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Abstract. A 3D dynamical model with a quasi-homogeneous core and a disk
component is used for the chaos control in the central parts of elliptical galaxy.
Numerical experiments in the 2D system show a very complicated phase plane
with a large chaotic sea, considerable sticky layers and a large number of islands,
produced by secondary resonances. When the mass of the disk increases, the
chaotic regions decrease gradually, and, finally, a new phase plane with only
regular orbits appears. This evolution indicates that disks in elliptical galaxies
can act as the chaos controllers. Starting from the results obtained in the 2D
system, we locate the regions in the phase space of the 3D system, producing
regular and chaotic orbits. For this we introduce and use a new dynamical
parameter, the S(w) spectrum, which proves to be useful as a fast indicator
and allows us to distinguish the regular motion from chaos in the 3D potentials.
Other methods for detecting chaos are also discussed.
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1. INTRODUCTION

Today it is believed, that dwarf elliptical galaxies seem to prefer the densest
regions of the Universe and are found abundantly in galaxy clusters and groups
(see Bingelli et al. 1987; Ferguson & Sandage 1989; Conselice et al. 2001). This
circumstance most likely has important consequences for their evolution. Moore et
al. (1998) have shown how late-type disk galaxies, that orbit in a cluster, can loose
angular momentum by interactions with massive galaxies and, to a lesser degree,
by tidal forces induced by the cluster potential. N -body simulations performed
by Mayer et al. (2001) show that small disk galaxies, that are close companions
to a massive galaxy, will be affected likewise. A small disk galaxy is destabilized
and develops a bar that gradually slows down, by dynamical friction, transporting
angular momentum to the halo and to stars at larger radii. Since the latter are
being stripped, angular momentum is lost. Gas is funneled in towards the center
by torques exerted by the bar, where it is converted into stars, thus forming a
nucleus. The small companion is heated by the subsequent buckling of the bar
(see Merrifield & Kuijken 1999 and references therein) and by bending modes of the
disk, and is transformed from a rotationally-flattened object into an anisotropic,
slowly rotating spheroidal galaxy. The effect on a dwarf galaxy depends on its
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orbit through the cluster around the massive companion. For instance, retrograde
interactions have a much less damaging effect than prograde ones and may even
preserve some of the initial disk structure. Thus, these simulations allow for the
existence of fast-rotating dwarfs and for elliptical galaxies that still contain a stellar
disk.

During the last decade, dwarf elliptical galaxies, such as IC 3328, IC 0783,
IC 3349, NGC 4431 and IC 3468, with spiral and barred structure have been
discovered in the Virgo cluster (see Jerjen et al. 2000; De Rijcke et al. 2001;
Barazza et al. 2002; Simien & Prugniel 2002). Furthermore, Ryden et al. (1999)
also report dwarf ellipticals with disky isophotes in the Virgo cluster, while De
Rijcke et al. (2003) give photometric evidence for the presence of stellar disks in
two Fornax dwarf galaxies FCC 204 and FCC 288. Moreover, there are indications
of the presence of disks in the giant elliptical galaxies NGC 83 and NGC 2320 (see
Young 2002, 2005). The semi-analytic simulations of Khochfar & Burkert (2005)
suggest that a few tens of percent of all disky elliptical galaxies, could have grown
their stellar disks out of cold gas accreted from the intergalactic medium. A better
understanding of the molecular gas in early-type galaxies could provide concrete
evidence either for or against this disk scenario.

Taking this into account, we considered interesting to construct a 3D dynamical
model to study properties of the motion in an elliptical galaxy with a disk. In order
to describe the motion in the region near the center of such a system, we use the
potential

V (x, y, z) =
ω2

2

[(
x2 + by2 + cz2

)
− ϵx

(
y2 + z2

)]
− Md√

x2 + y2 +
(
α+

√
h2 + z2

)2 .

