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Abstract. The next stage after performing observations and their primary
reduction is to transform the set of observations into a catalog. To this end,
objects that are irrelevant to the catalog should be excluded from observations
and gross errors should be discarded. To transform such a prepared data set
into a high-precision catalog, we need to identify and correct systematic errors.
Therefore, each object of the survey should be observed several, preferably
many, times. The problem formally reduces to solving an overdetermined set
of equations. However, in the case of catalogs this system of equations has a
very specific form: it is extremely sparse, and its sparseness increases rapidly
with the number of objects in the catalog. Such equation systems require spe-
cial methods for storing data on disks and in RAM, and for the choice of the
techniques for their solving. Another specific feature of such systems is their
high “stiffness”, which also increases with the volume of a catalog. Special sta-
ble mathematical methods should be used in order not to lose precision when
solving such systems of equations. We illustrate the problem by the example
of photometric star catalogs, although similar problems arise in the case of
positional, radial-velocity, and parallax catalogs.
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1. INTRODUCTION

Let us now consider the general problems of creating large high-precision cat-
alogs in the case of photometric star surveys, although practically the same chal-
lenges have to be addressed in the case of positional, radial-velocity, or parallax
catalogs. To illustrate these problems, we consider three high-precision photomet-
ric catalogs: the Alma-Ata WBVR catalog of Sternberg Astronomical Institute
(Kornilov et al. 1991, 1996), the photometric catalog of the planned “Lyra-B”
space mission (Zakharov et al. 2013a,b), and the photometric star catalog of Gaia
astrometric survey (Lindegren et al. 2008; Jordi et al. 2010).

The common feature of these three catalogs is their high precision and homo-
geneity of photometric measurements involved1. The WBVR catalog contains a

1 The precision of Gaia multicolor photometry is not yet known. It will possibly become clear
after the publication of the first release of Gaia catalogs in late 2016 – early 2017.
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small number of objects (8500 stars), “Lyra-B” catalog will be a medium-sized
(250–400 million stars), and Gaia, a large catalog (1 billion stars). See Table 1 for
more detailed data about the above catalogs.

Not every survey can be used as a basis for a high-precision catalog. To qualify
the task, the survey should meet the following conditions:

• It should be possible to extract a homogeneous component from the survey
data. For example, in the case of photometric catalogs, variable stars should
be excluded from the subset of objects for final reduction. Furthermore, this
subset should include no erroneous or “bad” observations.

• To identify systematic effects, each object (star) has to be observed several,
preferably many, times. In this case, objects are observed under the con-
ditions with different values of parameters that determine systematic varia-
tions. Furthermore, multiple measurements make it possible to distinguish
constant stars from photometric variables.

• Special measures should be taken during observations in order to reduce
systematic errors and thus to allow the linearization of the equation system
for computing the corresponding corrections. Otherwise the correction of
systematic errors becomes practically impossible.

2. EXPERIMENT DESIGN MATRIX

Suppose that observational data contains a stable subset – the preliminary
catalog – meeting the above requirements. Suppose that, in addition to these
measurements, models of systematic corrections have been constructed, and the
parameter values on which these corrections depend are known at the time of
each measurement. In this case, transforming the preliminary catalog into the
final high-precision catalog requires only one extra step – composing and solving
the system of equations, which simultaneously determines precise values of stellar
parameters (magnitudes) and small systematic corrections to these quantities.

The form of equations depends on the type of measurements (observations)
used when conducting the survey: direct or differential.

A direct observation involves only one measured star and the quantities that
determine the corresponding measurement conditions:

mi = f(s(k)
i ) . (1)

Here, mi is the magnitude of ith star; s
(k)
i , the parameters of kth measurement of

ith star, and f(s), the observation model.
Direct observations are typical for most of the instruments equipped with ar-

ray detectors (CCD or CMOS). A typical measurement procedure can be simply
described as follows: from the frame calibrated using a standard procedure2, a
fragment is selected that contains the image of one star. The background level is
determined at the edges of this fragment and the excess above this level is inter-
preted as signal. This is the working principle of the popular SExtractor program

2 Standard photometric calibration of a frame acquired with an array detector includes dark
count subtraction, bias subtraction, and flatfielding (Tobin 1993; Manfroid 1996).
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(Bertin & Arnouts 1996). The same principle is used to determine the photometric
parameters of stars in the Gaia and “Lyra-B” experiments.

