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Abstract. We determine the parameters of Galactic rotation and the so-
lar galactocentric distance R0 by simultaneously solving Bottlinger’s kinematic
equations using data for masers with known line-of-sight velocities and highly
accurate VLBI trigonometric parallaxes and proper motions. Our sample in-
cludes 93 masers spanning the range of galactocentric distances R from 3
to 15 kpc. The inferred parameters are Ω0 = 29.7 ± 0.5 km s−1 kpc−1,
Ω′

0 = −4.20 ± 0.11 km s−1 kpc−2, Ω′′
0 = 0.730 ± 0.029 km s−1 kpc−3, and

R0 = 8.03± 0.12 kpc, implying a circular rotation velocity of V0 = 238± 6 km
s−1 at the solar distance R0.

Key words: masers – Galaxy: kinematics and dynamics – Galaxy: solar
galactocentric distance

1. INTRODUCTION

Both kinematic and geometric characteristics are essential for studying the
Galaxy, and the solar galactocentric distance R0 is the most important among
them. Various data are used to determine the parameters of Galactic rotation.
These include the line-of-sight velocities of neutral and ionized hydrogen clouds
with the distances estimated by the tangential point method (Clemens 1985;
McClure-Griffiths & Dickey 2007; Levine et al. 2008), Cepheids with the dis-
tance scale based on the period–luminosity relation, open star clusters and OB
associations with photometric distances (Mishurov & Zenina 1999; Rastorguev et
al. 1999; Zabolotskikh et al. 2002; Bobylev et al. 2008; Mel’nik & Dambis 2009),
and masers with VLBI trigonometric parallaxes (Reid et al. 2009a; McMillan &
Binney 2010; Bobylev & Bajkova 2010; Bajkova & Bobylev 2012).

In kinematical analyses the solar galactocentric distance R0 is often assumed to
be known, because not all of the kinematic data allow R0 to be reliably estimated.
In turn, different methods of analysis (including the direct ones) yield different
values for R0.

Reid (1993) reviewed the R0 measurements made by that time using various
methods. He subdivided all measurements into primary, secondary, and indirect
ones and inferred the “best value” as a weighted mean of the measurements pub-
lished over a period of 20 years: R0 = 8.0 ± 0.5 kpc. Nikiforov (2004) proposed
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a more complete three-dimensional classification, which took into account (1) the
type of the method used to determine R0, (2) the method used to determine the
reference distances, and (3) the type of reference objects. With the main types
of errors and correlations associated with the classes of measurements taken into
account, Nikiforov derived what he called the “best value”, R0 = 7.9±0.2 kpc, by
analyzing the results of various authors published between 1974 and 2003.

Foster & Cooper (2010) obtained the mean R0 = 8.0 ± 0.4 kpc based on 52
results published between 1992 and 2010. Francis & Anderson (2013) reviewed
135 estimates of R0 published between 1918 and 2013. They concluded that the
results obtained after 2000 give a mean value of R0 close to 8.0 kpc.

We have some experience in determining R0 by simultaneously solving Bot-
tlinger’s kinematic equations for the Galactic rotation parameters. To this end,
we used the data for open star clusters (Bobylev et al. 2007) distributed within
about 4 kpc of the Sun. Clearly, masers located in regions of active star formation
and distributed over a much broader region of the Galaxy are of great interest for
this purpose. However, the first such analysis for a sample of 18 masers performed
by McMillan & Binney (2010) showed the probable value of R0 to be within a
fairly wide range, 6.7–8.9 kpc. Since then, the number of masers with measured
trigonometric parallaxes has increased (Reid et al. 2014), allowing this range to
be narrowed significantly.

The goal of this paper is to determine the parameters of Galactic rotation and
the distance R0 from the data on masers with measured trigonometric parallaxes.

2. METHOD

Here, we use the rectangular Galactic coordinate system with the axes directed
away from the observer toward the Galactic center (l=0◦, b=0◦, the X axis), in
the direction of Galactic rotation ((l=90◦, b=0◦, the Y axis), and toward the north
Galactic pole (b = 90◦, the Z axis).