(1)
Potential (1) consists of two parts. The first term stands for the quasi-homogeneous
core of the galaxy, the second term describes the disk (see Miyamoto & Nagai
1975). The harmonic term of the potential is valid only within certain distances
from the center of the galaxy. In our case, integration of orbits was done up

to distances R =
√

x2 + y2 + z2 ≤ 1, hinting that up to these distances from
the galactic center, the harmonic term of Eq. (1) is valid. We must point out,
that the perturbation term (−ϵx

(
y2 + z2

)
) of the harmonic potential is an odd

function with respect to x. We use this kind of perturbation term due to the fact
that it has a finite energy of escape. Moreover, the first term of potential (1) is
a deformed galactic model, which is approximately axisymmetric near the core
but is deformed in its outer parts. A two-dimensional potential with this kind
of perturbation was used by Contopoulos et al. (1987) in order to study large-
scale stochasticity in a Hamiltonian system of two degrees of freedom, which may
represent the inner parts of a deformed galactic model. In the present paper, the
first term of potential (1), is the expansion of the potential used by Contopoulos et
al. (1987) in a Hamiltonian system of three degrees of freedom. Similar potentials
have been used in several papers, in order to study axisymmetric galactic models
(see Contopoulos & Polymilis 1993; Siopis et al. 1995).

In Eq. (1), b, c and ϵ are parameters, Md is the mass, a and h are the scale
length and the scale height of the disk, while ω is used for the consistency of
the galactic units. We use a system of galactic units, where the unit of mass is
2.325× 107M⊙, the unit of length is 1 kpc and the unit of time is 0.997748× 108

yr. The velocity unit is 10 km/s, while G is equal to unity. In the above units we
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use the values: ω = 10 km s−1 kpc−1, b = 1.1, c = 1.5, ϵ =1.08, α = 3, h = 0.125,
while Md is treated as a parameter.

The aim of this research is to investigate the role, played by the disk, on
the regular or chaotic nature of orbits. Our investigation will be focused in the
following: (i) we will try to connect the extent of the chaotic regions with the
mass of the disk; (ii) we will look for sticky regions and secondary resonances
introduced by the presence of the disk, and (iii) we will seek if there exist only
one unified chaotic region, or different chaotic components. For this purpose, we
shall use, apart of the classical methods, such as the Poincaré phase plane and
the Lyapunov Characteristic Exponents (LCEs) (Lichtenberg & Lieberman 1992),
some modern methods such as the S(c) spectrum (Caranicolas & Papadopoulos
2007; Caranicolas & Zotos 2010), the P (f) indicator (Karanis & Vozikis 2008) and
a new dynamical parameter, the S(w) spectrum.

The results are based on the numerical integration of the equations of motion

ẍ = −∂ V (x, y, z)

∂x
,

ÿ = −∂ V (x, y, z)

∂y
,

z̈ = −∂ V (x, y, z)

∂z
. (2)

The Hamiltonian to the potential (2) reads

H =
1

2

(
p2x + p2y + p2z

)
+ V (x, y, z) = E , (3)

where px, py, pz are the momenta per unit mass conjugate to x, y and z, while E
is the numerical value of the Hamiltonian.

The orbit calculations are based on the numerical integration of the equation
of motion (2), which was made using a Bulirsh-Stöer routine in Fortran 95, with
double precision in all subroutines. The accuracy of the calculations was checked
by the consistency of the energy integral (3), which was conserved up to the twelfth
significant figure.

The present paper is organized as follows: in Section 2 we present an analysis
of the structure of the x−px, y = 0, py > 0 Poincaré phase plane of the 2D system
and the different families of orbits. In the same section a study of the evolution of
the sticky regions is presented. Moreover, we investigate the evolution of different
chaotic components of the system. In Section 3 we study the character of orbits
in the 3D system, using a new dynamical indicator, the S(w) spectrum. Special
interest is given to the evolution of the sticky regions and the chaotic components.
In Section 4, a discussion and the conclusions of this research are presented.