A differential observation involves two stars and the result of measurement has
the form of the difference of their magnitudes:

mi −mj = fd(s
(k)
i,j ). (2)

Here, i and j (i 6= j) are the numbers of the primary and secondary star used in
the observation, respectively; mi and mj are the magnitudes of the primary and
secondary star, respectively; s

(k)
i,j , the measurement parameters of the primary and

secondary stars for kth measurement of the primary star, and fd(s), the model of
the differential observation.

Differential observations are typical for measurements performed with dia-
phragm photometers. The measurements of stars for the WBVR catalog were
performed in this way.

Direct measurements can be easily transformed into differential measurements:

mi −mj = f(s(k)
i )− f(s(`)

j ) = fd(s
(k)
i,j ). (3)

In this case, the dispersion of the random error of the magnitude difference
increases3. However, if stars in the pair are close in terms of some parameters,
then the systematic error shifts their magnitude estimates in the same direction
and the systematic error of the magnitude difference may be smaller than the
systematic error for each star, and this may compensate for the increase of the
random error. This technique mostly determines the choice of the pairs4.

In a frame with N stars there are N(N − 1) different star pairs5, however, in
this case we have to choose N −1 different pairs. This provides ample possibilities
for the choice, and the underlying principle of selection of stars for pairs should
be determined by the particularities of the survey.

The linear equation system obtained as a result of preparing the sample can
be represented as follows:

A×X = B , (4)

where A is the rectangular design matrix with the number of columns N ′ equal
to the number of unknowns6 and the number of rows M equal to the number of
observations (M > N); X, the vector of unknowns of size N ′, and B, the vector
of right-hand sides of size M .

Equation system (4) is overdetermined (M > N), and the vector B of its right-
hand parts includes observed quantities that are measured with some errors and
therefore this system cannot be solved exactly. Usually, its solution is considered
to be the set of values (vector) X of independent variables that minimizes the

3 By a factor of 2 if mi = mj .
4 For example, in the case of ground-based measurements, the so-called “equal-altitude”

technique (Cousins 1985; Romanishin 2014) is used, where observations are planned in such a
way that stars in pairs would be at equal atmospheric air masses.

5 We consider star pairs to be ordered, i.e., the pairs (i, j) and (j, i) as different entities.
6 The number of unknowns, N ′, can be greater than, or equal to, the number of measured

stars, N .
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residual:
M∑

i=1

wi

wwwwww

N ′∑

j=1

Ai,jXj −Bj

wwwwww
→ min . (5)

Here wi is the weight of ith equation in the equation system to be solved and
|| . . . || is the norm. If the adopted norm has the form of the sum of squares
(|| . . . || = (. . . )2), then equation (5) describes the Least Square Method (LSM).
Hereafter we assume by default that overdetermined equation systems (4) are
solved using the LSM.

In the “zero” approximation, i.e., without the allowance for systematic errors,
equation system (4) for direct measurements acquires the following form:




1
1

. . .
1

1
1

. . .
1
...

. . .
...
1
1

. . .
1




×




m1

m2

...
mN


 =




f(s(1)
1 )

f(s(2)
1 )

. . .

f(s(k1)
1 )
...

f(s(1)
N )

f(s(2)
N )

. . .

f(s(kN )
N )




. (6)

The equation system has N independent variables, and its design matrix has N
columns and M rows (M > N). The rows of the matrix of equation system (6) are
ordered by the numbers assigned to observed stars: the first k1 rows (equations)
refer to observations of the first star, they are followed by k2 observations of the
second star, ... , the last kN rows refer to observations of the last (Nth) star;∑N

i=1 = M . Each row of the design matrix contains one unity element – it is
at the position corresponding to the number of the observed star – and all other
elements of the row are equal to zero.

This general system of equations breaks into independent overdetermined lin-
ear equation systems for individual stars. Their LSM solutions are obtained by
weighted averaging of the measurements:

m
(0)
i =

ki∑
k=1

wkf(s(k)
i )

ki∑
k=1

wk

, i = 1 .. N , (7)

where wk is the weight of kth measurement of ith star, and ki is the number of
observations of ith star.

