α

2 − 1
9α

3 − 31
81α

4 + O
[︁
α5
]︁

(28)

with R1 − R2 = 1, α = ( µ
3(1−µ) )

1/3, where R1 and R2 are the
positions of L2 with respect to m1 and m2. Similar to L1,
the perturbation factor can be expressed as

ε = −
U[R]
ξ

U[R]
ξξ

, U[R]
ξξ ��=0 (29)

The formal coordinate of L2 will be formulated as:⎛⎝R − µ − U[R]
ξ

U[R]
ξξ

ε , 0

⎞⎠ ,

U[R]
ξξ ��=0

R = 1 + α + 1
3α

2 − 1
9α

3 − 31
81α

4 + O
[︁
α5
]︁
,

α =
[︂

µ
3 (1 − µ)

]︂1/3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(30)

Removing all perturbations, the location of L2 will be re-
trieved to its position in CRTBP

lim
(n,Aσ ,Aγ)→(1,0,0)

ε = 0 (31)

Which confirms again the unperturbed location obtained,
see Eq. (28).

5.3 Location of L3

The location of L3 in the case of CRTBP can be determined
as

R1 = R1 = 1 − 7
12α +

7
12α

2 − 13223
20736α

3 + O
[︁
α4
]︁

(32)

with R2 − R1 = 1, α = µ
(1−µ) where R1 and R2 are the posi-

tions of L3 with respect to m1 and m2. Similar to the previ-
ous cases,

ε =
U[R]
ξ

U[R]
ξξ

, U[R]
ξξ ��=0 (33)

The coordinates of L3 will be⎛⎝−R − µ − U[R]
ξ

U[R]
ξξ

, 0

⎞⎠ ,

U[R]
ξξ ��=0

R = 1 − 7
12α +

7
12α

2 − 13223
20736α

3 + O
[︁
α4
]︁
,

α = µ
(1 − µ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(34)

lim
(n,Aσ ,Aγ)→(1,0,0)

ε = 0 (35)

Which confirms again the unperturbed location obtained,
see Eq. (32).

6 Graphical representation and
analysis

In this section we will use the numerical values of the in-
cludedparameters listed in Table 1 to introduce some graph-
ical representations illustrating the effect of the considered
perturbation on:

1. The locations of the collinear points.
2. The fate of a small displacement on a test particle

located at each point.
3. Stability region versus the mass ratio for each point.

The initial conditions of the orbit of the primaries can
be found in Abd El-Bar et al. (2015). Eccentricity = 0.2, semi-
major axis =1.1, square of mean motion = 0.96714015, true
anomaly = 0 degree and F =

(︀
1/1.2

)︀
. In addition to the

following domains of the perturbing parameters tabulated
in the following Table 1.

In what follows, we gave some plots to illustrate and
interpret the difference between the locations of Li, i =
1, 2, 3 in the classical CRTBP and in the perturbed ERTBP.
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Table 1. Small parameters of different included perturbations

Larger primary Smaller primary
Oblateness A1 ∈ ]0, 0.01] A2 ∈ ]0, 0.001]
Triaxiality (2σ1 − σ2) ∈

]0, 0.0018]
(2γ1 − γ2) ∈
]0, 0.0014]

Total perturbations Aσ ∈ ]0, 0.0118] Aγ ∈ ]0, 0.0024]

Figure 1. Location of vs. for two different cases, CRTBP for spherical
primaries and ERTBP with oblate and triaxial primaries.

In Figures 1, 4, 7 we plotted the locations of Li, i =
1, 2, 3 versus the whole mass ratio µ ∈ ]0, 0.5].

In Figure 1 the location decreases with increasing the
mass ratio, i.e. the equilibrium point L1 moves left towards
the barycenter. In Figure 7 the location decreases with in-
creasing the mass ratio, i.e. the equilibrium point L1 moves
right towards the barycenter. This may be attributedmainly
to the gravitational field of the massive primary. The size of
perturbation between the classical CRTBP and in the per-
turbed ERTBP in determination of the location of L1 and L3
become significant and noticeable for larger mass ratios,
approximately µ > 0.25. The gravitational fields of the pri-
maries in both case illustrated in Figure 1 and in Figure 7
have only one line of action towards the left at L1 and to-
wards the right at L3. Thismay interpret well the decreasing
nature of the curves obtained in Figure 1, 7.

