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Abstract: Prototypes of borehole-wall imager instruments were developed and tested at a desert riverbed in Morocco and
at a lake’s salty flat in the Atacama desert, to support the drilling activity of ExoMars rover. The onsite recorded borehole
images contain information on the context that are lost during the sample acquisition. Benefits of the borehole-wall
imaging is the easier maximal energy estimation of a fluvial flow, the detailed information on sedimentation and layering,
especially the former existence of liquid water and its temporal changes, including paleo-flow direction estimation from
grain imbrication direction. Benefits of laboratory analysis of the acquired samples are the better identification of mineral
types, determination of the level of maturity of granular sediment, and identification of the smallest, wet weathered
grains. Based on the lessons learned during the comparison of field and laboratory results, we demonstrate that recording
the borehole-wall with optical instrument during/after drilling on Mars supports the paleo-environment reconstruction
with such data that would otherwise be lost during the sample acquisition. Because of the lack of plate tectonism and
the low geothermal gradient on Mars, even Ga old sediments provide observable features that are especially important
for targeting Mars sample return and later crewed Mars missions.
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will heavily exploit in-situ work, sample return and rely on
material obtained from borehole, as biologically relevant
target is expected to survive at meter depth there so drilling
is required to reach it. Thus, it is worth testing the possible
benefits at Mars analogue sites (Groemer et al. 2014) for
how such two observation types are complementary, which
were already partly tested at diverse geological conditions
(Losiak et al. 2013; Orgel et al. 2013b), to develop technol-
ogy (Foing et al. 2011a) with focus on astrobiology related
activities (Foing et al. 2011b) and also on logistics related to
human work performance (Groemer et al. 2010; Orgel et al.
2013a).

During the Mars sample return and especially planned
future crewed mission, the sample selection on Mars re-

1 Introduction

The aim of this work is to compare the potential results of
two different in-situ sample analysing methods for plane-
tary bodies: the poorly tested optical scanning of borehole-
wall and the more widely used optical analysis under lab-
oratory conditions of the acquired sample. While in the
first case the samples are surveyed as they are embedded
in their original environment, in the second case the col-
lected samples are analysed without their original context.
(For more detailed background information on these meth-
ods please see the next subchapter.) Future Mars missions
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quires careful work, and the efficiency of sample targeting
and selection should be supported by such local analysis
that provides information on the depositional conditions
and local context too. Drilling is an important method for
sample acquisition on Mars as various UV (Moores and
Schuerger 2012; Poch et al. 2014; Stalport et al. 2009) and
particle radiation (Dartnell and Patel 2014), as well as at-
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mospheric generated oxidants (Benner et al. 2000; Zent
and McKay 1993) on the surface could destroy biosignatures
(Westall et al. 2015). As old sedimentary strata might hold
information on habitable conditions, on-site analysis of the
borehole-wall during the drill is helpful. In this work, the
related technology and the first results for such analysis is
presented.

Future missions need to have subsurface access, e.g.
drilling on Mars (Ori et al. 2000; Parro et al. 2008; Stoker
et al. 2008) and the potential of data acquisition during the
drill should be tested beforehand. Despite that, surveying
the borehole-wall during drilling might provide ideal con-
text to better understand the acquired samples’ properties,
only a small amount of effor is aimed to exploit this possibil-
ity. MaMISS instrument onboard the driller of the ExoMars
2020 rover of ESA (De Angelis et al. 2014) will scan both
horizontally and vertically the borehole-wall in the near
infrared but not in the optical range. In this paper, we sum-
marize the related background knowledge from the Earth
firstly, then give general characteristics of the borehole-wall
imagers used in this project secondly, and finally present
the results of field and laboratory sample analysis. In the
Discussion section, we compare the advantages and dis-
advantages of the in-situ and laboratory methods. Using
these experiences, we provide suggestions how the capa-
bilities could be exploited for further missions and which
of those capabilities should be developed further to reach
an ideal system to identify past conditions during drilling
and sampling on Mars.

1.1 Background information: drilling on
Earth and Mars

In classical Earth sciences, especially in applied research
in petroleum industry, as well as in the search for water
and other resources, drilling based subsurface exploration
is regularly used (Castagna and Bellin 2009; Cheng 1981;
Daily et al. 1992; Rehfeldt et al. 1992; Wang 1992). In addi-
tion, research drills are made regularly for reconnaissance
exploration. In these cases the drilled core is analysed
macroscopically firstly, and then microscopically too. Used
technologies for borehole analysis, however, mainly fo-
cus on geophysical characteristics like conductivity, poros-
ity, material strength acquired during the drill (providing
unique information on rock permeability, spatial density of
fractures, deformation style etc.) — but optical analysis was
rarely performed. The produced logs are mainly done inside
water, mud or hydrocarbon filled boreholes, dry boreholes
are rarely analysed — however on Mars, future missions will
meet with this type of boreholes.
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Possibility and expected performance of drills for Mars
were analysed based on theoretical argumentations, lab-
oratory and Earth analogues field tests (Finzi et al. 2004;
McKay et al. 2007) previously. Drilling in permafrost ter-
rain found to be possible (Zacny et al. 2013a) however sev-
eral technical difficulties including the prevention from
melting emerge, while thermal drill is also a possible ap-
proach (Weiss et al. 2008) there. Planetary protection issues
should be considered during any drill activity (Christner
et al. 2005; Juck et al. 2005) thus proper sterilization is re-
quired. Drilling in regolith was tested to improve the drill
head design (Pitcher and Gao 2015), and testing were made
for specific dual-reciprocating drilling (Gouache et al. 2011),
tethered supported Down-Hole-Motor Drilling (Hill et al.
2003), coiled tubing drilling and mole drilling (Hoftun et al.
2013) were also evaluated. Laboratory tests demonstrated
that even small gas flow under Mars relevant conditions
could eject the small cuttings from the borehole (Zacny et al.
2004) by the sublimation of ice in the drilled hole. The low
temperature increases the strength of the target rocks, mak-
ing more energy consuming the drilling process on Mars
(Zacny et al. 2009).

