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Abstract. Analytical series expansions for the hydrogenic spectral line profile
functions are derived starting from the three single expressions, obtained by
integrating twice the convolution of the Holtsmark, Lorentz and Doppler line
profile functions. We get well converging series expansions for the line wings
and centers by reducing the number of arguments in the profile function by one,
introducing the module of the Holtsmark and Lorentz profiles as a new argu-
ment. In the intermediate part of the line, the parabolic cylinder functions ex-
pressed via the confluent hypergeometric series, are used. The multi-component
Stark splitting of the hydrogenic spectral lines and the modeled stochastic elec-
tron transitions in the electric field of the adjacent ions generate wide Doppler
plateaux at the line centers, with the characteristic widths estimated from the
fit to the characteristic width of the Holtsmark profile. This additional Doppler
broadening of the line profile function removes the central dip typical to the
Holtsmark profile.
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1. INTRODUCTION

In the present paper we propose a new and more compact version of the an-
alytical formulae for line profile functions of the hydrogen atoms and hydrogenic
ions. However, different series expansion formulae are needed for the line wings,
at the line center and in its intermediate region.

The line profile functions of hydrogenic particles, in addition to thermal (Dop-
pler) and damping (Lorentz) contributions (their convolution is named the Voigt
function), undergo the linear Stark effect. Its contribution due to electrostatic
fields of adjacent ions we describe in the approximation of the Holtsmark profile.
We treat hydrogenic line profile functions as a convolution of the mentioned three
contributing functions, corresponding to different physical processes.

A very complicated problem is to take correctly into account the multi-compo-
nent linear Stark effect splitting the hydrogenic spectral lines and the quantum
electrodynamic contribution of the adjacent ions, described by the model mi-
crofield method (MMM), which demands computation of individual line profile
tables. Here we try to take the effect into account fitting it to additional Doppler
broadening what is adequate both in the line centers and wings.
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2. STARTING FORMULAE

We start from the Holtsmark profile type integrals with the additional two
parameters, describing the Lorentz and Doppler contributions. Such expressions
were derived by Sapar & Kuusik (1973) and further studied by Sapar et al. (2006,
2009). In the paper by Sapar and Kuusik, the double integration of triple integrals
was carried out and the convolution of the Holtsmark and Voigt profiles has been
reduced to a sum of three integrals. These integrals can be treated as describing
dominantly the Holtsmark, Lorentz and Doppler contributions, namely

Φ(β) = χ(β) + Λ(β) + ∆(β), (1)

where

χ(β) =
2

π

∞∫
0

βx sin(βx)ε(x)dx, (2)

Λ(β) =
2L

π

∞∫
0

x cos(βx)ε(x)dx (3)

and

∆(β) =
4D2

π

∞∫
0

x2 cos(βx)ε(x)dx. (4)

In these expressions the total exponential term

ε(x) = exp
(
−x3/2 − Lx−D2x2

)
, (5)

where the constants D and L are the ratios

D =
∆νD
2∆νS

, L =
∆νL
∆νS

. (6)

Here the quantities ∆νD and ∆νL are widths of the Doppler and Lorentz line
profiles, respectively, ∆νS is the characteristic width of the Stark profile and the
argument of spectral line profile function β = ∆ν/∆νS . The Doppler and the
Lorentz profile widths are

∆νD =
ν0
c

√
2kT

me
, ∆νL = γL/2. (7)

Here γL is the Lorentz damping constant in ν units. The characteristic Stark
profile width ∆νS has been found averaging over the Stark shift components by
different methods. Presently we use the formula which follows from the equation of
Griem (1960), given also in the book by Sobelman (1963, p. 504, Eq. 38.13). The
proportionality coefficient between the Stark shift ∆νS and the averaged electric
field strength E0 is

B =
32/3h̄

8πZem
(n2

u − n2
l ), (8)
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where nu is the principal quantum number of the upper state and nl – of the lower
state. Evidently, E0 can be defined for hydrogenic particles of the nuclear charge
Ze by

E0 =
Ze

R2
0

, N−1 =
4πR3

0

3
. (9)

Consequently,

∆νS = BE0 =
h̄(n2

u − n2
l )

2(4π)1/3m
N2/3. (10)

Now all parameters in the starting equations are specified.