The determination of the kinematic parameters consists in minimizing quadratic
functional F ,
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subject to the following constraints derived from Bottlinger’s formulas with the
angular velocity of Galactic rotation Ω expanded into a Taylor series up to the
second order in r/R0:

Vr = −u⊙ cos b cos l − v⊙ cos b sin l − w⊙ sin b
+R0(R−R0) sin l cos bΩ

′
0 + 0.5R0(R−R0)

2 sin l cos bΩ′′
0 ,

(2)

Vl = u⊙ sin l − v⊙ cos l + (R−R0)(R0 cos l − r cos b)Ω′
0

+(R−R0)
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Vb = u⊙ cos l sin b+ v⊙ sin l sin b− w⊙ cos b
−R0(R−R0) sin l sin bΩ
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Here N is the number of objects used; j is the current object number; V̂ j
r , V̂

j
l ,

and V̂ j
b are the model values of the three-dimensional velocity field: the line-of-

sight velocity and the proper motion velocity components in the l and b directions,
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respectively; Vl = 4.74rµl cos b, Vb = 4.74rµb are the measured components of the
velocity field (data), where 4.74 is the ratio of the number of kilometers in an

astronomical unit to the number of seconds in a tropical year; wj
r, w

j
l , w

j
b are the

weight factors; r is the heliocentric distance of the star calculated via the measured
parallax π, r = 1/π; the star’s proper motion components µl cos b and µb are in
mas yr−1 (milliarcseconds per year), the line-of-sight velocity Vr is in km s−1;
u⊙, v⊙, w⊙ are the components of the reflex velocity of the bulk motion of the
stellar group relative to the Sun (the velocity u is directed toward the Galactic
center, v is in the direction of Galactic rotation, w is directed to the north Galactic
pole); R0 is the galactocentric distance of the Sun, and R is the distance from the
star to the Galactic rotation axis,

R2 = r2 cos2 b− 2R0r cos b cos l +R2
0. (5)

Ω0 is the angular velocity of rotation at the distance R0; the parameters Ω′
0 and

Ω′′
0 are the first and second derivatives of the angular velocity at the distance R0

with respect to R, respectively.
The weight factors in functional (1) are assigned according to the following

formulas (we drop the subscript j for legibility):
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where S0 denotes the dispersion averaged over all observations — the “cosmic”
scatter — taken to be 8 km s−1; β = σVr/σVl

and γ = σVr/σVb
are the scale factors,

where σVr , σVl
and σVb

denote the velocity dispersions along the line of sight, the
Galactic longitude, and the Galactic latitude, respectively. The system of weights
(6) is close to that used by Mishurov & Zenina (1999). We adopt β = γ = 1 in
accordance with Bobylev & Bajkova (2014).

The errors of the velocities Vl and Vb are calculated with the equation
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We minimize functional (1) subject to Eqs. (2)–(4) by numerically determining
the seven unknown parameters, u⊙, v⊙, w⊙, Ω0, Ω

′
0, Ω

′′
0 , and R0, from a necessary

condition for the existence of an extremum. A sufficient condition for the existence
of an extremum in a particular domain is the positive definiteness of the Hessian
matrix composed of the elements {ai,j} = d2F/dxidxj , where xi(i = 1, ..., 7)
denote the required parameters, everywhere in this domain. We calculated the
Hessian matrix in a wide domain of parameters or, more specifically, ± 50% of the
nominal values of the parameters.

Our analysis of the Hessian matrix for both cases of weighting showed it to
be positive definite, suggesting the existence of a global minimum in this domain
and, as a consequence, the uniqueness of the solution. We illustrate this in Fig. 1,
which shows the dependence of the square root of residual functional F on two
parameters: (1) R0 and (2) u⊙, v⊙, w⊙,Ω0,Ω

′
0, and Ω′′

0 with the remaining param-
eters fixed at the values corresponding to the resulting solution. The graphs show
a well-defined global minimum in a wide domain of parameter space. In the case
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Fig. 1. Graphical representation of the dependence of the square root of residual
functional δ =

√
F on two parameters: (1) R0 and (2) u⊙, v⊙, w⊙,Ω0,Ω

′
0 and Ω′′

0 with
the remaining parameters fixed at the values corresponding to solution (8).

of unit weight factors, the Hessian matrix is also positive definite far beyond this
domain. However, as will be shown below, the adopted weighting improved the
accuracy of the solutions obtained.

We estimated the errors of the sought-for parameters by running 100 Monte
Carlo simulations. With this number of simulations the mean parameter values
virtually coincide with the parameters inferred from the initial data without adding
any measurement errors.
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3. DATA

We compiled published data for Galactic masers including the coordinates,
line-of-sight velocities, proper motions, and VLBI trigonometric parallaxes with
errors that are less than 10% on the average. These masers are associated with
very young objects, mostly massive protostars located in the regions of active star
formation.

Trigonometric parallaxes and proper motions of masers were measured within
the framework of several projects. One of them is the Japanese VERA (VLBI
Exploration of Radio Astrometry) campaign dedicated to observing H2O masers
at 22.2 GHz (Hirota et al. 2007) and a number of SiO masers (which are very few
among young objects) at 43 GHz (Kim et al. 2008).