The drilling produced temperature increase was also
analysed (Szwarc et al. 2012), and the use of single drills
as well as multiple rods were demonstrated that might be
successful under Mars like conditions (Magnani et al. 2004).
Autonomous decisions and performance were also tested
(Glass et al. 2008) what is required to realize a drill on
Mars, however teleoperation from Martian orbit may be
also possible in the future (Glass et al. 2012; Lee et al. 2009).
Several parts of the drilling process were tested and demon-
strated with successful performance, just like sample ac-
quisition and transport (Zacny et al. 2013b) in the Antarctic
Dry Valleys and in the Atacama desert (Zacny et al. 2015),
at Haughton crater in arctic Canada (Glass et al. 2006), at
Rio Tinto in Spain (Prieto-Ballesteros et al. 2008), and at
the Gypsum Quarry at Borrego Springs, California (Zacny
et al. 2013c). Under the planned Canadian Norhtern Light
Mission several Mars relevant aspects will be tested of a
drilling on Mars (Navarathinam et al. 2011).

During drilling the optical analysis of the borehole-
wall has not been planned or tested beyond that of the
Earth (except the already mentioned infrared imaging ca-
pability of MaMISS). On the Earth optical method recorded
with televiewer (Philippe et al. 2007) was used in coupled
to acoustic data (Williams and Johnson 2004) to identify
and analyse the spatial density of fractures which could
be better identified by acoustic than optical method, while
optical images allowed to understand the relation between
fractures and the lithology plus bedding. Optical teleview-
ers are also used to identify borehole breakouts that point
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to fractures and stress in the host rock. Beside the often
analysed tectonic structures, sedimentary and diagenetic
features could be also identified on borehole-wall images.
Some background experiences exist from the Earth, how-
ever the method should be further developed for Mars, and
this work provides some specific input for that regarding
the analysis of sediments at Mars analogue terrains.

2 Material and methods

During the research work a first version of a subsurface
optical detector and an advanced second version of the
fully built borehole-wall imager were used. The targets were
Mars analogue materials at field sites in Morocco and Chile,
where the targets were not only imaged at their original
context but were acquired as samples for later laboratory
work in Hungary. Below, the field sites are described first
followed by the used facilities.

During the field activity in Morocco at the Ibn Battua
Center’s field sites (Kapui et al. 2017) (15-21 in September,
2016) in-situ survey with the first version of the camera
(Figure 1) together with sampling for subsequent labora-
tory analysis were applied. The samples were acquired at
30.983N, 7.153W around 2 km to west from Timedline in a
desert wadi. While the fully built version of the borehole-
wall imager (Figure 2) was tested in the Atacama desert at
the salty lake of Laguna Verde, inside clayey sediments (11-
28 February, 2018). At the field manual drilling by soil corer
of soft sediments were made, the sample acquisition of the
pulled out core happened firstly, while image recording of
the drilled borehole was done secondly. Documentation for
the nearby outcrop wall at the depth values of the acquired
samples were also made subsequently.

target field of
view (d=10 mm)

| objective ) borehole-wall
camera f=12.5 mm grazing illum. ‘
| /‘ holder
| axis of borehole and imager |
45° mirror Q mirror
|printed-circuit 90 mm arrect adjustment

_ illum.

house (tube) of imager

Figure 1. Schematic structure of the imager with the camera at the
left that views a segment of the wall by a mirror (top right). The
direct illumination provides light to the target not trough the mirror,
however on this image it is visualized this way).

Besides testing the observability under different con-
ditions, we compared the field recorded and laboratory
recorded images in order to identify the favourable and
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Figure 2. Generalized structure of the borehole-wall scanning sys-
tem (a) and its usage in the Atacama desert at Laguna Verde (b).

unfavourable aspects of the performance, including the
size distribution, shape characteristics and related obser-
vational possibilities of grains. For the laboratory analysis
the field acquired samples were transported to the home
institute, and as they were weakly cemented, many aggre-
gates were fallen into pieces, thus supporting the analysis
of grains separately. The laboratory conditions for image
recording, were better but the same camera was used as
in the field, while geometry and focusing issues were also
better solved there. Two types of imaging were made in the
laboratory: using the same imager like in the field and a
more sophisticated microscope, by NICON Eclipse E600
POL, which has 4x, 10x, 20x and 40x magnification.

For the analysis of the recorded imager for grain char-
acterization, manual work was done with recording the
minimal and maximal diameter of each particles of the
given image for statistical computations. During the com-
parison of field and laboratory images, roughly the same
volume of sediments were analysed. In most cases 1 cm?
area of each image showed sand grains of 100 mm? (e.g.
0.1 cm?) in total volume, what was almost equal to the ac-
quired sample mass for one sampling attempt for laboratory
analysis.

2.1 Borehole-wall imager

A first test version of the imager to record the borehole-
wall was produced mainly to exploit the observational po-
tential what is discussed in this work. This first version of
the imager did not have the capability to move along the
drilled borehole, only to record a small part of the borehole
at the given depth and direction where it was let down into
the hole. The imager is composed of the following units:
camera house (camera, mirror, light sources), rope to move
the camera and to transfer the data to a laptop. The simpli-
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fied structure of the camera can be seen in Figure 1, which
is an A4 Tech webcam with 640x480 pixel resolution. The
illuminating source was white LED, the spectral coverage
was 410-750 pm. Two types of illumination geometry were
used: a grazing and a direct illumination, in order to test
the consequences of different illumination angles.

Based on the experiences gained with this first test
version, a fully built second version was realized (called
hereafter borehole-wall imager, BHWI). The structure of this
BHWI can be seen in Figure 2. The main components are:
mount (based on a tripod) to keep the components, orient
and move the camera house toward the borehole; camera
house with camera and side looking mirror, illuminating
LEDs; telescopic boom that accommodates two wires inside
(for the camera and for the illuminating LEDs). The system
was guided from a laptop and batteries were used to supply
the motor. Two encoders provided feedback to the laptop on
value of the realized movement, including to allow control
and adjustment if necessary.