2. THE STRUCTURE OF THE x− px PHASE PLANE: CHAOTIC
COMPONENTS AND STICKY REGIONS

In this section we will analyze the structure of the x−px, y = 0, py > 0 Poincaré
phase plane of the corresponding 2D potential, i.e., we will consider orbits on the
galactic plane (z = 0). The corresponding Hamiltonian is

H2 =
1

2

(
p2x + p2y

)
+ V (x, y) = E2 , (4)
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Fig. 1. The x− px phase plane. Panel (a): Md = 100, E2 = 20; panel (b): Md = 200,
E2 = −10; panel (c): Md = 600, E2 = −132; panel (d): Md = 1200, E2 = −315.

where E2 is the numerical value of the Hamiltonian.
Figures 1 (a–d) show the x − px phase plane of the 2D system. Let us start

from Figure 1a, where Md = 100, E2 = 20. One observes a phase plane with a
complicated structure. Several chaotic components seem to exist. There are also
two main regions of regular motion. The first regular region, forms invariant curves
around the two invariant points on the x-axis, while the second region is composed
of two sets of islands intersecting the px-axis. Both the above islands are produced
by quasi-periodic orbits characteristic of the 1:1 resonance. A considerable regular
region is occupied by two additional sets of three islands symmetrical with respect
to the x-axis. Furthermore, there are sets of smaller islands embedded in the
chaotic sea and produced by secondary resonances. Several sticky regions seem to
be present, but we shall come to this interesting point later in this Section. Figure
1b shows the phase plane when Md = 200, E2 = −10. At a first glance, we see
that the regular region has increased, while the chaotic regions have decreased.
Note that the two invariant points near the px-axis are now stable. The chaotic
components are present in this case too. The different chaotic components will be
studied later in this Section. We must also point out, that in this case we can see
one main sticky region and some smaller secondary sticky regions as well. Figure
1c shows the x − px phase plane in the case when Md = 600, E2 = −132. Here
things are different. Almost the entire phase plane is regular, while only a small
chaotic layer with some tiny sticky regions is observed. On the other hand, all
periodic points are now stable, and no secondary resonances are observed. Figure
1d is similar to Figure 1c, but for Md = 1200, E2 = −315. In this case, the entire
phase plane is covered by regular orbits, while the percentage of chaotic orbits, if
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Fig. 2. Orbits in the 2D potential. The initial conditions in panel (a): x0 = −0.90,
px0 = 0, panel (b): x0 = 0.32, px0 = 5.2, panel (c): x0 = 0.05, px0 = 6.2, panel (d):
x0 = −0.952, px0 = 0, panel (e): x0 = −0.01, px0 = 4.7, panel (f): x0 = −0.01, px0 = 6,
panel (g): x0 = 0.327, px0 = 1.16, panel (h): x0 = 0.09, px0 = 0. In panels (a–e)
Md = 100, E2 = 20, in panels (f–h) Md = 200, E2 = −10.

any, is negligible.
Figures 2 (a–h) show several representative orbits in the 2D system. In all

orbits y0 = 0, while the value of py0 is always found from the energy integral. The
values of initial conditions and parameters are given in the caption. All orbits are
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Fig. 3. A plot of the chaotic percentage A% vs. Md.

regular except of the orbit given in Figure 2h, which is chaotic. The integration
time for all 2D orbits shown in Figures 2 (a–h), is 100 time units.

Thus we conclude, that in elliptical galaxies with massive disks in the central
regions a decrease of chaos is expected, while the percentage of chaotic orbits is
larger, when a small disk is present. But the most important conclusion drawn
from the above numerical study, is that disks in the centers of elliptical galaxies
can act as chaos controllers. Figure 3 shows the percentage A% of the surface of
section occupied by chaotic orbits vs. Md. We see that A% tends asymptotically
to zero, when the mass of the disk increases.