VLBI observations of methanol (CH3OH, 6.7 and 12.2 GHz) and H2O masers
are performed in the USA (Reid et al. 2009a). Similar observations are also
carried out by the European VLBI network (Rygl et al. 2010), which includes three
Russian antennas at Svetloe, Zelenchukskaya, and Badary. These two programs
are within the scope of the BeSSeL project1 (Bar and Spiral Structure Legacy
Survey, Brunthaler et al. 2011).

We adopt the initial data for 103 masers from Reid et al. (2014).

4. RESULTS

Minimizing functional (1) with weights (6) for the three-dimensional maser
velocity field of the sample of 103 masers with respect to seven unknowns yields
the following parameters:

(u⊙, v⊙, w⊙) = (5.20, 17.47, 7.73)± (0.74, 0.72, 0.32) km s−1,
Ω0 = 29.74± 0.45 km s−1 kpc−1,
Ω′

0 = −4.20± 0.11 km s−1 kpc−2,
Ω′′

0 = 0.730± 0.029 km s−1 kpc−3,
R0 = 8.03± 0.12 kpc,
σ0 = 10.59 km s−1,
N⋆ = 93.

(8)

Note that, in this case, ten sources (G000.67-00.03, G010.47+00.02,
G010.62-00.38, G023.70-00.19, G025.70+00.04, G027.36-00.16, G009.62+00.19,
G012.02-00.03, G078.12+03.63, G168.06+00.82) were rejected according to the 3σ
criterion. From this solution, the linear rotation velocity at the solar distance R0 is
V0 = 238± 6 km s−1 and the Oort constants A = 0.5R0Ω

′
0 and B = Ω0 +0.5R0Ω

′
0

are equal to A = −16.86±0.45 km s−1 kpc−1 and B = 12.88±0.63 km s−1 kpc−1.
As a clear illustration of the uniqueness of the solution obtained (i.e., the

existence of a global minimum of functional F in a wide range of sought for pa-
rameters), Fig. 1 presents the two-dimensional dependence of the residuals δ =

√
F

(see Eq. (1)) on (1) R0 and (2) one of the parameters u⊙, v⊙, w⊙,Ω0,Ω
′
0, and Ω′′

0
with the remaining parameters fixed at the values corresponding to solution (8).

Figure 2 shows the Galactic rotation curve computed with parameters (8) in-
cluding R0 = 8.03 kpc; when calculating the boundaries of the confidence region,
we took into account the 0.12 kpc uncertainty in the inferred value of R0.

1 http://www3.mpifr-bonn.mpg.de/staff/abrunthaler/BeSSeL/index.shtml
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Table 1. Kinematic parameters inferred from an analysis of the three-dimensional
velocity field.

Parameters All masers 4 < R < 12 kpc eπ/π < 12% Outliers excluded

u⊙, km s−1 6.85± 0.75 5.65± 0.72 6.04± 0.77 7.83± 0.79
v⊙, km s−1 14.31± 0.65 15.48± 0.73 14.23± 0.81 13.25± 0.75
w⊙, km s−1 7.74± 0.35 8.45± 0.38 8.24± 0.42 9.18± 0.43
Ω0, km s−1 kpc−1 29.55± 0.45 29.49± 0.43 29.76± 0.48 29.39± 0.46

Ω
′
0, km s−1 kpc−2 −3.86± 0.08 −4.36± 0.11 −4.05± 0.12 −3.76± 0.10

Ω
′′
0 , km s−1 kpc−3 0.59± 0.02 0.95± 0.05 0.68± 0.03 0.56± 0.02

R0, kpc 8.25± 0.41 7.84± 0.13 8.10± 0.13 8.46± 0.12
σ0, km s−1 12.49 9.97 9.60 8.86

N⋆ 101 88 78 80

We also obtained several other solutions by applying various cuts to the data
(see Table 1). The results shown might be of some interest. In the second col-
umn of the table we present the solution based on nearly all masers (N = 101)
with only two sources (G000.67-00.03, G010.47+00.02) rejected because of unre-
liable velocities. The third and fourth columns present the solutions obtained for
subsamples with limits on galactocentric distance R and fractional parallax error
eπ/π. The first solution has a substantial error of unit weight, σ0, which is sig-
nificantly smaller in other cases. We therefore admit the first solution to be the
least reliable. In the last column we give the results obtained when neglecting 23
masers that were flagged as outliers by Reid et al. (2014). As is evident from
the table, there are no substantial differences between the three solutions. In our
opinion, solution (8) based on the largest maser sample (N = 103) is of greatest
interest.