The boom is flexible only in sideward direction (able
to easily bend perpendicular to its long axis). The move-
ment system is composed of two electrical motors and
two gear (wheel) systems, with one DC motor located in a
fixed position to produce the vertical movement, while the
horizontal movement is provided by a Pololu motor in the
camera house, that rotates the camera together with the
mirror below it.

The system is capable to work inside different sized
boreholes, ranging from 2.5 to 4.0 cm in diameter. The cam-
era house is a 20 mm diameter aluminium tube that accom-
modates the horizontal rotation motor, the camera, the mir-
ror and the illuminating LEDs. The wheels were 3D printed
from plastic and consist of two cone shaped wheels that
support keeping the boom in the central position.

The camera itself is a modified version of the “USB2.0
Endoscope Camera”. The CMOS 1600x1200 pixel resolution
detector, records 24 bit colour images with fulfilling IP67
safety requirement. It provides the images through a 5 m
long USB cable to a laptop. The data readout happens on
the laptop through an USB cable with between 5-20 frame
per second rate. The field of view is about 30°, the spatial
resolution of the system is around 0.1 mm from 4-6 cm dis-
tance. Altogether 4 natural light LEDs were built in next the
mirror to provide relatively homogeneous lighting of the
borehole-wall. For directing of the movement motors and
the image recording, the same software worked in a laptop,
which could be used by manual activity by the operator
and both by automatized (predefined) sequence of steps
also.

Electrical supply for the motors and LEDs came from
small batteries (<1 kg) composed of eight 1.5 V sized AA
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batteries or rechargeable accumulators. The spectral emis-
sivity distribution of the used LEDs ranged from 410 to 750
nm, with producing the highest intensity around 600 nm,
thus around the orange colour. The same C++ software
for Windows called ImaGeo (developed for the drilled core
scanning by Archigeo Ltd. and modified according to the
needs) regulated the whole scanning procedure and also
the image processing steps.

Image recording happens first during the horizon-
tal rotation of the camera house. The ideal image num-
ber to covert the full 360° angular diameter section of the
borehole-wall is around by 10-14 images, what could be
adjusted before the start with the software. S after each
horizontal imaging sequenceecondly vertical movement
happens in the imaging sequence in ideal case upward to
avoid the camera house got stuck (the ideal movement is
roughly around 2 cm).

The mosaic of the borehole-wall is compiled from the
small images recorded by the BHWI during the sequence
according to its horizontal and vertical movement. The posi-
tions of certain images could be identified according to their
filename, what is generated automatically and contains the
number of row (vertical depth) as a 3 digits number first,
and the number of columns (horizontal azimuth), which
if properly read would make up the mosaic. The software
arranges the recorded images in the form of a matrix, sup-
ported by the filenames and the ancillary data file (exact
movement data with 0.1 mm and 0.1 degree accuracy).

Further adjustment of segments is supported by an arti-
ficial intelligence software that searches for similar pattern
(shape and intensity changes with the given filter size) at
the predefined overlapping area of the neighbouring image
segments. The software called ImaGeo was developed by
the ArchiGeo Ltd. marks the proposed matched point pairs,
what could be accepted or rejected by the user. Manual
matching could be also done, and any number of position
pairs could be accepted or rejected at once. Based on the
laboratory tests, the errors in the result of the mosaicking
are around 1% (in terms of distances of image segment
size).

2.2 Performance indicators of the BHWI

The spatial resolution of the second version of the camera
was tested with grid and star shaped target objects. The
resolution under ideal conditions was 52 pixel/mm, that
means around 0.02 mm spatial resolution, e.g. 1300 dpi. The
resolution changed along the field of view but was better
than 0.1 mm at every location of the image. The depth of
focus was tested by recording the same object form different
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target distances. Higher than 0.1 mm/pixel resolution could
be achieved along 4-6 mm target distance range. Geometric
correction is to be done during the post processing phase.
The colour calibration is to be done by recording colour
code matrix containing different RGB colour code fields
and compared to the original chart.

Although no substantial colour differences could be
identified during the test tube scanning, certain parts of the
target were brighter or darker, as an automatized correct-
ing algorithm was implemented into the system. A small
part of each recorded image covers a brightness reference
palette that allows to calculate white balance with the inter-
pretation software to correct each image according to the
comparison of the same palette at different images. RGB
colour codes are identified for the reference palette, and an
algorithm calculates the correction to be applied on each
image by the software to make them comparable.

During the tests the orientation and distance of certain
recorded images were analysed. The edges of the recorded
images found to be parallel aligned to each other and dur-
ing the translation of the imager no distortion could be
identified down to the spatial resolution.

The system works relatively fast, one full horizontal
circle could be scanned = 8-12 seconds + 2 second backward
rotation to the starting position. The vertical movement
happens in 4-6 seconds, and further 122 second idle time
might emerge. As a consequence, for example a 10 cm long
borehole-wall section could be scanned in =~ 5-6 minutes, a
1 m segment in around half hour.

3 Results

In this section various examples are presented to demon-
strate the effectivity of the system on planetary analogue
materials. First rock samples in the laboratory were imaged
of the first imager (to see its capability), secondly obser-
vations of field targets are presented for the first camera
version, while thirdly field results of the fully built BHWI
are also presented. The future usage and potential capa-
bilities on various planetary bodies (mainly on Mars) are
discussed in the Discussion section.

Figure 3 shows the testing of the general performance
on Mars analogue rock samples to see specific observational
characteristics of various geological features (grains, voids,
layers etc.). Figure 4 shows a field of view around 9.5*5.5
mm of different rocks, which were recorded at the rock store
of the Department of Petrology and Geochemistry of the
Eotvos Lorand University of Sciences, Hungary.