Now let us study the evolution of the sticky orbits of the 2D system. We
shall follow in detail the evolution of a sticky orbit with the initial conditions:
x0 = −0.962, px0 = 0, the values of all other parameters are as in Figure 1a. The
results are given in Figure 4 (a–d). Figure 4a shows the sticky region formed in
the x − px phase plane for a time period of about 1200 time units. After that
the test particle leaves the above sticky region, entering to a larger sticky region
shown in Figure 4b. There it stays to about 75 000 time units and then it moves
to the third sticky region shown in Figure 4c, where it stays until 3 × 105 time
units. After reaching this stage, our numerical calculations were not continued.
Our feeling is that the evolution of the sticky orbit was completed here. Actually
we observe a hierarchy regarding the sticky regions. We believe that in Figure 4c
we see a chaotic component of the 2D system, not a sticky region. Figure 4d shows
a plot of the LCE of the sticky orbit for a time period of 3× 105 time units.

A better view of the sticky orbit evolution can be seen using the S(c) spectrum.
Figure 5a shows the S(c) spectrum for an orbit producing a set of eight small
islands, shown in Figure 1a. The initial conditions are: x0 = −0.952, y0 = px0 = 0,
and the values for all other parameters are as in Figure 1a. As expected, we
observe eight well defined U -type spectra. The motion is regular. Figure 5b shows
the S(c) spectrum for the sticky orbit. Here, we can see again eight spectra, each
corresponding to an island. The basic difference between Figures 5a and 5b is that
in Figure 5b we observe a large number of asymmetric peaks. Those additional
peaks indicate the sticky motion. It is well known, that in the dynamical systems
of two degrees of freedom, sticky orbits are the orbits which stay for long time
periods near the last Kolmogorov-Arnold-Moser (hereafter KAM) torus, before
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Fig. 4. Panels (a–c): evolution of a sticky orbit; panel (d): LCE vs. time for the
sticky orbit.

they escape to the surrounding chaotic sea (see Karanis & Caranicolas 2002).
According to the Kolmogorov-Arnold-Moser theorem, most orbits lie on tori in

the phase space. However, near all unstable periodic points, there is some degree
of stochasticity. This is best seen on the surface of section, on which the successive
intersections of orbits passing close to the unstable periodic points, do not lie, in
general, on closed invariant curves, but fill stochastically a certain defined area.
These orbits are called stochastic, or chaotic, or semiergodic. The phenomenon
of the onset of large scale chaoticity, has been studied in more detail in recent
years. It was found, that the invariant curves that separate chaotic regions in
the neighborhood of two unstable periodic orbits are destroyed as the energy goes
beyond a critical value. Thus, we have communication between the two chaotic
regions. The critical value of the energy occurs when the last KAM curve (or
the last KAM torus in the phase plane) separating the two resonant regions is
destroyed.

Now let us go to the evolution of the sticky orbit, using the S(c) spectrum.
During the first sticky period, which is about 1100 time units, in Figure 5b one
observes eight separate complicated spectra. In Figure 5c the time is 1500 time
units, and the eight spectra are very similar to those seen in Figure 5b. Note
that here the eight spectra are connected. This indicates that the test particle
has left the first sticky region in order to continue its wandering in a larger sticky
region. Figure 5d, shows the S(c) spectrum for 70 000 time units. We see that the
spectrum tends to take characteristics of a chaotic spectrum. Note that the time
intervals of the sticky periods, obtained by the evolution of the S(c) spectrum, are
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Fig. 5. Panel (a): the S(c) spectrum for an orbit producing the set of eight small
islands, shown in Fig. 1a; panels (b–d): evolution of the S(c) spectrum of a sticky orbit.
Details are given in the text.

very close to those obtained by the formation of the x − px phase planes, shown
in Figures 4 (a–d).

The next step is to investigate different chaotic components of the 2D system.
The corresponding results are shown in Figures 6 (a–d). Figure 6a shows the
chaotic region formed by an orbit with the initial conditions: x0 = 0.0, px0 = 4.6
over a time period of 3 × 105 time units. This is the second chaotic component
of the 2D system. Figure 6b shows the third chaotic component which is formed
by an orbit with the initial conditions: x0 = −0.51, px0 = 6.0. The time period is
3×105 time units. Figure 6c shows all the chaotic components together. The LCEs
of the above three chaotic components are shown in Figure 6d. The numbers 1,2
and 3 correspond to the first, second and third chaotic component, respectively.
As we see, each chaotic component has a different value of LCE (see Saito &
Ichimura 1979). Here we must note that a hierarchical structure in the 2D model
is displayed not only by the stickiness but also by chaos.