In the next approximation, we take into account the systematic errors of the
measurements. The vector of independent variables of equation system (6), which
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consists of N unknown quantities mi, is extended with R parameters ti on which
systematic errors depend. In this case the system of equations acquires the follow-
ing form:




1 c
(1)
1,1 c

(1)
2,1 . . . c

(1)
R,1

1 c
(2)
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(2)
2,1 . . . c
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. . . . . . . . . . . . . . .
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...
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
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(8)
The design matrix in this equation system has N ′ = N + R columns and M rows.
The left-hand part of the design matrix (left of the vertical line) coincides with
the matrix of equation system (6), where each row contains only one non-zero
element. The structure of the right-hand part of the design matrix depends on
the adopted model of systematic errors. In the most general case, this part of the
matrix has a block structure, albeit some groups of columns may be completely
filled. The number of parameters associated with systematic errors in equation
system (8) should not be too large and, possibly, should not be greater than
R < N1/4 − N1/2. The equation systems for both approximations, (6) and (8),
have identical right-hand side vectors.

Equation systems for differential measurements somewhat differ from those
discussed above. Thus in the “zero” approximation (without the allowance for
systematic errors) the design matrix has the following form:




+1 . . . . . . . . . −1
+1 . . . . . . −1 . . .
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. (9)
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This equation system, like (6), has N independent variables and its design matrix
has N columns and M rows, however, each row of the matrix contains two nonzero
elements: the “+1” element is at the position corresponding to the number of
the primary star of the measured pair, and the “−1” element is at the position
corresponding to the number of the secondary star. Matrix rows in equation system
(9) are ordered by the numbers assigned to the primary of observed stars: the first
k1 rows (equations) refer to observations of the first star; these are followed by k2

observations of the second star, etc. Note that the number of the secondary star
may vary from one observation to another. This number is described by subscript
ji,k, where i is the number of the primary star in the observed pair and k, the
running number of observation of ith primary star.

With systematic corrections taken into account, the equation system for dif-
ferential measurements acquires the following form:


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
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(10)
In this equation system, the number of unknown variables increases to N ′ =

N + R and the design matrix is expanded with the right-hand part (right of the
vertical line), which in the general case has block structure. The right-hand side
vector is the same as in equation system (9).

Given that equation systems (9) and (10) contain only magnitude differences,
their ranks are equal to N − 1 and N ′ − 1, respectively. To make this system
solvable, it should be extended so as to make it definite. One of the possible ways
consists in assigning an a priori magnitude to one of the stars, i.e., to complement
the equation set by the following equation:

mi = const . (11)

As a result, the number of equations in equation systems increases to M + 1.
The important problem is how to determine the weight wi assigned to the extra
equation.

Instead of adding equation (11) to equation system (9) or (10), the mi value
can be substituted into these systems, and the resulting constants can be added
to the right-hand side of the corresponding equation Bi. In this case, the number
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of equations remains unchanged (M), and the number of independent variables
decreases by one (down to N − 1 or N ′ − 1, respectively) and becomes equal to
the rank of the design matrix.

Finally, the values of all the remaining independent variables in linear equation
systems (9) and (10) can be expressed in terms of variable mi.

3. SOLUTION OF EQUATION SYSTEMS

Equation systems (8) and (10) can be solved directly, i.e., as overdetermined
linear equation systems with rectangular design matrix A, or they can be trans-
formed into a system of normal equations where the number of equations is equal
to the number of unknowns. Each method has its advantages and disadvantages.

A very good modern method to directly solve overdetermined linear equation
systems with rectangular design matrices is based on the singular value decom-
position (SVD) technique (Forsite et al. 1977). This method is stable, it allows
determining the condition of the equation system and controlling the significance
of the solutions obtained. SVD works both for square and rectangular matrices.
A downside of this technique is its higher computing requirements compared to a
number of other methods of linear algebra.

The idea of the SVD method consists in the following. The singular value
decomposition of a real N ×M matrix A is its decomposition into a product of
three matrices of the following form:

A = U × Σ× V T , (12)

where Σ is a rectangular matrix of size N ×M with the upper diagonal populated
by positive singular values, and U and V are unitary matrices of sizes M ×M and
N ×N containing left- and right-singular vectors, respectively.

The condition number of matrix A is equal to the ratio of the largest (λmax)
to the smallest (λmin) singular values: cond(A) = λmax/λmin. The condition
number determines how the error of input data may affect the solution of the
equation system. The larger the condition number, the poorer is the condition
of the equation system. Well-conditioned equation systems can be solved using
practically any solution methods, whereas only stable methods (e.g., SVD) can
be applied to ill-conditioned equation systems. Stable methods are usually more
computer intensive.

Equation system (4) is transformed into a set of normal equations by multi-
plying both its parts by matrix AT:

AT ×A×X = AT ×B ,
G×X = P .