A. Kereszturi et al., Planetary borehole-wall image analysis =—— 17

Figure 3. Results of the laboratory tests with the first camera ver-
sion to see the differences between two illumination types with

of grazing and direct orientations. The first column of the matrix
shows the target with the grazing illumination, the second shows
the same target with the direct illumination and the third column
shows the same target using both illumination types. The objects of
the tests (from top to bottom) are: reference colours (A1-A3), rough
surface paper (B1-B3), sandpaper (C1-C3), Mars analogue sand (D1-
D3), Sahara sand (E1-E3), bacterial colonies covered rock surface
(F1-F3), cracks of rock (G1-G3) and sandstone surface (H1-H3).
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The images in Figure 4 are arranged into pairs A and
B, C and D with larger (15 cm) and smaller field of views
(around 9.5*5.5 mm with double lightning) respectively,
thus two samples are presented in these rows.

The specific features of the images are listed below:

1. A conglomerate is shown in A, while B picture shows
specifically firmly cemented coarse gravel of mainly
quartz. Grains (1-5 mm diameter) of the layer can be
identified separately. 1 C,D: Depressions left behind
after around 0.5 mm diameter grains fell out and as
dark pits became visible at their locations.

. The pictures (2A, B) from the siliceous limestone
show layering (almost vertical layer on 2B) and
scratches by the cutting process (the lines from the
upper left peak to lower right peak on the 2B). Precip-
itation of manganese dendrite can be seen on the 2C,
D pictures as little black spots.

. The amygdules of a basalt sample are impressive on
3A and B, which are mainly elongated with different
sizes.

. The phanerocrystals (perceptible to the naked eye)
from basalt lapilli and amphibolite andesite rocks
are shown on the 4A and 5A and they can be iden-
tified easily (4B, 5B). However the border between
the sandstone and the chert layer is not recognized
on the borehole-wall images (6B), even though this
border can be identifed from macroscopic pictures
well. Further examples on the observable features
could be seen in 7 and 8 insets.

Based on these observations, the well identifiable fea-
tures in the camera photos are: separate grains, layers and
border with higher contrast, depressions left behind by the
fell out grains. But the separation of grains is difficult in
the case of clay, aleurite and fine sand. Based on the perfor-
mance testing fine scale topography as well as colour and
albedo differences could be also identfied.

3.1 Field images

In the followings the results of field analysis by the sim-
ple first camera and laboratory analysis of the samples
acquired in Morocco can be read. The borehole number
0601 in one of the wadi beds (at 30,984° N; -7,151° E) can
be seen in the image mosaic of the borehole-wall scanned
image (Figure 5). The 3 cm long vertical section at left is to
demonstrate the general appearance of the various grain
related features and their changes in their original environ-
ment, while at right magnified insets are to visualise some
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characteristic selected, small scale features of a drilled hole
in the granular strata.

Figure 4. Images of the hand specimen of different Mars relevant
type of rocks. Conglomerate and sandstone from Dunavarsany
(Hungary) (1A,B,C,D); contact metamorphic, siliceous limestone (2
A,B,C,D); amygdule basalt from Sag-hill (Hungary) (3 A,B); oxidised
basalt lapilli (4 A,B); phanerocrystalline amphibolite andesite (5
A,B), chert and clay sandstone from Dunavarsany (6 A,B); hyialo-
clastite breccia after chloritaziation (7 A,B,C); Bodai claystone (

8 A,B,(); Jakabhegyi sandstone (9 A,B,C). Interesting small scale
features are indicated by arrows (see the text for more details).

The first (1) inset is a good example to demonstrate
some specific aspects of scanning a borehole-wall in soft
and fragile sediment with high resolution. During the
drilling process, large (cm sized) blocks of the less ce-
mented parts of the wall could fall out, leaving behind
depressions. The deeper surface of such depressions is out
of focus, thus appear as blurred part on images. Only some
basic information could be gained at such locations like
the existence of grains and their rough size. On the second
inset (2) one of the bigger, clearly visible particle can be
seen to demonstrate that larger grains (with diameter of 1
mm) show small scale surface features. Here the rounded
edges, the roughly homogeneous surface colour and albedo
can be seen. The third (3), fourth and fifth (4, 5) insets are to
illustrate that smaller grains stick to bigger one, and exam-
ples for more and less rounded grains could be also seen
here. The last inset (6) illustrates examples of the smaller
particle range.
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Figure 5. Section of the borehole wall can be seen on the left side,
which was recorded from a drilled borehole (0601) in one of the
wadi beds (30,984 N; -7,151 E) with grazing light (1*1 mm). Magni-
fied insets on the right show interesting parts of the target, the
images were recorded in the east asimuthal direction.

Figure 6. Example borehole-wall features from the Atacama desert.

Further examples on the borehole-wall appearance
from the field tests in Atacama desert are visible in Fig-
ure 6. These images were acquired at Laguna Santa Rosa
and Laguna Verde that provide examples for the follow-
ing observations: a) cracked wall of a dried-up lake clay
sediment, b) iron rich reddish sandstone grains, c) edge of
a large aggregate (marked by arrows), d) prepared bright
layer, e) dark layer at the top, f) two diffuse edge layer that
could be identified only by the more frequent occurrence
of darker mineral grains.

3.2 Comparison of field and laboratory tests

The overview of differences and similarities of the data on
samples acquired from different depth can be seen in Table
1. It is found that along with the decreasing sorting value
of the minimum particle size is relatively stable, while the
maximum and average particle sizes change, increasing
from the top toward down. The shape of the particles resem-
ble in all layers: angular grains with sharp and sometimes
blunt edges, while rounded and spherical particles are rare
in all layers. The clay content changes along the vertical
strata, it is minimal at depth 4 and 10 cm while evaporite is
also present, the clay often stick to the grains in depth 30
and 40 cm. The amount of the aggregates changes within
the vertical strata too. Aggregates are rare from depths of 4,
30, 40 cm, while quite frequent in the 10 cm deep layer, in-
side an evaporite dominated layers. The shape and the size
of the aggregates range from 0.5 cm to 4-5 cm. The cemen-
tation of aggregates is usually poor/weak (they can easily
go to pieces) except for this 10 cm deep layer. The identifi-
cation of minerals was difficult from the field pictures, but
quartz and carbonates could be present probably.