3. AUXILIARY INTEGRALS

Using a generating integral

K(β) =

∞∫
0

cos(βx)ε(x)dx, (11)

we can write

χ(β) = −2β

π

dK(β)

dβ
(12)

and

∆(β) = −4D2

π

d2K(β)

dβ2
. (13)

For more compact treatment of the series expansions of the exponential function
ε(x), it is useful to introduce a complex phase factor for β in the needed integrals

Kj(β) =

∞∫
0

xj exp(iβx)ε(x)dx = cj(β) + isj(β), (14)

where the complex phase factor is

exp(iβx) = cos(βx) + i sin(βx). (15)

Thus we get

χ(β) =
2

π
βs1(β), (16)

Λ(β) =
2L

π
c1(β) (17)

and

∆(β) =
4D2

π
c2(β). (18)

The argument of spectral line profile β in the phase factor can be joined with
L in exponent as a complex exponent and thereafter integrations can be carried
out with its use. If we ignore the exponential function in the Holtsmark line
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profile formula, then the needed analytical integrals can be represented in the
form (Gradshtein & Ryzhik 1962, p. 494, formula 3.897):

I(z) =

∞∫
0

exp(−D2x2 − γx)dx =

√
π

2D

{
exp(z2)erfc(z)

}
, (19)

where the complex spectral line arguments

γ = L− iβ , z =
γ

2D
, (20)

the complex probability integral

erf(z) =
2√
π

z∫
0

exp(−t2)dt (21)

and
erfc(z) = 1− erf(z). (22)

The derivatives djI/dLj describe analytical solutions to the profile integrals, which
have additional integer power factor xj in the integrand of (14). Such integrals
with the integer value 3j appear if we use the series expansion of the exponent
function exp(−x3/2) in the Holtsmark profile.

The complex probability integral can be expressed as the series expansion

erf(z) =
2√
π
exp(−z2)

∞∑
k=0

2kz2k+1

(2k + 1)!!
. (23)

This formula holds for all values of the argument z, but it is rapidly convergent only
at its small values. For spectral line wings at large values of argument β, where
this series expansion converges very slowly, it can be expressed by the following
asymptotic form (Gradshtein & Ryzhik 1962, formula 9.243.2)

erfc(z) =
1

π
exp(−z2)

∞∑
k=0

(−1)kΓ(k + 1/2)

z2k+1
. (24)

It is evident that at large z values the exponential terms with z2 in the integral
I(z), formula (19), cancel one another.

4. CONVOLVED PROFILE IN LINE WINGS

Now let us consider the convolved spectral line profile function by its series ex-
pansion at large argument values, i.e. in the far wings of spectral lines. Therefore,
differently from our former study (Sapar et al. 2006), we conserve the Lorentz
exponent in the spectral line wings, i.e. at large β values, but use the series ex-
pansions for the Doppler and Holtsmark contributions in the exponent functions.

Thus, for the line wings we obtain the integrals of the form

Pµ(γ) =

∞∫
0

xµ−1 exp(−γx)dx =
Γ(µ)

γµ
=

Γ(µ)

ρµ
exp(iµφ), (25)
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where we took into account that

γ = L− iβ = ρ exp(−iφ), (26)

where the module ρ and the phase angle φ of the complex number γ are given by

ρ = (L2 + β2)1/2, φ = arcsin

(
β

ρ

)
. (27)

For the line wings it is useful to express the terms corresponding to the series
expansion in the form

Pµ(γ) = Cµ(ρ, φ) + iSµ(ρ, φ), (28)

where

Sµ(ρ, φ) =

∞∫
0

exp(−Lx)xµ−1 sin(βx)dx =
Γ(µ)

ρµ
sin(µφ) (29)

and

Cµ(ρ, φ) =

∞∫
0

exp(−Lx)xµ−1 cos(βx)dx =
Γ(µ)

ρµ
cos(µφ). (30)

In these series expansions

µ = j +
3n

2
+ 2m, (31)

where j is the contribution outside of the series expansion, n corresponds to the
series expansion of the Holtsmark exponent and m – to the series expansion of the
Doppler exponent. This general form of integrals in the line wing profile expansion
of the Holtsmark and Doppler exponents converges well only at large values of β.
The line profile integrals can be now written in the form

χ(β) =
2

πβ

∞∑
n=0

∞∑
m=0

(−1)m+n

n!m!
D2mSµ(ρ, φ), j = 1 (32)

Λ(β) =
2L

πβ2

∞∑
n=0

∞∑
m=0

(−1)m+n

n!m!
D2mCµ(ρ, φ), j = 1 (33)

and

∆(β) =
4D2

πβ3

∞∑
n=0

∞∑
m=0

(−1)m+n

n!m!
D2mCµ+1(ρ, φ), j = 2. (34)