(13)

Here, G = AT × A is the matrix of normal equations of size N ′ × N ′, and P =
AT ×B, the vector of its right-hand parts of size N ′.

Matrix G is squared, symmetric, and positive definite. Many methods have
been developed for solving such systems. However, reduction of an overdetermined
equation system to normal form degrades its condition: G = AT×A and therefore
cond(G) = cond2(A).

Another parameter affecting the choice of the solution method for equation
systems (4) and (13) is the size of the system. If the matrix of the equation system
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Table 1. Number of parameters in sparse design matrices for three surveys.

Survey Stars Measurements Matrix Direct method Differential Next
(columns) (equations) elements 0 approx., 0 approx., approx.,

non zero elem. non zero elem. non zero elem.
(sparse factor) (sparse factor) (sparse factor)

WBVR 8000 70 000 560 · 106 — 16 000 770 000
(1/35 000) (∼ 1/1500)

Lyra-B 300 · 106 33 · 109 9.9 · 1018 — 33 · 109 4.3 · 1012

(1/108) (1/2.3 · 106)
Gaia ∼ 109 70 · 109 70 · 1018 70 · 109 — 12 · 1012

(1/109) (1/5.6 · 106)

fits completely into the computer memory, then common computational methods
can be applied. If the number of elements in the matrix exceeds the capacity of
the computer’s RAM, then special computing methods have to be used.

One of the ways to reduce memory requirements is to use sparse matrices.
In sparse matrices most of the elements are equal to zero and only significant,
non-zero elements are stored in memory. In such matrices, special addressing
algorithms are used and computing methods are subject to the requirement that
they should preserve the structure of sparse matrices: computations should result
in few or no new non-zero elements.

Matrices of equation systems (6), (8), (9), and (10) used for creating catalogs
are very sparse. Table 1 lists the parameters of the corresponding matrices for
WBVR, “Lyra-B”, and Gaia surveys. We note that the number of non-zero ele-
ments in design matrices (8) and (10) was computed assuming that the number
of parameters is equal to R = N1/4 and the parameter domain in matrices is
completely filled.

Matrices G of the normal equation system for direct and differential measure-
ments are also sparse. Thus, matrix G for direct measurements has the form:

G =

O1

...

O2

...
. . .

...

ON

...
...

...
...

...
...

(14)

Matrix G is symmetric and its upper right part of size of N ×N is diagonal. The
diagonal of this matrix is populated by positive numbers Oi equal to the number
of observations of ith star including the fictitious observation defined by equation
(11). These numbers are strictly positive, because each star included into the
system should have been observed at least once. The remaining part of the matrix
(of width R ¿ N) is filled or has a block structure. (This part is absent in zero
approximation.)

If G is computed using matrices A of the form (9) or (10) before formal equation
(11) is added to them, the rank of the normal equation system is equal to N − 1,
allowing the magnitude differences, but not the magnitudes themselves, to be
determined. In this case all Oi are equal to the number of actually performed
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observations of the corresponding star. When design matrices (9) and (10) are
folded and after equation (11) is added to them, the coefficient Oi whose number
appears in equation (11) increases by 1, the rank of matrix G is equal to N , and
normal equation system (13) can be solved in the usual way.

In the case of differential measurements, matrix Gd has a more complicated
form:

Gd =

O1 . . . −D1,i . . . −D1,k . . .
...

O2 −D2,j . . . . . . . . . −D2,m

...

. . . −Dj,2
. . . . . .

...

−Di,1 . . . Oi . . .
...

. . . . . . . . . . . .
. . . . . . . . . −Dn,N

...

−Dk,1 . . . . . . Ok . . .
...

. . . −Dm,2 . . . . . . Om −Dm,N

...

−DN,n −DN,m ON

...
...

...
...

...
...

...
...

...
...
(15)

The upper right-hand part of matrix Gd of size N × N has a symmetric form.
Its diagonal is populated by positive numbers Oi equal to the number of obser-
vations of ith star irrespectively of whether it is a primary or secondary star in
the observed pair. The number of observations includes the fictitious observation
defined by equation (11). The cells outside the diagonal of this part of the matrix
are populated by negative integer numbers −Di,j or zeros. The absolute value of
Di,j is equal to the number of joint observations of ith and jth stars, Di,j = 0 if
there were no observations of the corresponding pair. Stars are measured in pairs
and therefore the sum of elements over each column or row is equal to zero. The
only exceptions are the row and column with the number appearing in the added
equation (11): the sum of elements in this row and the sum of elements in this
column are equal to unity. The remaining part of matrix Gd (of width R ¿ N)
is, like in the case of matrix (14), filled or has a block structure.