The findings from the comparison of field to laboratory
observations of the same target samples are summarized in
Table 2 with three observation types: borehole-wall imag-
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Table 4. Summary of numerical differences between the field and laboratory data based images using the same camera, analysing the

layers of the 0601 sampling site. (X value: the longest diameter of the
perpendicular to each other).

grains, Y value: the shortest diameter of the grains, which are

sample depth/ 4 cm 10cm 40 cm evaporate day

characteristics field lab field lab field lab field lab field lab

number of data 28 39 40 48 25 20 14 54 25 34

points

Xrange (um) 185-660 160-700 65-700 95-350 145- 110- 140-720 75-410 115-460 65-270
1930 1380

X average (um) 398.1 344.5 240.9 198.1 604.6 661.1 302.6 204.5 263.6 153.2

X standard devia- 134.3 120.0 136.6 80.53 457.3 302.6 166.6 75.77 78.07 49.97

tion

Y range (um) 120-530 100-485 55-565 100-260  135- 80-750 100-425  55-265 70-320 55-250
1490

Y average (um) 273 254.2 160.9 135.8 399.5 477.1 205.6 146.1 200 116.3

Y standard devia- 114.3 74.6 107.9 49.6 310.2 191.9 100.7 52.3 66.6 39.2

tion

ing, with the same camera in laboratory (under better obser-
vational conditions), and with a higher resolution regular
microscope (with even better observational possibilities).

Comparing the different methods for mineral analy-
sis the following findings are relevant. The least amount
of information can be gained from the field pictures by the
borehole-wall imager. The identification of the separate
grains and the type of minerals is difficult from the field
images, the most reliable estimations gave quartz or carbon-
ate. The laboratory pictures were more informative: several
types (around 8) could be identified optically, based on the
colour and shape of the grains.

Those particles, which were transported by wind could
be separated by their more rounded shape and sometimes
bright appearance. They were found in the all layers, but
were the most abundant (5%) in the evaporite and clay lay-
ers, while rare in the other layers (1-2%). Beside the mineral
types, the sizes, shapes and related numerical values of
the grains were also analysed by the same imager, com-
paring the observations from the borehole-wall and the
laboratory samples. The results are summarized in Table 3.

Comparing the numerical information (Table 3) that
could be gained from field and laboratory images with the
same imager for the size and shape of grains are summa-
rized below. The measurement of the particles’ elongation
was easier in the laboratory conditions than in the field,
because the more difficult identification of certain grains
and because their poor contrast relatively to the wall mate-
rial where they were embedded. Beyond this reason, only
a fraction of the particles could be identified as they were
embedded in the wall — while in the laboratory, most of the
grains could be analysed (except aggregates) as they were
fallen apart to separated grains. Due to these factors, the es-

timation of the particle size or the type of minerals made in
the laboratory can be closer to the reality. The comparison
of numerical values acquired with the two different meth-
ods are visualized in Figure 7. It is also important to note,
that all layering information were lost during the sample
acquisition.

Based on the Figure 7 the distribution of data points
comparing the recorded in the field and in the laboratory.
The trend is similar, however small but distinct differences
are also visible. Using laboratory pictures, the deviation
and scattering of values are smaller along a smaller range
of values. The identified maximal sized grains were bigger
in field pictures in general, which can be explained with
the larger field of view. But the quality of the field pictures is
usually worse, so the determination of various grain related
parameter is more difficult or uncertain, what causes less
data.

Differences between the field and laboratory data based
on Table 4 are summarized below. While the results also
demonstrate that the differences between various layers
could be caught by both methods - however the exactly
measured values are different. Both the minimal, maximal
and average sizes just like the standard deviation differ
characteristically analysing wall images and laboratory im-
ages based measurements. The maximal size of the grains
observed in the wall is characteristically larger than those
observed in the laboratory, probably because of the gen-
eral difficulty in the grain identification: larger grains were
more easily identified. Beside this to have enough number
of identified grains, large area of the borehole-wall should
be surveyed, and the larger surveyed area increases the
chance of having larger grains. The minimal size of mea-
sured grains were smaller in the laboratory analysis than in



DE GRUYTER

Min. diameter (um) Min. diameter (um) Min. diameter {um)

Min. diameter (um)

Min. diameter (um)

Figure 7. Diagrams of maximum/minimum diameter values of the grains from different depths based on field (left column) and laboratory
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the field images, probably because of the better observing
conditions there including the easier identification of sepa-
rated grains than those are embedded in the borehole-wall.
Both these characteristics are well known in methodology,
but should be counted for the future during usage on Mars.
Mainly because larger maximal sized grains identified in
the field images, larger particles’ size range is characteristic
in the field pictures than in the laboratory pictures.

Comparing the standard deviation of the grains’ diam-
eter, characteristically different layers (for example the 40
cm deep versus the clayey layers) differ from each other in
the deviation between the field and laboratory images.
The reason for this is the more probable identification of
larger grains in wall images. More grains can be identi-
fied in laboratory pictures despite the fact that each wall
image seems to contain roughly the same number of grains
(about 300-400 grains at an 5x5 mm wall area, however not
all of them could be firmly identified) as in the laboratory
also using 5x5 mm area. However in the laboratory sepa-
rated grains rolled down from the top of each other and
spread horizontally on the plate - increasing the separately
visible grains’ number.

Similar trend is visible in the size distribution of field
and laboratory images, as points are arranged along the
same trend line despite the larger scatter in the case of
field images. The identification of clay content is possible
but complicated based on the field pictures. Because of
the very small grain size of clays, the identification of the
individual particles is almost impossible in this small size
range with the used detectors. However the clay content
could be roughly estimated: as a brownish material around
the bigger grains, which are strongly bounded to the surface
of larger grains (Figure 6 5A, 6A) or make up aggregates
(Figure 6 2A, 3A).