3. ORDER AND CHAOS IN THE 3D SYSTEM

Now let we switch to study the behavior of the 3D system. We take the initial
conditions (x0, px0, z0), y0 = pz0 = 0, where (x0, px0) is a point on the phase planes
of the 2D system. Obviously this point lies inside the limiting curve

1

2
p2x + V (x) = E2 , (5)

which is the curve containing all the invariant curves of the 2D system. We take
E = E2, and the value of py0 for all orbits is obtained from the energy integral
(3). Our numerical calculations in the 3D system show, that the orbits with the
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Fig. 6. Panel (a): chaotic component 2; panel (b): chaotic component 3; panel (c): all
the chaotic components together; panel (d): the LCEs for the three chaotic components
of the 2D system.

initial conditions (x0, px0, z0), y0 = pz0 = 0, where (x0, px0) is a point in the
chaotic regions of Figures 1 (a–d), for all permissible values of z0 give chaotic
orbits. On the other hand, it would be interesting to know what happens with
different chaotic components observed in the 2D system, shown in Figures 6 (a–d).
The question is, do they merge to form a unified chaotic region in the 3D space,
or they continue to exist as three separate chaotic components in the 3D system?
In order to give an answer, we computed the LCEs for three orbits, each starting
in one of the three different chaotic components, for a time period of 106 time
units. The results are shown in Figure 7. The numbers 1, 2 and 3 indicate the
three chaotic components which have different LCEs values. This result seems to
be consistent with the outcomes obtained by Cincotta et al. (2006), where in a
3D system with divided phase space, separate chaotic components actually exist.

One may ask an interesting question: what is the nature of orbits which have
initial conditions (x0, px0), z0, y0 = pz0 = 0, where (x0, px0) is a point in each
regular region of Figures 1 (a–d)? In order to give an answer, we will introduce
and use a new type of dynamical indicator, the S(w) spectrum. The parameter
wi is defined as

wi =
(xi − pxi)− (zi − pzi)

pyi
, (6)

where (xi, zi, pxi, pyi, pzi) are the successive values of (x, z, px, py, pz) of the 3D
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Fig. 7. The LCEs for the three chaotic components of the 3D model.

Fig. 8. Panel (a): a 3D regular orbit; panel (b): a plot of the LCE vs. time for the
orbit shown in (a); panel (c): the S(w) spectrum of the orbit shown in (a); panel (d):
the P (f) indicator for the orbit shown in (a). See the text for details.
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Fig. 9. The same as in Figures 8 (a–d) but for a resonant 3D orbit. See the text for
details.

orbit. The dynamical spectrum of the parameter w is its distribution function

S(w) =
∆N(w)

N∆w
, (7)

where ∆N(w) is the number of the parameters w in the interval w,w +∆w after
N iterations. In order to study the character of a 3D orbit, the S(c) spectrum can
be also used. Note that the coupling of the third component, z, carrying all the
information about the 3D motion, is hidden in the definition of the S(c) spectrum,
but in any case it affects the values of x, px and py. Using the definition of the
S(w) spectrum, we overtake this minor drawback and create a new dynamical
spectrum, suitable especially for 3D orbits.

Figures 8 (a–d) show the results for a 3D regular orbit. The orbit which is
shown in Figure 8a has the initial conditions: x0 = 0.82, y0 = px0 = pz0 = 0,
z0 = 0.01, while for all 3D orbits the value of py0 is always found from the energy
integral (3). The corresponding values of all other parameters are as in Figure 1a.
The LCE of the orbit, shown in Figure 8b, vanishes indicating the regular motion.
Figure 8c shows the S(w) spectrum of the orbit. This is a well defined U -type
spectrum characteristic for the regular motion. In Figure 8d, we see the P (f)
indicator which also indicates the regular motion. Figures 9 (a–d) are similar to
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Fig. 10. The same as in Figures 9 (a–d) but for a resonant 3D orbit with different
initial conditions. See the text for details.