In Fig. 4 the location increases with increasing the
mass ratio, i.e. the equilibriumpoint L2moves right towards
the les massive object away from the barycenter, which is
very difficult to be interpreted but it may partially attributed
due to close vicinity of L2 to the less massive primary and
the gravitational fields of the primaries have two inverse
lines of action at L2, to the left towards the massive body
and to the right towards the less massive one. Therefore
the gravitational field of the less massive body will be more
effective at L2 than the gravitational field of the massive
primary. Also the rotating frame may give a contribution to
the effect.

The size of perturbation between the classical CRTBP
and in theperturbedERTBP indeterminationof the location
of L2 is very tiny. This may support our interpretation that
we are very colse to the less massive primary.

In Figures 2, 5, 8 small displacement leads to departure
which enhances the instability of Li, i = 1, 2, 3 illustrated
in Figures 3, 6, 9. The only difference is the velocity of de-
parture from equilibrium point.

According to Eq. (13, 14, 15), the characteristic equa-
tions of Li, i = 1, 2, 3 of ERTBP for µ = 0.01 are respec-
tively given by

λ4 − 3.51423 λ2 − 45.2287 = 0 (36)

λ4 − 0.698 λ2 − 11.13 = 0 (37)

λ4 − 1.4677 λ2 − 0.020171 = 0 (38)

FromEq. (12), Eq. (16), Eq. (36), Eq.(37), and Eq.(38) we have
the following sets

For L1

X = 10−6 ×
[︃
6.95 e−2.95 f + 5.03 e2.95 f

−1.98 cos (2.28 f ) + 2.49 sin (2.28 f )

]︃

Y = 10−6 ×
[︃
3.24 e−2.95 f − 2.35 e2.95 f

+9.1 cos (2.28 f ) + 7.24 sin (2.28 f )

]︃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(39)

Figure 2. The growth of a small displacement for a test particle
placed at L1 vs. f .
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Figure 3. Stability region vs. µ for L1 for ERTBP with oblate and
triaxial primaries.

Figure 4. Location of L2 vs. µ for two different cases, CRTBP for
spherical primaries and ERTBP with oblate and triaxial primaries.

For L2

X = 10−6 ×
[︃
8.37 e−1.92 f + 5.69 e1.92 f

−4.06 cos (1.73 f ) + 2.98 sin (1.73 f )

]︃

Y = 10−6 ×
[︃
5.93 e−1.92 f − 4.03 e1.92 f

+8.1 cos (1.73 f ) + 11.1 sin (1.73 f )

]︃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(40)

For L3

Figure 5. The growth of a small displacement for a test particle
placed at L2 vs. f .

Figure 6. Stability region vs. µ for L2 for ERTBP with oblate and
triaxial primaries.

X = 10−6 ×
[︃
13.9 e−0.117 f + 13 e0.117 f

−16.9 cos (1.22 f ) + 8.73 × 10−2 sin (1.22 f )

]︃

Y = 10−6 ×
[︃
151 e−0.117 f − 141 e0.117 f

+0.144 cos (1.22 f ) + 27.9 sin (1.22 f )

]︃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

It is clear that the first term is a decay and the third
and fourth is an oscillation while the second term repre-
sents a growth that is the source of unstable case for L1
and it dominates all other terms, see Figures 2, 5, 8. The
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Figure 7. Location of L3 vs. µ for two different cases, CRTBP for
spherical primaries and ERTBP with oblate and triaxial primaries

Figure 8. The growth of a small displacement for a test particle
placed at L3 vs. f .

value of the constant term in the characteristic equation
is always negative overall 0 < µ ≤ 1

2 . This implies that the
first condition of stability is not achieved. See Figures 3, 6,
9.

7 Conclusion
We have considered the ellipticity, oblateness and triaxial-
ity perturbations as a modification to the classical CRTBP.
These perturbations as expected bring deviations of the
locations of the equilibrium points from classical CRTBP. In
this work, we computed and illustrated these deviations in
collinear points explicitly as functions in the mass ration.
We investigated the stability of the collinear equilibrium
points. The absolute deviation in the location of all collinear
points is the ratio between the first partial derivative of the

Figure 9. Stability region vs. µ for L3 for ERTBP with oblate and
triaxial primaries.

potential-like function to the second partial derivative of
the same function with respect to ξ axis at the solution
of classical CRTBP. In all collinear points, the size of per-
turbations coming from the different perturbing sources
are almost comparable at small and moderate mass ratios,
But this becomes distinguishable for late moderate and
high mass ratios. Also in all cases, the equilibrium points
undergo instabilities in the whole domain of mass ratio.
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