Comparing the general appearance of field and labora-
tory pictures (Figure 8) to each other, the following findings
were identified. The observation and analysis of the grains
were easier on the laboratory pictures: estimation of the
type of minerals using only optical appearance, determi-
nation of the size and shape of the particles were more
straightforward, because individual grains with their char-
acteristic colour and shape can be seen more clearly. Certain
parts of the field recorded images could be blurred and out
of focus, so the contour of the grains were more difficult
to the identity, making the estimation of the mineral type
also uncertain. Flat crusty character of the evaporite and
subsequent clay layers can be seen on the field pictures
(Figure 6 5A, 6A), but this feature is rare in the laboratory
pictures, because the majority of the aggregates and the
fragile layer collapsed/fragmented. “Shiny” and scratched
surfaces of grains can be seen well in the laboratory pic-

DE GRUYTER

tures, while the observability of these features is worse in
the lower quality field images. Because of this, recognition
of foreign origin grains (for example aeolian grains among
fluvial ones, which are usually much more shiny as being
highly polished) is almost impossible in the field pictures.

Field

Laboratory

evaporite layer 40 cm 30 cm 10 cm 4 cm

clay layer

Figure 8. Images recorded by the borehole-wall camera in the field
(left column) and in the laboratory (right column) from the same
layer (in the same row) at the 0601 sampling site in the wadi area.
Note the different scale between the left and the right columns.
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Table 6. Characteristics of the typical sedimentary structures: material type, size of the layers and the fact could they be observed in the
field pictures from the borehole. The “ideal situation” means the identification is possible however the conditions that allow (size an
configuration of grains, colour and albedo differences, size and direction of shadows from illumination that support the data acquisition

etc.) it are probably rare.

observed characteristics of sedi-

material type

size/ thickness of the layers

is it easily observed in the bore-

ment hole in field pictures ?

silt/clay sheet clay/silt (on the sand layer) mm - max. 1-2 cm yes

clay flaser clay (on the sand layer) mm - max. 1-2 cm yes

planar stratification in clay clay depends on the thickness of the  yes

layer (average 3-4 cm)

tabular cross bedding sand thickness of sets >5 cm [53] yes (only part of it, but some con-
clusion can be suspected)

ripple cross bedding sand thickness of sets >5 cm [53] yes (only part of it, but some con-
clusion can be suspected)

wedge shaped cross bedding sand thickness of sets >5 cm [53] yes (only part of it, but some con-
clusion can be suspected)

planar stratification in sand sand thickness of sets <5 cm [53] yes

flame-, ball or pillow structure  mainly sand from a few cm, to around 10-15 only in ideal situation

(from water escape)

polygonal structures (from dry-

clay, sand, gravel sized blocks

cm
few cm to several meters [52]

only in ideal situation

ing)

Some methodological experiences were also gained
during the field and laboratory work: High resolution of
borehole-wall imaging is difficult to acquire partly as the
borehole-wall need not be perfect cylinder shaped. In the
case of inhomogeneous vertical cementation and elevated
mechanical strength of the strata, certain layers might be-
come more fractured by the drilling process. Here more
material falls out of the wall, and the wall there might be
larger distance from the camera, thus out of focus. Specific
findings could be more easily identified as vertical changes.
Combination of grazing and direct illumination provides
the most information about the sediment (both on struc-
tures, boundary of layers, stratification, and also indicators
of surface texture and colour).

4 Discussion

Based on the comparison of the field and the laboratory
recorded images, different observations could be realized
that provide different possibilities for the estimation of the
characteristics and the origin of the given sediment. Below
we discuss first what type of observations could be realized
more easily with one of the two methods and which is the
ideal for a given task. After this a methodological summary
can be read and finally the overview of the relevant aspects
of the Mars mission are presented.

Measuring the sizes of grains, differences are identified
between images recorded in the field and in the labora-

tory: more grains and larger particles’ size range can be
identified in the laboratory pictures mainly because of the
smaller identified grains with this method based on the bet-
ter quality images. In the field images larger grains could
be identified more often, but large part of a given grain is
poorly visible in the field pictures. These selection effects
are caused by that field images were recorded under less
ideal conditions, and that the observability of a given grain
might also differ if it is embedded in the wall or pulverized
as separate grains, even if the observing conditions are the
same.

These observational effects influence the interpretation
in the following ways:

¢ The decreased accuracy of size distribution mea-
surements in the field causes larger deviation from
the average relatively to laboratory pictures. The min-
imum diameter is 29-40% and the maximum diam-
eter is 33-46% in the case of the laboratory pic-
tures than in field images, meanwhile the mini-
mum diameter changes 33-77% and maximum diame-
ter changes between 30-55% in the case of the field
pictures. The laboratory pictures provide more accu-
rate information about the maximum and minimum
particle size thus level or sorting of grains.

¢ Based on the measured size differences between the
laboratory and field pictures, the classification of
the grains is shifted toward the larger fraction size
using field data, suggesting a bit more energetic trans-
port and/or depositional conditions.
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¢ The shape and the circularity of the grains is diffi-
cult to determine in the field pictures, because the
whole grain can not be seen or its outline is hardly
identified. However if the grains have strong colour
contrasts relatively to the environment or the matrix,
they could be analysed precisely. Because of the less
information on the roundness and surface pattern
of the grains using field recorded data, the selection
of transport agent is more difficult, as well as the
type of origin, thus the identification of water related
potential habitability of the environment.

¢ Less grains could be identified from roughly the
same volume of target material in the field. Twice
or three times as many minerals were identified from
the laboratory than from the field pictures, mainly be-
cause of better image quality and smaller observable
details (of colour and shape), and only partly because
more grains can be seen in laboratory pictures.

¢ The clay content of the sediment could be identified
more difficulty from field data not only because of
the small size of these grains, but also because they
stick together and form aggregates. However the pres-
ence of these small grains could be suspected as they
appear as cement or surface covering material in the
field pictures. The clay content refers to the presence
of less resistant minerals and wet weathering of the
grains before or during the transport.

e The laboratory pictures are more informative for the
shape, and surface pattern of the grains and origin
of the sediments (the transport medium and matu-
rity can be estimated from the smoothness and cir-
cularity of the grains, the sorting of sediment can
be connected to the energy of the medium), while
field images provide information on the depositional
conditions based on layerng.