5. DISCUSSION

Our inferred parameters of the Galactic rotation curve (8) agree well with the
results of the analyses of such young Galactic disk objects as OB associations,
Ω0 = 31 ± 1 km s−1 kpc−1 (Mel’nik & Dambis 2009), blue supergiants, Ω0 =
29.6 ± 1.6 km s−1 kpc−1 and Ω′

0 = −4.76 ± 0.32 km s−1 kpc−2 (Zabolotskikh et
al. 2002), or distant OB3 stars (R0 = 8 kpc), Ω0 = 31.9 ± 1.1 km s−1 kpc−1,

Ω
′

0 = −4.30± 0.16 km s−1 kpc−2 and Ω
′′

0 = 1.05± 0.35 km s−1 kpc−3 (Bobylev &
Bajkova 2013). Solution (8) agrees well with local circular velocity estimates of
V0 = 254±16 km s−1 for R0 = 8.4 kpc (Reid et al. 2009a) and V0 = 244±13 km s−1

for R0 = 8.2 kpc (Bovy et al. 2009) determined from a sample of 18 masers. Note
also the study by Irrgang et al. (2013), who proposed three Galactic potential
models based on the data for hydrogen clouds and masers, which yields a velocity
V0 of about 240 km s−1 and a solar galactocentric distance of R0 ≈ 8.3 kpc.

Individual independent methods give R0 estimates with typical errors of 10–
15%. Here we point out some important measurements. Feast et al. (2008)
obtained an estimate of R0 = 7.64 ± 0.21 kpc based on Population II Cepheids
and RR Lyr type variables in the Galactic bulge and improved calibrations derived
from Hipparcos data and 2MASS photometry. Gillessen et al. (2009) derived the
estimate R0 = 8.33± 0.35 kpc based on an analysis of stellar orbits about the su-
permassive black hole at the Galactic center (the method of dynamical parallaxes).
According to VLBI measurements, the radio source Sqr A* has a proper motion
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Fig. 2. Galactic rotation curve computed with parameters (8) (thick line); the thin
lines mark the 1σ confidence region; the vertical straight line indicates the position of
the Sun.

of 6.379 ± 0.026 mas yr−1 relative to extragalactic sources (Reid & Brunthaler
2004). Based on this estimate, Schönrich (2012) found R0 = 8.27± 0.29 kpc and
V0 = 238±9 km s−1. There are two H2O maser sources (Sgr B2) in the immediate
vicinity of the Galactic center, where the radio source Sqr A* is located. Based
on their direct trigonometric VLBI measurements, Reid et al. (2009b) obtained a
distance estimate of R0 = 7.9+0.8

−0.7 kpc.
Bobylev & Bajkova (2014) used the data for 73 masers to obtain a kinematic

estimate of R0 = 8.3 ± 0.2 kpc and V0 = 241 ± 7 km s−1. Based on 80 maser
sources, Reid et al. (2014) obtained a kinematic estimate of R0 = 8.34± 0.16 kpc
and V0 = 240 ± 8 km s−1. Thus our kinematic estimate of R0 = 8.03 ± 0.12 kpc
agrees well with the known measurements and is superior to them in terms of
accuracy.

6. CONCLUSIONS

We compiled a sample of masers with published line-of-sight velocities and
highly accurate VLBI trigonometric parallaxes and proper motions. We used
these data to solve Bottlinger’s kinematic equations for the parameters of Galactic
rotation (Ω0 and its derivatives), the solar galactocentric distance (R0), and the
components of the bulk velocity of the sample relative to the Sun (u⊙, v⊙, w⊙).
We estimated the unknown parameters by minimizing the quadratic functional
equal to the sum of the weighted squared residuals between the measured and
model velocities. We found the solutions for the cases of both three- and two-
dimensional velocity fields for various sets of sought-for parameters with various
weighting methods applied. The most reliable solution found — Eqs. (8) — is the
one based on an analysis of the three-dimensional maser velocity field for seven
sought-for parameters (u⊙, v⊙, w⊙,Ω0,Ω

′
0,Ω

′′
0 , and R0) corresponding to the global

minimum of the functional. The resulting linear Galactic rotation velocity at the
solar distance R0 is V0 = 238 ± 6 km s−1. The solar galactocentric distance R0

is the most important and debatable parameter. Our value R0 = 8.03± 0.12 kpc
agrees well with the most recent estimates and even surpasses them in terms of
accuracy.
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