The reasoning about the rank of the normal equation system presented above
for the case of direct observations also fully applies to the case of equations for
differential measurements.

Matrix G (14) in zero approximation contains N nonzero elements, and its
sparseness factor is equal to 1/N . The same parameters for matrix Gd (15) can be
estimated as follows: the diagonal of Gd contains N positive numbers, the average
number of observations of ith star is equal to M/N , and therefore ith row and
ith column should also contain another M/N non-negative elements and the total
number of such elements in matrix Gd is 2M . Hence matrix Gd contains a total
of N + 2M non-zero elements7, and its sparseness factor is equal to 1/(N + 2M).

7 N +2M is the upper limit of the number of non-zero elements, it does not take into account
the possibility of multiple observations of pairs and is achieved in the case where all non-zero
elements outside the diagonal are equal to –1.
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Table 2. Parameters of normal equations for sparse matrices for two surveys.

Survey Stars Measurements Direct method Differential Next
(columns) (equations) 0 approx., 0 approx., approx.,

N M non zero elem. non zero elem. non zero elem.
(sparse factor) (sparse factor) (sparse factor)

Lyra-B 300 · 106 33 · 109 300 · 106 66 · 109 96 · 109

(1/3 · 108) (1/66 · 109) (1/9.6 · 1010)
Gaia ∼ 109 70 · 109 109 1.4 · 1011 2.7 · 1011

(1/109) (1/1.4 · 1011) (1/2.7 · 1011)

In the next approximations, a large number of non-zero elements is contained
in the strip of parameters. If it is fully filled then the number of such elements is
approximately equal to 2NR, or 2N5/4 in the case of R = N1/4. Table 2 lists the
numerical values of these parameters for “Lyra-B” and Gaia surveys.

“Lyra-B” and Gaia catalogs can be accommodated in the RAM of modern
supercomputers if stored in the form of sparse matrices. Given that there is a
version of SVD procedure for sparse matrices (Berry 1992; Berry et al. 2003;
Kontoghiorghes 2005; Brand 2006; Yand et al. 2014), such equation systems can
be solved directly.

4. “PHYSCIAL” REDUCTION OF THE SIZE OF THE EQUATION SYSTEM

Another method of solving the equation system for the creation of a high-
precision catalog consists in setting up equation system (4) only for a part of the
stars measured in the process of the survey rather than for all observed stars.
The number of stars rapidly increases with magnitude, and the selection can be
performed as follows: all bright stars, a small fraction of medium-brightness stars,
and an even smaller fraction of faint stars. Another possible algorithm involves
selecting all observations for stars brighter than a certain critical magnitude, and
a fixed number of observations per unit magnitude for fainter stars. There are also
other possible ways of selecting stars.

The resulting equation system is substantially smaller than the initial complete
system, and it can be solved with less powerful computers in a much shorter time.

The representativeness of the resulting sample is a very important factor. It can
be validated statistically – by the presence of stars with different characteristics.
This fact can also be validated by comparing the solutions obtained for equations
for several different samples.

Solution of the equation system for a sample of stars yields the magnitudes of
the stars of the sample and the parameters of systematic errors. The parameters of
errors are assumed to be the same for all stars of the survey and are used for the
subsequent computation of the magnitudes and magnitude corrections for stars
not included into the sample. The magnitude of ith star not included into the
sample is computed using only the measurements of this star and therefore does
not require much computing power.

5. CONCLUSIONS

This study analyzes the form of linear equation systems for constructing high-
precision catalogs from initial data by identifying and correcting small system-
atic errors. We show that for surveys with the data size comparable to that of
Gaia (Lindegren et al. 2008) or smaller, simultaneous processing of these data on
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modern computers appears quite realistic. Larger surveys based on observations
collected with PanSTARR (Stubbs et al. 2010) or (future) LSST (LSST Science
Collaboration 2009) telescopes are too large to be completely processed.

High-precision multicolor photometric star catalogs are in great demand in
a substantial part of astronomy and its applications, and the studies cited here
(Gorynya et al. 1996; Shakura et al. 1998; Popov & Prokhorov 2006; Samus et al.
2009; Sil’chenko et al. 2012), which we selected based on our subjective opinion,
cover only a small part of the applications of these catalogs.
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