Methodological experiences with the imager pro-
vided the following results: grazing and direct illumina-
tions are useful for different types of analysis. While for sur-
face roughness analysis grazing light is better (supporting
grain identification, shape determination, identification of
the structure of layers, identification of weathering/falling
out of the individual grains), colour and albedo differences
could be seen better with direct light (for mineral type esti-
mation). However based on the experiences using of direct
and grazing illuminations, they provide the best results to-
gether. Identification of individual particles is difficult
in the field pictures, because of the embedded location of
the particles in the wall only a smaller fraction of each
grain is invisible. This problem may influence the determi-
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nation of the true particle size and thus of the sorting of the
sediment.

4.1 Extrapolation to Mars

During future Mars missions, in-situ recorded images might
get more importance as the target should be better charac-
terized in real time and used for the selection of ideal ones,
especially during the selection in the case of samples for
Mars sample return (Sephton et al. 2013). This will increase
the efficiency of the work, thus a fist on-site imaging sur-
vey supports to estimate such characteristics of a sample
(grain size, rough size distribution) that only a moderately
detailed on-site laboratory work will provide. Small sized
fluvial and lacustrine grains composed deposit have ele-
vated potential for organic material preservation (Westall
et al. 2009), thus in astrobiology aimed research project
might be easily targeted. Summary of Mars relevant aspects
focusing on the analysis of sedimentary origin on the mate-
rial can be read in the Table 7.

During the drill in case of optical images recorded
like those presented before will definitely help to identify
the best location to sample for return or more detailed in-
situ analysis. For the separation of eaolian, fluvial, ice or
mass movement related sediments, the spatial resolution
(around 0.1 mm) is enough based on analogue examples
tested on the Earth.

The accuracy to determine the size of grains and sort-
ing of sediments differ for the minimal and maximal sizes:
the smaller particle size range (clay—aleurite grains) can be
identified better in laboratory pictures while the extremely
large grains are easier to find in field recorded images, what
cause an overestimation of mean grain size using only field
relatively to laboratory images. The type and speed of the
transport medium estimated from the sorting of the sedi-
ment (like fast or slow river) could be also influenced and
shifted to preferred larger energies using field images. The
possibility that larger number of mineral types should
be determined in laboratory makes easier to estimate the
source region and the order of transport time. The shape
and morphology of the grains (roundness, circularity, an-
gularity), can be better determined from the laboratory
pictures. The shape of the grains helps to determine the
transport medium, while the clay content depends on the
weathering potential (the larger is the amount of clay, the
more warmer and wetter might be the conditions support-
ing the weathering process) — this directly helps paleo-
environmental reconstruction.

Using borehole-wall scans the determination of lay-
ering (parallel, cross laminate/stratification, type of cross
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stratification, etc.), the sequence of these layers above each
other, the grain orientation (imbrication), just like the
grading and deformational structures can be seen in the
field pictures — while such information is lost during the
sample acquisition and cannot be determined from labora-
tory analysis. This fact points to that for the estimation of
depositional conditions (for example water or ice or wind
transport method, existence of waveing bulk or drying up
less liquid water during deposition) could be much better
estimated from field images than laboratory data. However
clay and bound water content could be determined from
the acquired samples too, also pointing to wet weathering
in general.

Table 6 gives a summary of these potential sedimen-
tary features that help in the estimation of the transport
mode. Some examples to demonstrate that borehole-wall
based data provides information on the paleo-environment,
(while such information could not be gained from acquired
sample) are listed below:

¢ Standing condition (river, reef) of medium: siltsheet,
clay flaser (where the underlying sand is covered by
mud layer of only some mm, that point to sedimen-
tation from water rich period and several even sepa-
rated wet periods might be conserved;

¢ planar stratification in clay: quiet flow or very slow
transport system;

¢ tabular cross bedding, through cross bedding, wedge
shaped cross bedding, which might point to winds
and various density currents, exact determination
of the transport medium requires the joint analysis
of sedimentary features and the characteristic grain
size;

¢ ripple cross bedding, planar stratification in sand
support the estimation of flow direction and speed
of the flow (Froude number >= 1 (Tucker 1995));

e drying polygons, mark of rain drops point to the
ephemeral existence of wet conditions (W. S. 2009;
Tucker 1995);

¢ the upward direction of the sediments could be deter-
mined only from borehole-wall scanning, that helps
to estimate some further parameters during sediment
deposition (like density difference between two lay-
ers, rapid sedimentation, when before the consolida-
tion of the already deposited sediment a new layer
starts to settle down and their temporal changes).

A general problem on Mars is the poor knowledge
about whether the clay minerals were transported to a
given location from another site or were they formed in-
situ there. The determination of formation site of phyllosil-
icates supports the understanding where were the condi-

DE GRUYTER

tions favourable for the emergence of liquid water or even
life. To achieve this knowledge, the coupling of borehole-
wall images (pointing to the possible existence of wet signa-
tures with depositional features etc.) and laboratory based
OH containing chemical and mineral data (pointing to past
wet weathering) is helpful together.

Without the borehole-wall analysis the sequence of
the events and the condition of sedimentation cannot be
determined well. Transport medium, mode of the transport
and of deposition (transport time, speed and sedimentation
hiatus) could be characterized more accurately if the field
and laboratory imaging methods are used together. At the
same time several other parameters (number of mineral
types, shape and morphology) are better constrained from
laboratory data.

The borehole-wall based sedimentary analysis on Mars
might be better realized and provide more information on
Mars than on Earth especially for old sediments. Because
of plate tectonism, related burial, elevated geothermal gra-
dient and metamorphism on the Earth, old sediments have
poor retention regarding of features that point to their orig-
inal formation conditions. Opposite to this, the situation
is different on Mars, because of the lack of global plate tec-
tonism and the small geothermal gradient, even the oldest
sediments might easily hold sensitive indicators for the
ancient conditions (layering, gradation, imbrication etc.).
Beyond this while on Earth boreholes are usually filled with
water or mud, on Mars they are expected to be empty, pro-
viding good visibility of the wall. During a drill produced
sample acquisition, substantial part of the above listed in-
formation will be lost except if borehole-wall scanning will
be done - thus it helps to identify the ideal sampling loca-
tion for more detailed analysis, including biology relevant
information.