In the far wings of spectral line, i.e., if β ≫ L, the phase angle φ tends to π/2.
Consequently, in the far wings the series expansion depends polynomially on 1/ρ.
The convergence relative to the Doppler width is rapid if D < 1, i.e. in the deep
layers of stellar atmospheres.
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5. CONVOLVED PROFILE AT LINE CENTERS

In order to study the hydrogenic line profile in the central region of the spectral
line profile, it is suitable to conserve the exponential function of the Holtsmark
profile and to introduce for it the notation

η(x) = exp
(
−x3/2

)
. (35)

Now it is useful to introduce the complex integrals

Bk(γ) =

∞∫
0

xk exp(−γx)η(x)dx. (36)

Applying the Moivre formula for the series expansion of the complex exponential
function, we obtain

exp(−γx) =

∞∑
n=0

(−ρx)n

n!
exp(−inφ). (37)

From here we obtain a dependence of the line profile function on ρ and φ,
which for the line center, β < L, is a polynomial expression relative to L.

Introducing variable y = x3/2 and using the series expansion

exp(−D2x2) =
∞∑

m=0

(−1)mD2m

m!
x2m (38)

we get the values of the Holtsmark exponent integrals in the form

Gk =

∞∫
0

xk exp
(
−x3/2

)
dx =

2

3

∞∫
0

y(2k−1)/3 exp(−y)dy =
2

3
Γ

(
2k + 2

3

)
, (39)

where in xk the exponent k is given by

k = j + n+ 2m. (40)

Using the series expansions of exp(−γx) and exp(−D2x2), we obtain for the needed
integrals Kj , equation (14), the series expansion

exp(−γx−D2x2) =

∞∑
m=0

∞∑
n=0

(−1)m+nD
2m

m!

ρn

n!
exp(−inφ). (41)

Now in a compact form we can write

Kj =
∞∑

n=0

In+j(Cn − iSn), (42)

where

In+j =

∞∑
m=0

(−1)n+mGj+n+2m
D2m

m!
, (43)



Revised line profile function for hydrogenic species 249

Cn =
ρn cos(nφ)

n!
(44)

and

Sn =
ρn sin(nφ)

n!
. (45)

Thus we obtain

χ(β) =
2

π
β

∞∑
n=0

In+1Sn, (46)

Λ(β) =
2L

π

∞∑
n=0

In+1Cn (47)

and

∆(β) =
4D2

π

∞∑
n=0

In+2Cn. (48)

The usual series expansion relative to β is now expressed by the expansion
relative to Cn and Sn. The series expansion is now polynomial relative to ρ. At
the central point of the line profile, i.e. at β = 0, we get χ(0) = 0, Sn = 0 and
Cn = Ln/n!.

Summing up, we have obtained analytical series expansions which describe the
spectral line profile centers of the hydrogenic species due to convolution of the
Holtsmark, Lorentz and Doppler profiles at small argument values. The depen-
dence on ρ and φ is incorporated in Cn and Sn, and the polynomial dependence
on D2 – in the In+j expressions. The series converges rapidly only at small values
of ρ.

6. SPECTRAL LINE PROFILES FOR THE INTERMEDIATE REGION

For the intermediate region of the profiles of spectral lines we use a generaliza-
tion of integral (19) with the integrand weighted by xµ−1 with positive µ values
(Gradshtein & Ryzhik 1962, p. 351, Eq. 3.462.1 and p. 510, Eqs. 3.953.1 and
2), obtained by the series expansion of the Holtsmark exponential factor. The
analytical solution for these additives in this series expansion has the form

I(µ; z) =

∞∫
0

xµ−1 exp(−D2x2 − γx)dx = 2−µ/2D−µΓ(µ)∆−µ(z), (49)

where, to simplify the formulae, instead of γ we use the reduced complex argument

z =
γ√
2D

, (50)

and instead of the usual parabolic cylinder functions D−µ(z) their modification by

∆−µ(z) = exp(
z2

4
)D−µ(z). (51)

As it will be shown further, such modification enables to get rid of the exponential
terms.
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Expressed via the confluent hypergeometric series Φ, the functions ∆−µ(z)
have the form (Gradshtein & Ryzhik 1962, p. 1078, Eq. 9.240; Abramowitz &
Stegun 1972, p. 691, Eq. 19.12.3)

∆−µ(z) = 2−µ/2

{ √
π

Γ(µ+1
2 )

Φ

(
µ

2
,
1

2
;
z2

2

)
−

√
2πz

Γ(µ2 )
Φ

(
1 + µ

2
,
3

2
;
z2

2

)}
. (52)

The complex confluent hypergeometric series are defined in the form (Gradshtein
& Ryzhik 1962, p. 1072, Eq. 9.210.1):

Φ(α, γ, z) =
∞∑

n=0

α(α+ 1)...(α+ n)

γ(γ + 1)...(γ + n)

zn

n!
. (53)

In the formulae of the present section, the parameters µ of the integrals I(µ; z)
incorporate the Holtsmark exponential factor via its series expansion.