Figures 8 (a–d) but correspond to a 3D resonant orbit with the initial conditions:
x0 = 0.27, y0 = pz0 = 0, px0 = 5.3, z0 = 0.01, producing three U -type spectra.
The values of all other parameters are as in Figure 1b.

Figures 10 (a–d) are similar to Figures 9 (a–d) but for a 3D resonant orbit
with the initial conditions: x0 = 0.47, y0 = pz0 = 0, px0 = 4.9, z0 = 0.01,
producing five U -type spectra. The values of all other parameters are as in Figure
1b. Finally, in Figure 11 (a–d), we present the results for a 3D chaotic orbit. The
initial conditions are: x0 = 0.09, y0 = px0 = pz0 = 0, z0 = 0.1. The values of
all other parameters are as in Figure 1a. Once more, we observe that the results
from all dynamical indicators, regarding the character of motion, coincide. The
integration time for all 3D orbits is 100 time units, for the S(w) spectrum it is
2× 104 time units and for the P (f) indicator it is 4× 103 time units.

Using the above method, we have computed a large number of orbits (about
1000) in the 3D dynamical system. Numerical outcomes suggest that for all (x0,
px0) in the regular regions of Figures 1 (a–d) and for small values of z0 (z0 <∼ 0.12)
the motion is regular, while for all larger permissible values of z0 the motion
becomes chaotic.
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Fig. 11. The same as in Figures 8 (a–d) but for a chaotic 3D orbit. See the text for
details.

4. DISCUSSION AND CONCLUSIONS

In this article we have studied the properties of motion in a 3D Hamiltonian
system, describing the motion in the inner parts of a deformed galactic model.
We started our investigation from the 2D system, because orbits confined in the
galactic plane (z = 0) display some very interesting features, such as sticky regions,
chaotic components and islandic motion produced by a large number of secondary
resonances.

Results from the study of the phase planes indicate, that there is an hierarchy
in sticky regions. A test particle can stay in sticky regions for a time period
of about 75 000 time units, before leaving to the corresponding chaotic region.
Several chaotic components are also observed in the 2D system, each one having
a different value of LCE. Thus we conclude, that both the stickiness and chaos
display a hierarchical structure in the 2D model. An interesting result of this
investigation is that the percentage A% of the surface of the section occupied by
chaotic orbits decreases, tending asymptotically to zero, when the mass of the
disk increases. This suggests that disks in elliptical galaxies can act as the chaos
controllers.

Our numerical calculations in the 3D system show, that orbits with the initial
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conditions (x0, px0, z0), y0 = pz0 = 0, where (x0, px0) is a point in the chaotic
regions of Figure 1 (a–d), for all permissible values of z0 give chaotic orbits. Using
the new S(w) spectrum we find that orbits with the initial conditions (x0, px0,
z0), y0 = pz0 = 0, where (x0, px0) is a point in the regular regions of Figure 1
(a–d), for small values of z0 are regular, while for larger values of z0 they become
chaotic. It is also of particular interest that the 3D system displays three different
chaotic components, not a unified chaotic region.

A very effective and reliable tool to distinguish between the regular and chaotic
motion in the 3D dynamical systems is the new S(w) spectrum. This spectrum,
which is an advanced form of the S(c) spectrum, allows us to detect islandic
3D motion of the resonant orbits, since it produces as much spectra as the total
number of islands in the x − px, y = 0, py > 0 surface of section (see Figures
9a and 10a). Moreover, the comparison with other dynamical parameters, such
as the LCE and the P (f) indicator, shows that the results obtained by the S(w)
spectrum are reliable.
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