4.2 Contribution in future missions

Below, we extrapolate to near future Mars mission types
(Table 7) to evaluate, how much the above listed field and
laboratory observing possibilities are complementary and
how this knowledge might influence the planning of the
given mission. As laboratory analysis is already planned,
we put emphasis on what kind of further inputs could the
borehole-wall analysis provide for the mission.

It is worth mentioning that the necessary imaging in-
struments to scan the borehole-wall are quite low cost and
could be accommodated in a small volume (order of some
cubic cm), and their mass and energy consumption is very
low relatively to other instruments on a Mars surface mis-
sion. Thus the usage of such facility is highly preferred and
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Table 7. Summary of potential contribution of borehole-wall imaging in next Mars missions. The * marks the ExoMars 2020 mission, where
no optical but only infrared borehole-wall scanning is planned, thus its potential findings are listed here, while for the other candidate
mission types the optical version was considered.

mission name
or type

expected/ possible findings from
borehole-wall observations

synergy with laboratory measurements and mission relevant aspects

ExoMars rover*

Mars sample return

crewed Mars
surface mission

grain composition, certain level of
layering

selection of ideal target layers, sed-
imentary properties of layers, im-

proved targeting to select sample
to return

selection of ideal target layers, sed-
imentary properties of layers, im-

proved targeting to select sample

for detailed on-site laboratory anal-

ysis, specific targeting related to
specific on site laboratory work

identification of rough characteristics of the source layer at the original
location of the acquired sample

identification of rough characteristics of the source layer at the original
location of the acquired sample

possibility to correlate the drilled strata with nearby open air outcrops
improved estimation of depositional conditions

identification of rough characteristics of the source layer at the original
location of the acquired sample,

possibility to correlate the drilled strata with nearby open air outcrops,

improved targeting of the best layer of a strata from already acquired
sampled column,
selection among layers regarding the capacity to trap and hold organic

molecules.

further tests to develop and adapt the capability to Martian
conditions are strongly recommended.

5 Conclusion

In this work some specific aspects of in-situ field and later
laboratory acquired imaging of drilled targets at Mars
analogue sites were analysed and compared. Drilling will
be an important method for future work on Mars as radia-
tion and surface chemistry destroy certain molecules and
minerals on the surface. To reconstruct early wet condi-
tions, old and buried sediments will be targeted there in
the subsurface. Next missions, especially sample return
and later human missions need to better understand the
formation conditions and astrobiology potential of the tar-
get during the missions themselves to improve targeting to
get the most relevant samples. This should be supported by
on-site targeting based on the survey of the drilled borehole
there. While the context (sedimentary conditions, embed-
ding geometry, surrounding material) of the acquired sam-
pleislost after it has been acquired, borehole-wall scanning
could get this information, increase the targeting accuracy
during the sampling process and also provide such infor-
mation what could not be gained from the acquired sample
alone.

Two field facilities were used and tested in Morocco
and at the Atacama desert to identify the main parame-
ters of borehole-wall scanning, and define what kind of
characteristics of the target could be determined by this
method. A fluvial wadi sediment at a Mars analogue site
was surveyed and sampled at the Ibn Battuta Centre in Mo-

rocco with a specific imager to screen the drilled borehole-
wall to outline the general advantages, disadvantages and
complementarity of the methods. In Atacama desert, salty
lakebed with clayey sediment and other desiccated loca-
tions were analysed. The recorded images demonstrated
that using a simple facility spatial resolution of 0.1 mm
could be achieved, and sedimentary features and various
grain scale characteristics could be observed. Comparing
the scanned in-situ images and the analysis of the acquired
sample in laboratory, the following findings were achieved.
A range of differences were identified between the field and
laboratory recorded images what could influence the ob-
servability, even using the same facilities, the appearance
of target depends strongly on the fact if it is embedded in
its original environment or not.

Benefits of borehole-wall imaging relatively to labo-
ratory imaging are: maximal size of grains (thus the maxi-
mal energy of the transport process) could be more eas-
ily identified (what might be important on Mars where
ephemeral events including the sudden release of large
water volumes might occur); occurrence of sedimentary
structures (layering and their sequence, grading, grain ori-
entation, water escape structure etc.) could be identified
to understand the depositional conditions and temporal
hiatus of sedimentation (e.g. temporal changes of wet con-
ditions) - while these information types are almost absent
in the laboratory data, as have been lost during sample
acquisition. Field images showing fine powder attached on
larger grains often point to clay content what is a strong en-
vironmental indicator, indicating such deposit that might
have witnessed wet weathering process, what is highly im-
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portant in the analysis of potential habitability of the given
environment.

Benefits of laboratory imaging are the better identifi-
cation of shapes and grain surface characteristics (pointing
to the maturity of grains and partly the transport mode),
sorting of sediments (e.g. the efficiency of separating a
given grain size and elongation), the firm identification for
smaller grain size including clay content what is important
for weathering process — however indication of clay content
could be already realized from field images. Although both
imaging methods could provide information on the trans-
port mode, but borehole-wall scanning tends to suggest
more energetic transport conditions — however larger and
more representative sampling for laboratory analysis could
eliminate this difference.

Based on the above listed findings improvement of
specific field facilities for drilling and sampling on Mars
should put emphasis on the optical imaging during the
drilling with targeting the wall. The recorded context to-
gether with the laboratory results of the acquired sample
help to separate different water flow regimes and standing
or flowing water deposits, temporal characteristics of the
ancient wet condition and later changes of the already de-
posited material. Because of the general weak alterations
on Mars, the lack of plate tectonism and small geothermal
gradient, ancient sediments are not reworked there thus
hold such sedimentary/morphological information on their
origin, what is usually lost on the Earth but could be gained
by borehole-wall scanning. As a summary the temporal
characteristics and properties of local sedimentation could
be better understood with screening the borehole-wall.
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