Our next task is to find higher order parabolic cylinder functions using the
recurrence formulae. The expressions I(µ; z) are especially useful for the inter-
mediate regions of line profiles, which are the most complicated in computational
aspect and joins the spectral line central region with their wings. The parabolic
cylinder functions D−µ(z) are often expressed in somewhat modified form, namely

U(µ− 1/2, z) = D−µ(z). (54)

Similarly, we introduce the changed arguments in the modified hyperbolic cylinder
functions

Υ(µ− 1/2, z) = ∆−µ(z). (55)

Thus, semi-integer values of the parameter µ in D−µ(z), which correspond also
to semi-integer values of the parameter µ in the integral (52), acquire the opposite
sign and the shifted value of the parameter, changing the semi-integer values of
the parameter in the modified functions to the integer ones, and vice versa – the
integer values of the parameter µ acquire the semi-integer values.

7. RECURRENCE FORMULAE

For the functions U(µ, z) the recurrence formulae are valid, which in the present
study are expressed in the form

U(µ, z) = aµU(µ− 1, z) + bµU(µ− 2, z) (56)

where

aµ = − z

µ− 1
2

, bµ =
1

µ− 1
2

. (57)

Thus
Υ(µ, z) = aµΥ(µ− 1, z) + bµΥ(µ− 2, z). (58)

From these equations for our problem we obtain the two chains of the recurrence
formulae: for the half-integer values of µ, reduced to the two lowest positive pa-
rameter as starting functions

Υ(µ, z) = c′µΥ(
3

2
, z) + d′µΥ(

1

2
, z) (59)
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and similarly for the integer values of µ

Υ(µ, z) = c∗µΥ(1, z) + d∗µΥ(0, z). (60)

We find that, similarly to the recurrence formulae for Υ(µ, z), the coefficients cµ
and dµ also can be found by the recurrence formulae

cµ = aµcµ−1 + bµcµ−2 (61)

and
dµ = aµdµ−1 + bµdµ−2. (62)

Now we have to specify the starting values of these coefficients for the given re-
currence series. From the recurrence formula for Υ(5/2, z) we obtain

c′5/2 = a5/2, d′5/2 = b5/2 (63)

and thereafter from the next recurrence formula for Υ(7/2, z) it follows that

c′7/2 = a5/2a7/2 + b7/2, d′7/2 = a7/2b5/2. (64)

Similarly, from the recurrence formula for U(2, z) it follows that

c∗2 = a2, d∗2 = b2 (65)

and from the next recurrence formula for U(3, z)

c∗3 = a2a3 + b3, d∗3 = a3b2. (66)

Thus, the chain of the recurrence formulae for needed integrals reduces a set of
parabolic cylinder functions to their four lowest non-negative parameter functions,
namely Υ(0, z),Υ(1/2, z),Υ(1, z) and Υ(3/2, z). It must be emphasized that these
parabolic cylinder functions are expressed via two confluent hypergeometric func-
tions, having low values of parameters and thus granting a rapid convergence rate
of the expansion series.

The next task is to carry out summation over higher order parabolic cylin-
der functions, i.e., to derive the expression for the needed weighted sums of the
integrals

I(µ; z) = 2−µ/2D−µΓ(µ)Υ(µ− 1/2, z). (67)

Using the series expansion of the Holtsmark exponential factor exp(−x3/2), we
obtain for the parameter µ the values

µ = µk = j +
3k

2
, (68)

where j corresponds to the contribution from outside of the series expansion, and
3k/2 corresponds to the series expansion of the Holtsmark exponential factor. The
final expressions, we are seeking for as the sum of the terms of the integrated series
expansion, can be expressed in the form

Qj(z) =

∞∑
k=0

(−1)k

k!
I(µk; z). (69)
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Using the formula (67) the integrals can be written in the form

Qj(z) =
∞∑
k=0

(−1)kΓ(µk)Υ(µk − 1/2, z)

k!(2D2)µk/2
. (70)

These are the final expressions for integrals in the intermediate region of a spectral
line.

The series expansion for Qj(z) rapidly converges if D > 1. For stellar at-
mospheres this means that the convergence relative to D is rapid for the rar-
efied higher atmospheric layers, where the Doppler width exceeds considerably the
Holtsmark width.

The next task is to find suitable formulae for computation of the confluent
hypergeometric functions. Generally speaking, this is a complicated problem, and
for different values of these parameters and arguments different approximation
procedures have been applied and different formulae have been derived.

The confluent hypergeometric series can be expressed in a very compact form:

Φ(α, γ; z) =
∞∑

n=0

αn

γn

zn

n!
, (71)

where

αn = α(α+ 1)...(α+ n) =

n∏
i=0

(α+ i) (72)

and

γn = γ(γ + 1)...(γ + n) =

n∏
i=0

(γ + i). (73)

Consequently, we can write the recurrence formula as

αn

γn
=

αn−1

γn−1

(α+ n)

(γ + n)
. (74)

For small values of the ratio α/γ the ratio αn/γn at large values of n tends to a
finite value, αN/γN , and the following additive terms thereafter can be considered
as belonging to corresponding exponential function. Thus, we can write

Φ(α, γ; z) =
αN

γN
exp(z) +

N∑
n=0

(
αn

γn
− αN

γN

)
zn

n!
. (75)

Numerical simulations have shown that a quite precise approximation can be ob-
tained taking N = 150. The relative error of the computed confluent hypergeo-
metric function can be estimated as a ratio of the modules of the last term to the
module of Φ, i.e., as

ε =
αN

γN

|zn|
n!

1

|Φ(α, γ; z)|
. (76)

The problem, how to fix the limits of acceptability of the derived formulae in
the best way, deserves further study.
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8. GENERAL DISCUSSION

We have found analytical series expansions for the computation of spectral line
profile functions for hydrogenic spectral line profiles, specified as a convolution
of the Holtsmark, Lorentz and Doppler profile functions. The obtained formulae
work well in the spectral line wings. In the central part of a line, to about the
argument value ∆νS , the situation is much more complicated. Therefore, one of
the most important circumstances is that each hydrogenic spectral line, due to the
electrostatic field of plasma ions, splits into a large number of overlapping com-
ponents extending to the line center. Such complicated spectral region probably
exceeds the characteristic Stark line width ∆νS .

Similar result follows from the model microfield method computations, elabo-
rated by Brissaud & Frisch (1971), see also Brissaud et al. (1976), and applied for
study of the hydrogenic spectral line profile functions by a number of investigators,
especially for stellar spectra by Stehlé & Hutcheon (1999). The model microfield
method, based on the quantum electrodynamics, has been used by several authors,
and it also takes into account that hydrogenic particles are affected by the tempo-
rally changing electric field strength of the adjacent ions. It has been assumed that
the microfield is constant during a given time interval, and thereafter hydrogenic
particles accommodate to some other constant value of the electric field strength.
Such transitions are often called the ‘kangaroo jumps’.

The process modifies central part of the line profile, and as follows from the
model computations, it generates a central plateau, which extends to the maximum
of the Holtsmark profile, but does not modify the line wings. An approximation,
which satisfies these asymptotic features, can be obtained assuming that the mi-
crofield generates stochastic ’kangaroo jumps’ in the electric field of the adjacent
ions, generating transitions which give an additional Doppler distribution profile.
For it we accepted the form exp(−β2/2).

Such distribution function is intrinsically bound with the Holtsmark distri-
bution and modifies the convolved profile as the additional function, generating
broadened Doppler profile, which removes the central dip in the line profile func-
tion. The factor 1/2 in the exponent has been chosen from the elegance principle,
because the Fourier transform of this function conserves the form. And last, but
not least – such term increases the values of D in the convolved profile, therewith
facilitating the model computations.

As an example, in Figure 1 we demonstrate the model spectrum (Teff =16 000
K, log g = 4) in the region of the hydrogen Balmer lines computed using the
revised spectral line profile function. The x-axis is given in the log λ [nm] units,
and the y-axis is the reduced temperature tλ which has been computed adopting
that the emergent Eddington flux (the flux per steradian) is equal to the Planckian
black-body radiation intensity, Bλ(tλTeff) = Hλ. The figure demonstrates also a
smooth transition from the Balmer lines to the Balmer continuum, obtained by
additional using of the dissolution fractions for the high hydrogen states.

In reality, physical processes acting on line profiles are very complicated, and
their precise account hitherto is missing. Thus, a detailed analysis of total spectral
line profile functions remains on agenda. Also the problem to determine reasonable
limits for jumping from one formula to another remains to be solved.
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Fig. 1. The model spectrum (Teff = 16 000 K, log g = 4) in the region of the Balmer
lines. The abscissa is log λ [nm] and the ordinate is the reduced temperature tλ, which
corresponds to the black-body radiation.
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